ECE1371 Advanced Analog Circuits Lecture 7

SWITCHED CAPACITOR CIRCUITS

Richard Schreier richard.schreier@analog.com

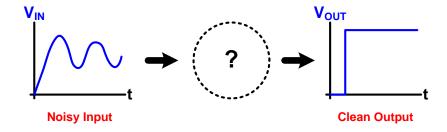
Trevor Caldwell
trevor.caldwell@utoronto.ca

Course Goals

 Deepen Understanding of CMOS analog circuit design through a top-down study of a modern analog system

The lectures will focus on Delta-Sigma ADCs, but you may do your project on another analog system.

 Develop circuit insight through brief peeks at some nifty little circuits


The circuit world is filled with many little gems that every competent designer ought to recognize.

Date	Lecture			Ref	Homework
2008-01-07	RS	1	Introduction: MOD1 & MOD2	S&T 2-3, A	Matlab MOD2
2008-01-14	RS	2	Example Design: Part 1	S&T 9.1, J&M 10	Switch-level sim
2008-01-21	RS	3	Example Design: Part 2	J&M 14, S&T B	Q-level sim
2008-01-28	TC	4	Pipeline and SAR ADCs	J&M 11,13	Pipeline DNL
2008-02-04	ISSCC – No Lecture				
2008-02-11	RS	5	Advanced ΔΣ	S&T 4, 6.6, 9.4, B	CTMOD2; Proj.
2008-02-18	Reading Week – No Lecture				
2008-02-25	RS	6	Comparator and Flash ADC	J&M 7	
2008-03-03	тс	7	SC Circuits	Raz 12, J&M 10	
2008-03-10	тс	8	Amplifier Design		
2008-03-17	тс	9	Amplifier Design		
2008-03-24	тс	10	Noise in SC Circuits	S&T C	
2008-03-31	Project Presentations				
2008-04-07	тс	11	Matching & MM-Shaping		
2008-04-14	RS	12	Switching Regulator		Project Report

ECE1371 7-3

NLCOTD: Schmitt Trigger

Problem: Input is noisy or slowly varying

How do we turn this into a clean digital output?

Highlights

(i.e. What you will learn today)

- 1. Motivation for SC Circuits
- 2. Basic sampling switch and charge injection errors
- 3. Fundamental SC Circuits
 Sample & Hold, Gain and Integrator
- 4. Other Circuits

 Bootstrapping, SC CMFB

ECE1371 7-5

Why Switched Capacitor?

- Used in discrete-time or sampled-data circuits
 Alternative to continuous-time circuits
- Capacitors instead of resistors

Capacitors won't reduce the gain of high output impedance OTAs

No need for low output impedance buffer to drive resistors

Accurate frequency response

Filter coefficients determined by capacitor ratios (rather than RC time constants) and clock frequencies Capacitor matching on the order of 0.1% - when the transfer characteristics are a function of only a capacitor ratio, it can be very accurate RC time constants vary by up to 20%

Basic Building Blocks

Opamps

Ideal usually assumed

Some important non-idealities to consider include:

- DC Gain: sets the accuracy of the charge transfer, how 'grounded' the virtual ground is
- 2. Unity-gain freq, Phase Margin & Slew Rate: determines maximum clock frequency
- 3. DC Offsets: circuit techniques to combat this and 1/f noise Correlated Double Sampling, Chopping

Capacitors

Large absolute variation, good matching

Large bottom plate capacitor adds parasitic cap

ECE1371 7-7

Basic Building Blocks

Switches

MOSFET switches are good – large off resistance ($G\Omega$), small on resistance (100Ω - $5k\Omega$, depending on transistor sizing)

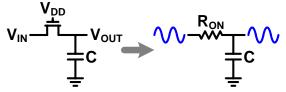
MOSFET switches have non-linear parasitic capacitors

