ECE1371 Advanced Analog Circuits Lecture 8

AMPLIFIER DESIGN

Richard Schreier richard.schreier@analog.com

Trevor Caldwell trevor.caldwell@utoronto.ca

Course Goals

 Deepen Understanding of CMOS analog circuit design through a top-down study of a modern analog system

The lectures will focus on Delta-Sigma ADCs, but you may do your project on another analog system.

 Develop circuit insight through brief peeks at some nifty little circuits

The circuit world is filled with many little gems that every competent designer ought to recognize.

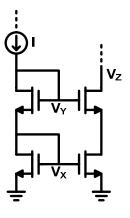
Date	Lecture			Ref	Homework			
2008-01-07	RS	1	Introduction: MOD1 & MOD2	S&T 2-3, A	Matlab MOD2			
2008-01-14	RS	2	Example Design: Part 1	S&T 9.1, J&M 10	Switch-level sim			
2008-01-21	RS	3	Example Design: Part 2	J&M 14, S&T B	Q-level sim			
2008-01-28	тс	4	Pipeline and SAR ADCs	J&M 11,13	Pipeline DNL			
2008-02-04	ISSCC - No Lecture							
2008-02-11	RS	5	Advanced ΔΣ	S&T 4, 6.6, 9.4, B	CTMOD2; Proj.			
2008-02-18	Reading Week – No Lecture							
2008-02-25	RS	6	Comparator and Flash ADC	J&M 7				
2008-03-03	тс	7	SC Circuits	Raz 12, J&M 10				
2008-03-10	тс	8	Amplifier Design					
2008-03-17	тс	9	Amplifier Design					
2008-03-24	тс	10	Noise in SC Circuits	S&T C				
2008-03-31	RS	11	Switching Regulator					
2008-04-07		Project Presentations						
2008-04-14	TC	12	Matching & MM-Shaping	_	Project Report			

ECE1371 8-3

NLCOTD: Wide-Swing Cascode Current Mirror

- How do we bias cascode transistors to optimize signal swing?
- Standard cascode current mirror wastes too much swing

$$\begin{split} &V_X = V_{EFF} + V_T \\ &V_Y = 2V_{EFF} + 2V_T \\ &\text{Minimum } V_Z \text{ is } 2V_{EFF} + V_T, \\ &\text{which is } V_T \text{larger than} \\ &\text{necessary} \end{split}$$



Highlights

(i.e. What you will learn today)

- 1. Choice of V_{EFF}
 Several trade-offs with Noise, Bandwidth, Power,...
- 2. Amplifier Topology
- 3. Amplifier Settling
 Dominant Pole, Zero and Non-Dominant Pole
- 4. Gain-Boosting
 Stability, Pole-Zero Doublet
- 5. Delaying vs. Non-Delaying stages

ECE1371 8-5

Choice of Effective Voltage

Effective Voltage V_{EFF} = V_{GS} - V_T

$$V_{\text{EFF}} = \frac{2I_{D}}{g_{\text{m}}} = \sqrt{\frac{2I_{D}}{\mu_{\text{n}}C_{\text{ox}}W_{L}'}}$$

Assumes square-law model
In weak-inversion, this relationship will not hold

What are the trade-offs when choosing an appropriate effective voltage?

Noise Power Bandwidth Swing

Matching

Thermal Noise and V_{FFF}

Noise Current and Noise Voltage

$$\overline{I_n^2} = 4kT\gamma g_m \qquad \overline{V_n^2} = \frac{4kT\gamma}{g_m}$$

Ex. Common Source with transistor load
 CS transistor has input referred noise voltage proportional to V_{EFF}

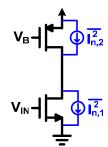
$$\overline{V_n^2} = V_{EFF,1} \frac{4 k T \gamma}{2 I_D}$$

Current source has input referred noise voltage inversely proportional to \mathbf{V}_{EFF}

$$\overline{V_n^2} = \frac{4 k T \gamma}{2 I_D} \frac{V_{EFF,1}^2}{V_{EFF,2}}$$

ECE1371 8-7

Thermal Noise and V_{EFF}



Total Noise

$$\overline{V_n^2} = \frac{4 k T \gamma}{2 I_D} V_{EFF,1} \left(1 + \frac{V_{EFF,1}}{V_{EFF,2}} \right)$$

