ECE1371 Advanced Analog Circuits Lecture 7

SWITCHED CAPACITOR CIRCUITS

Richard Schreier richard.schreier@analog.com

Trevor Caldwell trevor.caldwell@utoronto.ca

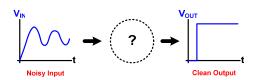
Course Goals

 Deepen Understanding of CMOS analog circuit design through a top-down study of a modern analog system

The lectures will focus on Delta-Sigma ADCs, but you may do your project on another analog system.

 Develop circuit insight through brief peeks at some nifty little circuits
 The circuit world is filled with many little gems that

every competent designer ought to recognize.


ECE1371

7-2

					1
Date	Lecture			Ref	Homework
2008-01-07	RS	1	Introduction: MOD1 & MOD2	S&T 2-3, A	Matlab MOD2
2008-01-14	RS	2	Example Design: Part 1	S&T 9.1, J&M 10	Switch-level sim
2008-01-21	RS	3	Example Design: Part 2	J&M 14, S&T B	Q-level sim
2008-01-28	тс	4	Pipeline and SAR ADCs	J&M 11,13	Pipeline DNL
2008-02-04	ISSCC – No Lecture				
2008-02-11	RS	5	Advanced ΔΣ	S&T 4, 6.6, 9.4, B	CTMOD2; Proj.
2008-02-18	Reading Week – No Lecture				
2008-02-25	RS	6	Comparator and Flash ADC	J&M 7	
2008-03-03	тс	7	SC Circuits	Raz 12, J&M 10	
2008-03-10	тс	8	Amplifier Design		
2008-03-17	тс	9	Amplifier Design		
2008-03-24	тс	10	Noise in SC Circuits	S&T C	
2008-03-31	Project Presentations				
2008-04-07	тс	11	Matching & MM-Shaping		
2008-04-14	RS	12	Switching Regulator		Project Report
ECE1371 7-3					

NLCOTD: Schmitt Trigger

Problem: Input is noisy or slowly varying

How do we turn this into a clean digital output?

ECE1371

7-4

Highlights (i.e. What you will learn today)

- 1. Motivation for SC Circuits
- 2. Basic sampling switch and charge injection errors
- 3. Fundamental SC Circuits Sample & Hold, Gain and Integrator
- 4. Other Circuits Bootstrapping, SC CMFB

ECE1371

Why Switched Capacitor?

- Used in discrete-time or sampled-data circuits
 Alternative to continuous-time circuits
- Capacitors instead of resistors
 Capacitors won't reduce the gain of high output
 impedance OTAs
 No need for low output impedance buffer to drive
 resistors
- Accurate frequency response
 Filter coefficients determined by capacitor ratios
 (rather than RC time constants) and clock frequencies
 Capacitor matching on the order of 0.1% when the
 transfer characteristics are a function of only a
 capacitor ratio, it can be very accurate
 RC time constants vary by up to 20%

ECE1371

Basic Building Blocks

- Opamps
 - Ideal usually assumed

Some important non-idealities to consider include:

- 1. DC Gain: sets the accuracy of the charge transfer, how 'grounded' the virtual ground is
- 2. Unity-gain freq, Phase Margin & Slew Rate: determines maximum clock frequency
- 3. DC Offsets: circuit techniques to combat this and 1/f noise - Correlated Double Sampling, Chopping
- Capacitors •

Large absolute variation, good matching Large bottom plate capacitor adds parasitic cap

ECE1371

7-7

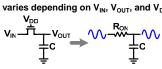
Basic Building Blocks

Switches

MOSFET switches are good - large off resistance (G Ω), small on resistance (100 Ω - 5k Ω , depending on transistor sizing) MOSFET switches have non-linear parasitic capacitors

Non-Overlapping Clocks

Clocks are never on at the same time Required so that charge is never lost/shared


Clock Generator previously discussed ECE1371

7-8

Basic Sampling Switch

• MOSFET used as sample-and-hold When CLK is HIGH, V_{OUT} follows V_{IN} through the lowpass filter created by $R_{\mbox{\scriptsize ON}}$ and C