Non-Overlapping Clocks

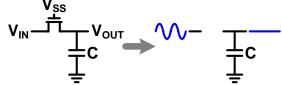
Clocks are never on at the same time

Required so that charge is never lost/shared

 ϕ_1 ϕ_2 ϕ_2

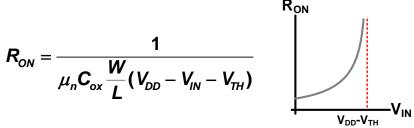

Clock Generator previously discussed

Basic Sampling Switch


MOSFET used as sample-and-hold

When CLK is HIGH, V_{OUT} follows V_{IN} through the low-pass filter created by R_{ON} and C

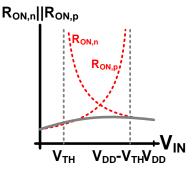
 R_{ON} varies depending on V_{IN} , V_{OUT} , and V_{DD}


When CLK is LOW, V_{OUT} holds the value on C

ECE1371 7-9

On-Resistance Variation

• With an NMOS sampling switch, as V_{IN} approaches V_{DD} - V_{TH} , R_{ON} increases dramatically In smaller technologies, as V_{DD} decreases the swing on V_{IN} is severely limited


Sampling switch must be sized for worst case R_{ON} so that the bandwidth is still sufficient

On-Resistance Variation

- PMOS switches suffer from the same problem as V_{IN} approaches V_{T}
- Complementary switch can allow rail-to-rail input swings

Ignoring variation of V_{TH} with V_{IN} , $R_{ON,eq}$ is constant with V_{IN} if

$$\mu_n \mathbf{C}_{ox} \frac{\mathbf{W}}{\mathbf{L}} = \mu_p \mathbf{C}_{ox} \frac{\mathbf{W}}{\mathbf{L}}$$

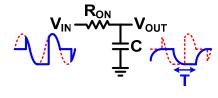
FCE1371 7-11

Settling Accuracy

- · Two situations to consider
 - 1) Discrete-time signal

When analyzing a signal within the switchedcapacitor circuit (for example, at the output of the first OTA)

2) Continuous-time signal


When analyzing a signal that is sampled at the input

Settling Accuracy – DT

Discrete-Time Signal

Settling Error = e^{-T/4RC} For N-bit accuracy in T/4 seconds

$$R_{ON}C < \frac{T}{4N\ln 2}$$

This is the maximum R_{ON} (for a given C)

• Example:

Assume 1 GHz to 4 GHz variation of $\frac{1}{2\pi R_{oN}C}$ Input sinusoidal signal at 50 MHz For f_S=100MHz, N=22 bits with discrete-time signal (typically you are limited by the OTA)

ECE1371 7-13

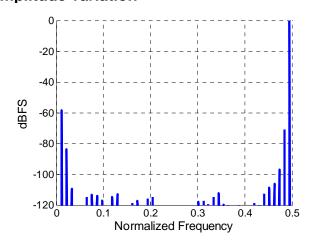
Settling Accuracy – CT

Continuous-Time Signal

R_{ON}C acts as a low-pass filter and introduces amplitude and phase change

Variations in the input signal size cause variations in R_{ON} , causing distortion in the sampled signal Both the amplitude and phase vary – which one causes distortion?

Amplitude Error

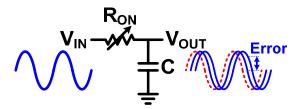

Less significant error

Due to variation in magnitude of low-pass filter At 50 MHz (with same $R_{\text{ON}}\text{C}$ variation as DT case), maximum possible error is 0.1%

ECE1371 7-15

Distortion in sampled CT input

Input ~50 MHz, sampled at 100MHz
 Distortion at 57dB, or ~9 bits
 This is larger than the maximum possible error due to amplitude variation


ECE1371

7-16

Phase Error

More significant error

Due to variation in phase of low-pass filter At 50 MHz (with same R_{ON}C variation as DT case), maximum possible error is a few percent - error is less than that