Use small $\rm V_{\rm EFF}$ for input transistor, large $\rm V_{\rm EFF}$ for load (current source) transistor

Bandwidth and V_{FFF}

 Bandwidth dependent on transistor unity gain frequency f_T

$$f_{T} = \frac{g_{m}}{2\pi(C_{GS} + C_{GD})}$$

If C_{GS} dominates capacitance

$$f_T \approx \frac{1.5\mu_n}{2\pi I^2} V_{EFF}$$

Small L, large μ maximizes f_T

For a given current, decreasing V_{EFF} increases W, increases C_{GS} , and slows down the transistor

• f_T increases with V_{EFF}

ECE1371 8-9

Power and V_{EFF}

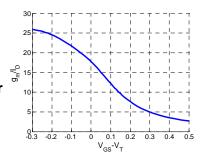
• Efficiency of a transistor is g_m/l_D

Transconductance for a given current – high efficiency results in lower power

Bipolar devices have $g_m=I_C/V_t$, while (square-law) MOS devices have $g_m=2I_D/V_{EFF}$; V_{EFF} larger than V_t

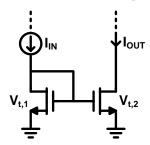
 V_{EFF} is inversely proportional to g_m/I_D Increasing V_{EFF} reduces efficiency of the transiste

Increasing V_{EFF} reduces efficiency of the transistor Biasing in weak inversion increases efficiency



Matching and V_{EFF}

- With low V_{EFF}, transistor is in weak inversion What happens with mismatch in V₁?
- Use a current-mirror as an example with mismatched threshold voltages



ECE1371 8-11

Matching and V_{EFF}

In strong inversion with V_t mismatch there is a quadratic relationship

$$\frac{I_{OUT}}{I_{IN}} = \frac{(V_{GS} - V_{t,2})^2}{(V_{GS} - V_{t,1})^2}$$

1mV error in V_t is ~1% error in I_{OUT} (for V_{EFF} ~200mV)

In weak inversion with V_t mismatch there is an exponential relationship

$$\frac{I_{OUT}}{I_{IN}} = \frac{e^{\frac{V_{GS} - V_{t,1}}{nV_T}}}{e^{\frac{V_{GS} - V_{t,2}}{nV_T}}} = e^{\frac{V_{t,2} - V_{t,1}}{nV_T}}$$

1mV error in V_t is ~4% error in I_{OUT}

Swing and V_{EFF}

 Minimum V_{DS} of a transistor to keep it in saturation is V_{FFF}

Usually V_{DS} is V_{EFF} + 50mV or more to keep r_o high (keep the transistor in the saturation region) With limited supply voltages, the larger the V_{EFF} , the larger the V_{DS} across the transistor, less room for signal swing

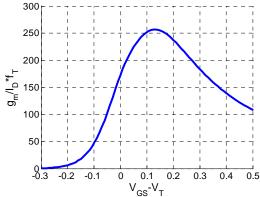
Consequences

Can't cascode – reduced OTA gain
Stage gain is smaller – input referred noise is larger (effectively the SNR at the stage output is less)

ECE1371 8-13

Speed-Efficiency Product

• What is the optimal V_{EFF} using a figure of merit defined as the product of f_T and g_m/I_D Optimal point at V_{EFF} = 130mV in 0.18 μ m



Summary of Trade-Offs

Benefits of larger V_{EFF}

Larger bandwidth
Better device matching
Lower input-referred noise for current-source
transistors

Benefits of smaller V_{EFF}
 Better efficiency – lower power
 Larger signal swings
 Better noise performance for input transistors

Good starting point: $V_{EFF} \sim V_{DD}/10$

ECE1371 8-15

Device Parameter Summary

Device Parameter	Circuit Implications			
V _{EFF}	Current Efficiency, g _m /I _D (matching) Power Dissipation Speed Cutoff Frequency, f _T (phase margin) Noise Headroom			
L	Cutoff Frequency, f _T Intrinsic transistor gain			
w	Obtain from L, I _D Self Loading (C _{GS} , C _{GD})			

Common Source Design

• Simple Design Example

Specs: $C_L = 5pF$, $f_u = 100MHz$, Gain = 40

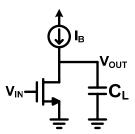
V_{EFF}:

Assume we size it slightly higher than optimal $f_T^*g_m/I_D$

$$V_{EFF} = 180 mV$$

$$\omega_{\rm U} = g_{\rm m}/C_{\rm L} = 2\pi 10^8$$

 $g_{\rm m} = 3.14 {\rm mS}$

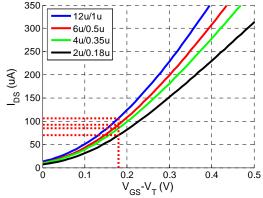


ECE1371 8-17

Common Source Design

How do we find L for the desired gain?