 R_{ON} varies depending on $V_{\text{IN}}, V_{\text{OUT}},$ and V_{DD}

When CLK is LOW, $V_{\mbox{\scriptsize OUT}}$ holds the value on C

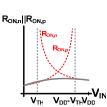
ECE1371

On-Resistance Variation

• With an NMOS sampling switch, as VIN approaches $V_{\text{DD}}\text{-}V_{\text{TH}},\,R_{\text{ON}}$ increases dramatically In smaller technologies, as V_{DD} decreases the swing on V_{IN} is severely limited Ron

$$R_{ON} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{DD} - V_{IN} - V_{TH})}$$

Sampling switch must be sized for worst case R_{ON} so that the bandwidth is still sufficient


ECE1371

7-10

On-Resistance Variation

- · PMOS switches suffer from the same problem as V_{IN} approaches V_T
- · Complementary switch can allow rail-to-rail input swings

Ignoring variation of V_{TH} with V_{IN} , $R_{ON,eq}$ is constant with V_{IN} if $\mu_n \mathbf{C}_{ox} \frac{W}{L} = \mu_p \mathbf{C}_{ox} \frac{W}{L}$

- Two situations to consider
 - 1) Discrete-time signal When analyzing a signal within the switchedcapacitor circuit (for example, at the output of the first OTA)

2) Continuous-time signal

When analyzing a signal that is sampled at the input

ECE1371

7-11

7-9

ECE1371

Settling Accuracy – DT

 Discrete-Time Signal Settling Error = e^{-T/4RC}

For N-bit accuracy in T/4 seconds $R_{oN}C < \frac{T}{4N\ln 2}$

This is the maximum R_{oN} (for a given C)

- Example:
 - Assume 1 GHz to 4 GHz variation of $\frac{1}{2\pi R_{ov}C}$

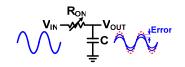
Input sinusoidal signal at 50 MHz $2\pi R_{ov}$ For f_s=100MHz, N=22 bits with discrete-time signal (typically you are limited by the OTA)

ECE1371

Settling Accuracy – CT

Continuous-Time Signal

 $R_{ON}C$ acts as a low-pass filter and introduces amplitude and phase change Variations in the input signal size cause variations in R_{ON} , causing distortion in the sampled signal Both the amplitude and phase vary – which one causes distortion?

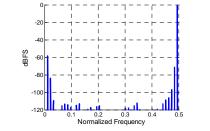

```
ECE1371
```

ECE1371

7-14

Amplitude Error

 Less significant error
 Due to variation in magnitude of low-pass filter
 At 50 MHz (with same R_{ON}C variation as DT case),
 maximum possible error is 0.1%


ECE1371

7-15

7-13

Distortion in sampled CT input

 Input ~50 MHz, sampled at 100MHz Distortion at 57dB, or ~9 bits This is larger than the maximum possible error due to amplitude variation

7-16

Phase Error

• More significant error

Due to variation in phase of low-pass filter At 50 MHz (with same $R_{\rm ON}C$ variation as DT case), maximum possible error is a few percent - error is less than that

ECE1371

7-17

Charge Injection

- When a transistor turns off, the channel charge \mathbf{Q}_{CH} goes into the circuit
 - Doesn't exactly divide in half depends on impedance seen at each terminal and the clock transition time $Q_{CH} = WLC_{ox}(V_{DD} - V_{IN} - V_{TH})$
- Charge into V_{IN} has no impact on output node Doesn't create error in the circuit
- Charge into C causes error ∆V in V_{OUT}

$$\mathbf{V}_{\text{IN}} \underbrace{\frac{\mathbf{v}_{\text{CH}}}{\mathbf{v}_{\text{CH}}}}_{\mathbf{v}_{\text{CH}}} \underbrace{\mathbf{v}_{\text{CH}}}_{\mathbf{v}_{\text{C}}} \underbrace{\mathbf{v}_{\text{CH}}}_{\mathbf{v}_{\text{C}}} \mathbf{v}_{\text{OUT}} \qquad \Delta V = \frac{\mathbf{Q}_{\text{CH}}}{2C} \\ = \frac{WLC_{\text{ox}}(V_{\text{DD}} - V_{\text{IN}} - V_{\text{TH}})}{2C}$$

ECE1371

Charge Injection

 In previous analysis, charge injection introduces a gain and offset error
This is still lines and outld be talented as a

This is still linear and could be tolerated or corrected

$$V_{OUT} = V_{IN} - \Delta V$$

= $V_{IN} \left(1 + \frac{WLC_{ox}}{2C} \right) - \frac{WLC_{ox}(V_{DD} - V_{TH})}{2C}$

• But...