FCF1371 7-17

Charge Injection

 When a transistor turns off, the channel charge **Q**_{CH} goes into the circuit

Doesn't exactly divide in half - depends on impedance seen at each terminal and the clock transition time $Q_{CH} = WLC_{OX}(V_{DD} - V_{IN} - V_{TH})$

- Charge into V_{IN} has no impact on output node Doesn't create error in the circuit
- Charge into C causes error ΔV in V_{OUT}

$$V_{IN} = \frac{Q_{CH}}{\frac{Q_{CH}}{2}} V_{OUT}$$

$$= \frac{WLC_{ox}(V_{DD} - V_{IN} - V_{TH})}{2C}$$
7-18

ECE1371

Charge Injection

In previous analysis, charge injection introduces a gain and offset error

This is still linear and could be tolerated or corrected

$$\begin{aligned} V_{OUT} &= V_{IN} - \Delta V \\ &= V_{IN} \left(1 + \frac{WLC_{ox}}{2C} \right) - \frac{WLC_{ox}(V_{DD} - V_{TH})}{2C} \end{aligned}$$

• But...

 V_{TH} is actually a function of $\sim \sqrt{V_{IN}}$ Introduces non-linear term that cannot be corrected in the circuit

ECE1371 7-19

Charge Injection vs. Speed

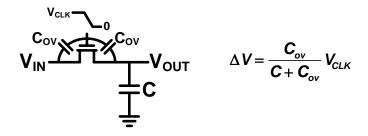
Charge injection
 Proportional to transistor size (WL)

Speed

 R_{ON} inversely proportional to aspect ratio (W/L)

Figure of Merit

Product of speed (1/ τ) and charge injection (1/ Δ V)


$$(\tau \Delta V)^{-1} = \left(\frac{C}{\mu_n C_{ox}(W/L)(V_{DD} - V_{IN} - V_{TH})}\right)^{-1} \left(\frac{WLC_{ox}}{C}(V_{DD} - V_{IN} - V_{TH})\right)^{-1}$$

$$= \frac{\mu_n}{L^2}$$

Clock Feedthrough

 Overlap capacitance allows clock to couple from the gate to drain/source terminals

Change in voltage ΔV independent of the input signal Error is an offset voltage which is cancelled with differential operation

ECE1371 7-21

Charge Error Cancellation

Differential operation

Cancels offset errors, depending on the matching between differential circuits

Applies to signal dependent portion of charge injection error, and clock feedthrough error

• Complementary Switches

Error cancelled for 1 input level

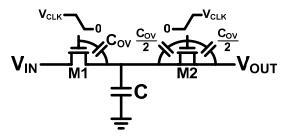
$$W_n L_n C_{ox} (V_{CLK} - V_{IN} - V_{THN}) = W_p L_p C_{ox} (V_{IN} - |V_{THP}|)$$

Clock feedthrough cancelled depending on similarity of overlap capacitance for PMOS and NMOS switches

Charge Error Cancellation

Dummy Switch

Use second transistor to remove charge injection by main transistor


Inverted clock operates on dummy switch

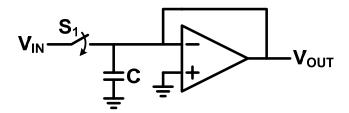
Charge from M1: $q_{M1} = W_1 L_1 C_{ox} (V_{CK} - V_{IN} - V_{TH1})/2$

Charge from M2: $q_{M2} = W_2 L_2 C_{ox} (V_{CK} - V_{IN} - V_{TH2})$

If charge splits equally in M1 (not quite true), then with

M2 half the size of M1, $q_{M1} = q_{M2}$

ECE1371


7-23

Sample and Hold Amplifier

Input dependent charge from S₁ onto C

When S1 turns off, charge q adds to C

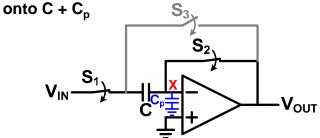
 V_{OUT} is then equal to $V_{\text{IN}}\text{+q/C}$ where q has a non-linear dependence on V_{IN}

We can improve on this by making V_{OUT} independent of sampling switch charge...