Find current densities (V_{EFF} =180mV) for various L's Find the corresponding $g_{\text{m}}r_{\text{o}}$ of these transistors



Common Source Design

How do we find L?

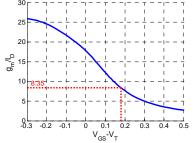
2u/0.18u @ 70uA: 23.5

4u/0.35u @ 85uA : 46.4 ← Choose for desired gain

6u/0.5u @ 93uA : 69.0 12u/1u @ 107uA : 114.9

I_D:

 V_{EFF} and $g_{m} => I_{D}$ $I_{D} = g_{m}/8.35 = 376uA$



ECE1371

ჾ-19

Common Source Design

W:

We have L and I_D 85uA for 4u/0.35u, we need 376uA W = 376uA/85uA*4um = 4.4 x 4u/0.35u

2nd Pole:

 C_{GS} ~ 9fF*4.4 = 40fF (1+A) C_{GD} ~ 1.5fF*4.4*46 = 304fF With 50 Ω source resistance, ω_{p2} ~ 9 GHz

Amplifier Topology

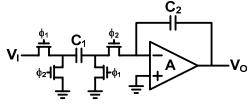
• Briefly... (covered in Analog I, from Razavi Ch.9)

Topology	Gain	Output Swing	Speed	Power Dissipation	Noise
Telescopic	Medium	Medium	Highest	Low	Low
Folded- Cascode	Medium	Medium	High	Medium	Medium
Two-Stage	High	Highest	Low	Medium	Low
Gain- Boosted	High	Medium	Medium	High	Medium

ECE1371 8-21

Amplifier Errors

• Two errors: Dynamic and Static



Static Errors

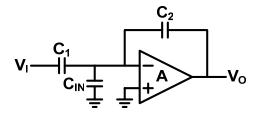
Limit the final settling accuracy of the amplifier Capacitor Mismatch (C_1/C_2 error)

Finite OTA gain

$$\frac{V_{o}}{V_{i}}(z) = \frac{C_{1}}{C_{2}} \left(\frac{\frac{C_{2}A}{C_{2}(1+A) + C_{1}}}{z - \frac{C_{2}(1+A) + C_{1}}{C_{2}(1+A) + C_{1}}} \right)$$

ECE1371

Amplifier Errors



 Dynamic Errors: Occurs in the integration phase when a 'step' is applied to the OTA

Slewing

Finite bandwidth

Feedforward path

Non-dominant poles

ECE1371 8-23

Amplifier Errors

 First look at frequency independent response Static error term 1/Aβ

$$\frac{V_{0}}{V_{I}} = -\frac{C_{1}}{C_{2}} \frac{1}{1 + 1/A\beta} \approx -\frac{C_{1}}{C_{2}} \left(1 - \frac{1}{A\beta} \right)$$

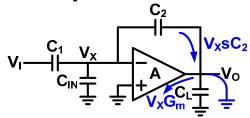
$$\beta = \frac{C_{2}}{C_{1} + C_{2} + C_{IN}}$$

• Example: 0.1% error at output

$$C_1 = 4pF$$
, $C_2 = 1pF$, $C_{IN} = 1pF$
$$\frac{V_O}{V_I} \approx -4\left(1 - \frac{6}{A}\right)$$

A > 6000 for 0.1% error

Amplifier Errors



What is the transfer function of this circuit?

By inspection...