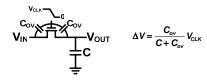
 V_{TH} is actually a function of ~ $\sqrt{V_{IN}}$ Introduces non-linear term that cannot be corrected in the circuit

ECE1371

7-19

Charge Injection vs. Speed

- Charge injection
 Proportional to transistor size (WL)
- Speed R_{oN} inversely proportional to aspect ratio (W/L)
 - Figure of Merit Product of speed (1/ τ) and charge injection (1/ Δ V)


$$(z\Delta V)^{-1} = \left(\frac{C}{\mu_n C_{ox}(W/L)(V_{DD} - V_{IN} - V_{TH})}\right)^{-1} \left(\frac{WLC_{ox}}{C}(V_{DD} - V_{IN} - V_{TH})\right)^{-1}$$
$$= \frac{\mu_n}{L^2}$$

ECE1371

7-20

Clock Feedthrough

 Overlap capacitance allows clock to couple from the gate to drain/source terminals Change in voltage ∆V independent of the input signal Error is an offset voltage which is cancelled with differential operation

ECE1371

7-21

7-23

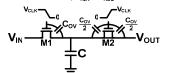
Charge Error Cancellation

Differential operation
 Cancels offset errors, depending on the matching
 between differential circuits
 Applies to signal dependent portion of charge
 injection error, and clock feedthrough error

Complementary Switches

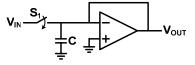
Error cancelled for 1 input level $W_n L_n C_{ox}(V_{CLK} - V_{N} - V_{THN}) = W_p L_p C_{ox}(V_{IN} - |V_{THP}|)$ Clock feedthrough cancelled depending on similarity of overlap capacitance for PMOS and NMOS switches

ECE1371


7-22

Charge Error Cancellation

• Dummy Switch

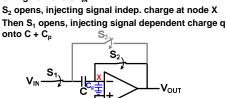

Use second transistor to remove charge injection by main transistor

Inverted clock operates on dummy switch Charge from M1: $q_{M1} = W_{L}L_{C_{0X}}(V_{CK} - V_{N} - V_{TH1})/2$ Charge from M2: $q_{M2} = W_{2}L_{2}C_{0X}(V_{CK} - V_{N} - V_{TH2})$ If charge splits equally in M1 (not quite true), then with M2 half the size of M1, $q_{M1} = q_{M2}$

Sample and Hold Amplifier

 Input dependent charge from S₁ onto C When S1 turns off, charge q adds to C V_{OUT} is then equal to V_{IN}+q/C where q has a non-linear dependence on V_{IN}

We can improve on this by making V_{out} independent of sampling switch charge...

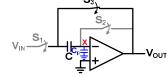

ECE1371

7-24

ECE1371

S/H Amplifier

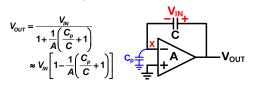
- · Two phases
 - Phase 1: S_1 and S_2 closed, V_{IN} sampled on C Phase 2: S_3 closed, C is tied to V_{OUT}
- Phase 1
 - Charge on C is CV_{IN}


ECE1371

7-25

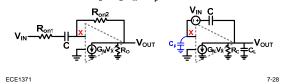
S/H Amplifier

Phase 2

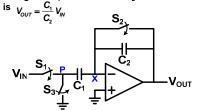

Node X is a virtual ground and charge on $\mathbf{C}_{\mathbf{p}}$ is zero Charge on C is still $\mathbf{CV}_{\mathbf{IN}}$

 $S^{}_1$ / $S^{}_3$ are non-overlapping, $S^{}_2$ slightly ahead of $S^{}_1_{\rm ECE1371}$