S/H Amplifier

Two phases

Phase 1: S₁ and S₂ closed, V_{IN} sampled on C


Phase 2: S₃ closed, C is tied to V_{OUT}

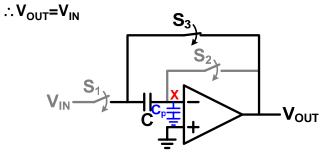
Phase 1

Charge on C is $\mathrm{CV}_{\mathrm{IN}}$

 $\mathbf{S_2}$ opens, injecting signal indep. charge at node \mathbf{X}

Then S_1 opens, injecting signal dependent charge q

ECE1371

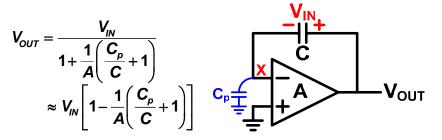

7-25

S/H Amplifier

Phase 2

Node X is a virtual ground and charge on \mathbf{C}_{p} is zero Charge on C is still $\mathbf{CV}_{\mathrm{IN}}$

 S_3 injects charge on X that must be discharged due to virtual ground node – it does not disturb charge on C



 S_1 / S_3 are non-overlapping, S_2 slightly ahead of S_1

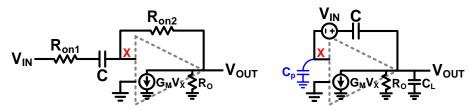
Gain of the S/H

Finite OTA gain reduces gain of sampler

On Phase 1, C charges to V_{IN} On Phase 2, node X goes from 0 to $V_X = -V_{OUT}/A$ Charge comes from C, changing q_C to $CV_{IN} + C_pV_X$ $V_{OUT} - (CV_{IN} + C_pV_X)/C = V_X$

ECE1371 7-27

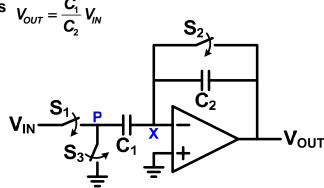
Speed of the S/H


In sampling mode (Phase 1)
 At node X, R_X ~ 1/G_m , τ₁ ~ (R_{on1}+1/G_m)C

In amplification mode (Phase 2)

Replace charge on C by voltage source V_{IN} (like switching in voltage source at start of Phase 2)

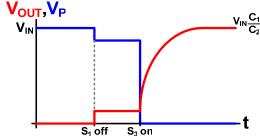
After analysis, $\tau_2 = (C_L C_p + C_p C + C C_L)/G_M C$


Reduces to $\tau_2 \sim C_L/G_M$ if C_p is small

Basic Amplifier

- Sampling phase when S₁ and S₂ closed Input signal sampled onto C₁
- Amplifying phase when S₃ closed

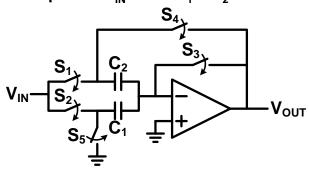
Charge on C_1 transferred to C_2 so that the final output


ECE1371 7-29

Basic Amplifier

 S₂ must open before S₁ for the charge injection to be signal independent

Charge from S_2 opening is deposited on C_1 , but is not signal dependent


Charge from S_1 opening causes glitch in V_{OUT} When S_3 closes, V_{OUT} goes to final value, regardless of what happened between S_2 opening and S_3 closing

Precision Gain-2

- Sampling phase when S₁, S₂, S₃ closed
 Input signal sampled onto C₁ and C₂
- Amplifying phase when S₄, S₅ closed
 Charge on C₁ is transferred to C₂, doubling the charge on C₂

Final output is $2V_{IN}$ since $C_1 = C_2$

ECE1371

7-31

Precision Gain-2

• How is it more precise?