Gain is -C₁/C₂

Zero when $V_x s C_2 = V_x G_m$

Pole at $\beta G_m/C_{L,eff}$ where $C_{L,eff} = C_2(1-\beta) + C_L$

$$\frac{V_O}{V_I} = -\frac{C_1}{C_2} \frac{1 - \frac{sC_2}{G_m}}{1 + \frac{sC_{L,eff}}{\beta G_m}}$$

ECE1371

8-25

Single-Pole Settling Error

• Single-pole settling (ignore zero)

Step response of 1st-order (unity-gain) system

Unit step
$$\frac{1}{s}$$
 through system $\frac{1}{1+s/\beta\omega_{unity}}$

Inverse Laplace transform of
$$\frac{1}{s(1+s/\beta\omega_{unity})}$$

Step response is $1 - e^{-\beta \omega_{unity}t}$

Error is
$$e^{-\beta \omega_{unity}t}$$

Settles to N-bit accuracy in
$$t > \frac{N \ln 2}{\beta \omega_{unitv}}$$

ECE1371

Pole and Zero Settling Error

Single-pole settling with feedforward zero
 Step response, 1st-order system with feedforward zero

Unit step
$$\frac{1}{s}$$
 through system $\frac{1+s/\omega_z}{1+s/\beta\omega_{unity}}$
Inverse Laplace transform of $\frac{1+s/\omega_z}{s(1+s/\beta\omega_{unity})}$
Step response is $1-e^{-\beta\omega_{unity}t}+\frac{\beta\omega_{unity}}{\omega_z}e^{-\beta\omega_{unity}t}$
Error is $e^{-\beta\omega_{unity}t}-\frac{\beta\omega_{unity}}{\omega_z}e^{-\beta\omega_{unity}t}$
Settles to N-bit accuracy in $t>\frac{N\ln 2+\ln(1-\beta\omega_{unity}/\omega_z)}{\beta\omega_{unity}}$

ECE1371 8-2

Effect of Zero on Settling

Zero slows down settling time

Additional settling term

$$-\frac{\beta\omega_{unity}}{\omega_{z}}\,\mathbf{e}^{-\beta\omega_{unity}t}$$

Coefficient a function of feedback factor β

$$-\frac{\beta \omega_{unity}}{\omega_z} = \frac{\beta G_m / C_{L,eff}}{G_m / C_2} = \frac{\beta C_2}{(1 - \beta)C_2 + C_L}$$

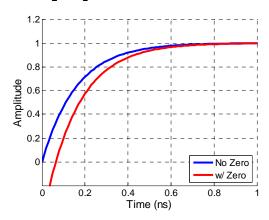
• To reduce impact of feedforward zero...

Smaller β (one of the few advantages of reducing $\beta)$ Larger $\textbf{C}_{\textbf{L}}$

Effect of Zero on Settling

• Example of settling behaviour

$$\beta = 1/2, C_L = C_2/2$$



ECE1371 8-29

Two-Pole Settling Error

 Dominant and non-dominant pole settling Step response, 2nd-order system

Unit step
$$\frac{1}{s}$$
 through system $\frac{1}{\omega_{p2} \cdot \beta \omega_{unity}} + \frac{s}{\beta \omega_{unity}} + 1$

Step response is dependent on relative values of $\beta\omega_{\rm unity}$ and $\omega_{\rm p2}$

3 Cases:

Overdamped, $\omega_{p2} > 4\beta\omega_{unity}$ Critically damped, $\omega_{p2} = 4\beta\omega_{unity}$ Underdamped, $\omega_{p2} < 4\beta\omega_{unity}$

Two-Pole Settling Error

• Overdamped, $\omega_{p2} > 4\beta\omega_{unity}$

2nd pole much larger than unity-gain frequency Similar to 1st-order settling as 2nd pole approaches infinity

Step response is $1 - \frac{B}{B - A} e^{-At} - \frac{A}{A - B} e^{-Bt}$

$$A, B = \frac{\omega_{p2}}{2} \pm \frac{\sqrt{\omega_{p2}^2 - 4\omega_{p2}\beta\omega_{unity}}}{2}$$

• Critically damped, $\omega_{p2} = 4\beta\omega_{unity}$

No overshoot

Step response is $1 - e^{-2\beta\omega_{unity}t} - 2\beta\omega_{unity}te^{-2\beta\omega_{unity}t}$

ECE1371 8-31

Two-Pole Settling Error

• Underdamped, $\omega_{p2} < 4\beta\omega_{unity}$ Minimum settling time depending on desired SNR Increasing overshoot as ω_{p2} decreases