Gain of the S/H


 Finite OTA gain reduces gain of sampler On Phase 1, C charges to V_{IN} On Phase 2, node X goes from 0 to V_x = -V_{OUT}/A Charge comes from C, changing q_C to CV_{IN} + C_pV_x V_{OUT} - (CV_{IN} + C_pV_x)/C = V_x

ECE1371

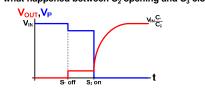

Speed of the S/H

- In sampling mode (Phase 1) At node X, $R_x \sim 1/G_m$, $\tau_1 \sim (R_{on1}+1/G_m)C$
- In amplification mode (Phase 2) Replace charge on C by voltage source V_{IN} (like switching in voltage source at start of Phase 2) After analysis, τ₂ = (C_LC_p+C_pC+CC_L)/G_MC Reduces to τ₂ ~ C_L/G_M if C_p is small

Basic Amplifier

- Sampling phase when S₁ and S₂ closed Input signal sampled onto C₁
- Amplifying phase when S₃ closed Charge on C₁ transferred to C₂ so that the final output

7-29

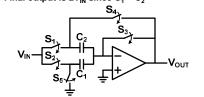

ECE1371

7-27

Basic Amplifier

- S₂ must open before S₁ for the charge injection to be signal independent
 - Charge from S_2 opening is deposited on $\mathsf{C}_1,$ but is not signal dependent

Charge from S₁ opening causes glitch in V_{OUT} When S₃ closes, V_{OUT} goes to final value, regardless of what happened between S₂ opening and S₃ closing



7-30

ECE1371

Precision Gain-2

- Sampling phase when S₁, S₂, S₃ closed Input signal sampled onto C₁ and C₂
- Amplifying phase when S₄, S₅ closed Charge on C₁ is transferred to C₂, doubling the charge on C₂
 Final output is 2V_{IN} since C₁ = C₂

ECE1371

Precision Gain-2

• How is it more precise?

The feedback factor in both gain circuits is

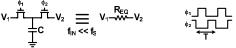
$$\frac{C_2}{C_2 + C_1 + C_p}$$

In the precision Gain-2 circuit, $C_1 = C_2$, while the basic amplifier has $C_1 = 2C_2$, resulting in a smaller feedback factor and a slower circuit

The gain error is inversely proportional to the feedback factor, so the precision circuit is more accurate for a given amplifier gain A

$$\frac{V_{OUT}}{V_{IN}} \approx 2 \left(1 - \frac{C_2 + C_1 + C_p}{AC_2} \right)$$

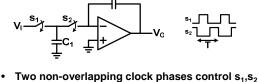
ECE1371


7-31

7-33

7-35

7-32

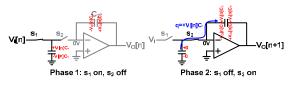

Average current through switched-capacitor

$$\phi_{1}: Q_{1} = CV_{1} \quad \phi_{2}: Q_{2} = CV_{2}$$

$$I_{AVG} = \frac{Q_{1} - Q_{2}}{T} = \frac{C(V_{1} - V_{2})}{T}$$
Equivalent current through a resistor (f_{IN} << f_S)
$$I_{EQ} = \frac{V_{1} - V_{2}}{R_{EQ}}$$

 $R_{EQ} = \frac{T}{C} = \frac{1}{Cf_{c}}$

ECE1371

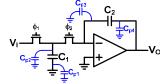

Switched-Capacitor Integrator

 Two non-overlapping clock phases control s₁,s₂ Phase 1: Sampling phase – input is sampled onto capacitor C₁ Phase 2: Integrating phase – additional charge is added to previous charge on C₂

ECE1371

7-34

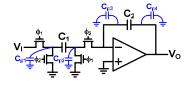
Switched-Capacitor Integrator



• Final charge on L.S. of C2 is $+V_0[n+1]C_2$ $+V_0[n+1]C_2 = +V_0[n]C_2 = V(n)C_2$

$$-V_{O}[n+1]C_{2} = +V_{O}[n]C_{2} - V_{I}[n]C_{1}$$
$$zV_{O}(z)C_{2} = V_{O}(z)C_{2} - V_{I}(z)C_{1}$$
$$\frac{V_{O}}{V_{I}}(z) = -\frac{C_{1}}{C_{2}}\frac{1}{z-1}$$