The feedback factor in both gain circuits is

$$\frac{\mathbf{C}_2}{\mathbf{C}_2 + \mathbf{C}_1 + \mathbf{C}_p}$$

In the precision Gain-2 circuit, $C_1 = C_2$, while the basic amplifier has $C_1 = 2C_2$, resulting in a smaller feedback factor and a slower circuit

The gain error is inversely proportional to the feedback factor, so the precision circuit is more accurate for a given amplifier gain A

$$\frac{V_{OUT}}{V_{IN}} \approx 2 \left(1 - \frac{C_2 + C_1 + C_p}{AC_2} \right)$$

Resistor Equivalence of SC

$$V_1 \xrightarrow{\phi_1} V_2 = V_1 \xrightarrow{R_{EQ}} V_2$$

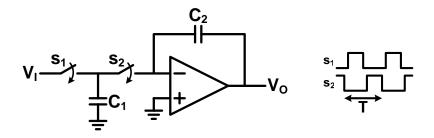
$$\downarrow C \qquad f_{IN} << f_S$$

$$V_1 \xrightarrow{R_{EQ}} V_2$$

Average current through switched-capacitor

$$\phi_1 : Q_1 = CV_1 \quad \phi_2 : Q_2 = CV_2$$

$$I_{AVG} = \frac{Q_1 - Q_2}{T} = \frac{C(V_1 - V_2)}{T}$$

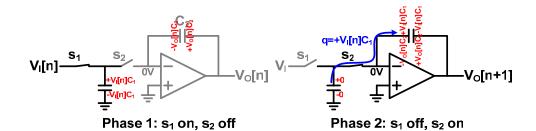

Equivalent current through a resistor (f_{IN} << f_S)

$$I_{EQ} = \frac{V_1 - V_2}{R_{EQ}}$$

$$R_{EQ} = \frac{T}{C} = \frac{1}{Cf_S}$$
7-33

ECE1371

Switched-Capacitor Integrator


Two non-overlapping clock phases control s₁,s₂

Phase 1: Sampling phase – input is sampled onto capacitor C_1

Phase 2: Integrating phase – additional charge is added to previous charge on C₂

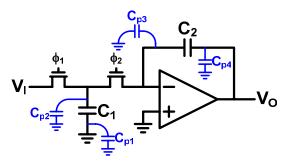
ECE1371

Switched-Capacitor Integrator

Final charge on L.S. of C2 is +V₀[n+1]C₂

$$+V_{O}[n+1]C_{2} = +V_{O}[n]C_{2} - V_{I}[n]C_{1}$$

$$zV_{O}(z)C_{2} = V_{O}(z)C_{2} - V_{I}(z)C_{1}$$

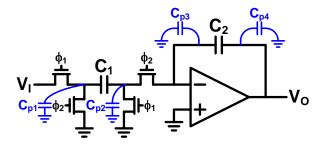

$$\frac{V_{O}}{V_{I}}(z) = -\frac{C_{1}}{C_{2}}\frac{1}{z-1}$$

ECE1371

Parasitic Sensitive

7-35

7-36



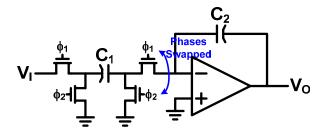
- Parasitic capacitances C_{p1} , C_{p3} and C_{p4} have no impact on transfer function
- C_{p2} in parallel with C₁, changes transfer function

$$\frac{V_o}{V_i}(z) = -\frac{(C_1 + C_{p2})}{C_2} \frac{1}{z - 1}$$

ECE1371

Parasitic Insensitive

• Transfer function is non-inverting, delaying


$$\frac{V_o}{V_l}(z) = \frac{C_1}{C_2} \frac{1}{z-1}$$

ECE1371 7-37

Parasitic Insensitive

- Parasitics have no impact on transfer function
 Better linearity since non-linear capacitors are unimportant
- Top plate on virtual ground node
 Minimizes parasitics, improves amplifier speed and resolution, reduces noise coupled to node
- Two extra switches needed
 More power to drive the switches for the same on-resistance