ECE1371



- Parasitic capacitances $\mathbf{C}_{p1}, \, \mathbf{C}_{p3}$ and \mathbf{C}_{p4} have no impact on transfer function
- C_{p2} in parallel with C₁, changes transfer function

$$\frac{V_{o}}{V_{i}}(z) = -\frac{(C_{1}+C_{p2})}{C_{2}}\frac{1}{z-1}$$

ECE1371

Parasitic Insensitive

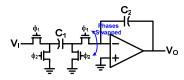
· Transfer function is non-inverting, delaying

$$\frac{V_0}{V_1}(z) = \frac{C_1}{C_2} \frac{1}{z - 1}$$

ECE1371

7-37

7-39

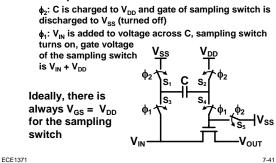

Parasitic Insensitive

- Parasitics have no impact on transfer function Better linearity since non-linear capacitors are unimportant
- Top plate on virtual ground node Minimizes parasitics, improves amplifier speed and resolution, reduces noise coupled to node
- Two extra switches needed
 More power to drive the switches for the same on resistance

ECE1371

7-38

Delay-Free Integrator


- · Same structure, still parasitic insensitive
- Transfer function is inverting, delay-free

$$\frac{V_0}{V_1}(z) = -\frac{C_1}{C_2}\frac{z}{z-1}$$

ECE1371

Bootstrapped Circuit

Basic operation

Bootstrapping

- At low supply voltages, signal swing is limited Maximum distortion determines the tolerable variation in R_{ON} , and this limits the signal swing
- Want to increase V_{GS} on the sampling switch Can do this by increasing the supply voltage for the sampling switch, but this requires slower thick oxide devices

Alternatively, add a constant voltage to the input signal and use that as the gate voltage – keep $V_{\rm GS}$ constant, reducing the variation in $R_{\rm ON}$

ECE1371

Bootstrapped Circuit

 C must be sized so that charge sharing between gate capacitance of switch is not significant

$$V_{G} = V_{IN} + \frac{C}{C + C_{G}} V_{DD}$$

- Rise time controlled by size of S₄, fall time controlled by size of S₅
- Extra transistors required to limit gate-source voltages to V_{DD} and prevent overstress See Dessouky, JSSC Mar.2001

ECE1371

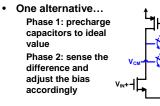
7-42

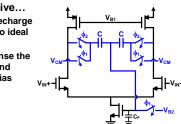
Switched-Capacitor CMFB

· Two parts to the circuit

First, sense the common mode of the output Second, compare the common mode to the expected common mode, and adjust the bias accordingly

Sensing

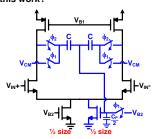

Could use 2 resistors - they are either too small and reduce the gain, or they can get prohibitively large Could use 2 capacitors - they don't reduce the gain, but the voltage across them is undefined The voltage across them can be refreshed every clock cycle


ECE1371

7-43

7-45

Switched-Capacitor CMFB

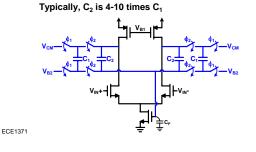

But... there may be large changes in the tail current bias

ECE1371

7-44

Switched-Capacitor CMFB

· Solution: Part of the tail current source can be controlled by a constant bias voltage Will this work?



ECE1371

NLCOTD: Schmitt Trigger

Switched-Capacitor CMFB

· Alternatively, use 2 capacitors so that only a fraction of the charge is shared to adjust the bias voltage

What You Learned Today

- 1. Errors introduced with simple sampling switch RON variation, charge injection
- 2. Main SC Circuits S/H, Gain and Integrators Parasitic Insensitive Signal-independent charge injection
- 3. Bootstrapped Circuit
- 4. Switched Capacitor CMFB

7-47

ECE1371

7-48