Delay-Free Integrator

- Same structure, still parasitic insensitive
- · Transfer function is inverting, delay-free

$$\frac{V_0}{V_1}(z) = -\frac{C_1}{C_2} \frac{z}{z-1}$$

ECE1371 7-39

Bootstrapping

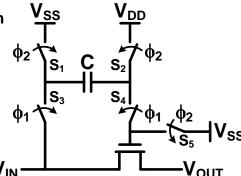
- At low supply voltages, signal swing is limited
 Maximum distortion determines the tolerable variation in R_{ON}, and this limits the signal swing
- Want to increase V_{GS} on the sampling switch
 Can do this by increasing the supply voltage for the sampling switch, but this requires slower thick oxide devices

Alternatively, add a constant voltage to the input signal and use that as the gate voltage – keep $V_{\rm GS}$ constant, reducing the variation in $R_{\rm ON}$

Bootstrapped Circuit

Basic operation

 ϕ_2 : C is charged to V_{DD} and gate of sampling switch is discharged to V_{SS} (turned off)


 $\phi_1 \colon V_{\text{IN}}$ is added to voltage across C, sampling switch

turns on, gate voltage of the sampling switch is $V_{IN} + V_{DD}$

Ideally, there is

always V_{GS} = V_{DD} for the sampling switch

nere is _{SS} = V_{DD} mpling V_I

ECE1371 7-41

Bootstrapped Circuit

• C must be sized so that charge sharing between gate capacitance of switch is not significant

$$V_G = V_{IN} + \frac{C}{C + C_G} V_{DD}$$

- Rise time controlled by size of S₄, fall time controlled by size of S₅
- Extra transistors required to limit gate-source voltages to V_{DD} and prevent overstress

See Dessouky, JSSC Mar.2001

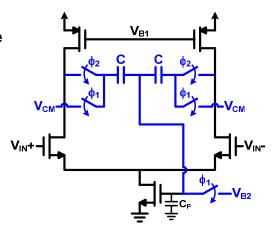
Switched-Capacitor CMFB

Two parts to the circuit

First, sense the common mode of the output Second, compare the common mode to the expected common mode, and adjust the bias accordingly

Sensing

Could use 2 resistors – they are either too small and reduce the gain, or they can get prohibitively large Could use 2 capacitors – they don't reduce the gain, but the voltage across them is undefined The voltage across them can be refreshed every clock cycle

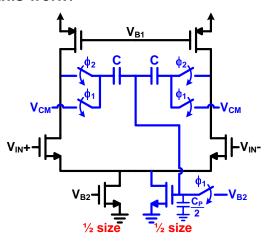

ECE1371 7-43

Switched-Capacitor CMFB

One alternative...

Phase 1: precharge capacitors to ideal value

Phase 2: sense the difference and adjust the bias accordingly

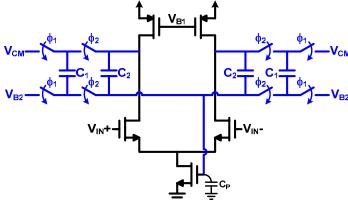


But... there may be large changes in the tail current bias

Switched-Capacitor CMFB

 Solution: Part of the tail current source can be controlled by a constant bias voltage

Will this work?


ECE1371

7-45

Switched-Capacitor CMFB

 Alternatively, use 2 capacitors so that only a fraction of the charge is shared to adjust the bias voltage

Typically, C₂ is 4-10 times C₁

NLCOTD: Schmitt Trigger

ECE1371 7-47

What You Learned Today

- 1. Errors introduced with simple sampling switch RON variation, charge injection
- 2. Main SC Circuits S/H, Gain and Integrators
 Parasitic Insensitive
 Signal-independent charge injection
- 3. Bootstrapped Circuit
- 4. Switched Capacitor CMFB