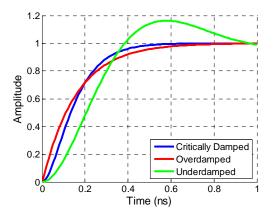
Step response is

$$1 - e^{-\frac{\omega_{p2}}{2}t} \cos\left(t\sqrt{\beta\omega_{unity}\omega_{p2} - \frac{{\omega_{p2}}^2}{4}}\right) - \frac{e^{-\frac{\omega_{p2}}{2}t} \sin\left(t\sqrt{\beta\omega_{unity}\omega_{p2} - \frac{{\omega_{p2}}^2}{4}}\right)}{\sqrt{\frac{4\beta\omega_{unity}}{\omega_{p2}} - 1}}$$

Two-Pole Settling

• Example:

$$\beta \omega_{unit}/2\pi = 1$$
GHz
 $\omega_{p2}/2\pi = 1$ GHz, 4GHz, 100GHz

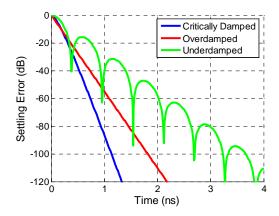


ECE1371

8-33

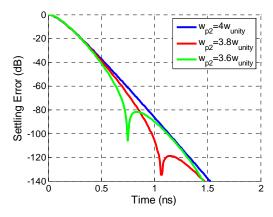
Two-Pole Settling

Critically damped system settles faster than single-pole system



Two-Pole Settling

 Underdamped system gives slightly better settling time depending on the desired SNR



ECE1371 8-35

Two-Pole Settling

For a two-pole system, phase margin can be used equivalently

$$PM = 90 - \frac{180}{\pi} \tan^{-1} \left(\frac{\omega_{p2}}{\omega_{unity}} \right)$$

Critically damped: PM = 76 degrees

Underdamped: PM < 76 degrees

(45 degrees if $\omega_{p2} = \beta \omega_{unity}$)

Overdamped: PM = 76 to 90 degrees

Gain-Boosting

Increase output impedance of cascoded transistor

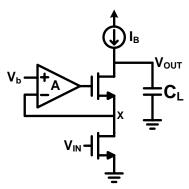
Impedance boosted by gain of amplifier A

$$V_{OUT}/V_{IN} = -g_m R_{OUT}$$

 $R_{OUT} \sim Ag_m r_o^2$

 Doesn't cost voltage headroom

Amplifier requires some power, but does not have to be very fast



ECE1371 8-37

Gain-Boosting

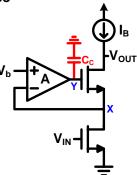
 Need to analyze gain-boosting loop to ensure that it is stable

Cascade of amplifier A and source follower from node Y to node X

 What is the load capacitance at node Y?

$$C_{GS}$$
? ~0.1 C_{GS} ?

Node Y might be dominated by parasitic capacitances with large variations – use $C_{\rm C}$ for a predictable response



Gain-Boosting

Stability of gain-boosted amplifier

For 1st-order roll-off, the unity-gain frequency of the additional amplifier must be greater than the 3dB frequency of the original stage

$$\omega_{3dB} < \omega_{UG,A}$$

 2nd pole of feedback loop is equivalent to 2nd pole of main amplifier

Set unity-gain frequency of additional amplifier lower than 2^{nd} pole of main amplifier (or set it to $\omega_{UG,A}$ ~ $\omega_{2nd}/3$ for a phase margin of ~71 degrees)

$$\omega_{\text{UG,A}} < \omega_{\text{2nd}}$$

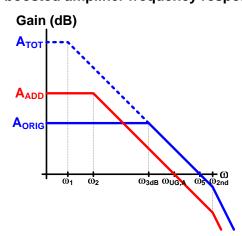
ECE1371 8-39

Gain-Boosting

A_{ORIG}: Original amplifier response without gain-boosting

A_{ADD}: Frequency response of feedback amplifier A

A_{TOT}: Gain-boosted amplifier frequency response



ECE1371

Gain-Boosting

- Pole-zero doublet occurs at ω_{UG,A}
 Must ensure that this time constant does not dominate the settling behaviour
- Set $\beta\omega_5$ (3dB frequency of closed loop amplifier response) below $\omega_{\text{UG},A}$

Ensures that time constant is dominated by 3dB frequency and not the pole-zero doublet

 $\beta\omega_5 < \omega_{UG,A}$

Final Constraint: $\beta\omega_5 < \omega_{UG,A} < \omega_{2nd}$

ECE1371 8-41

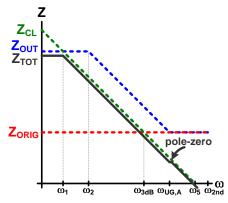
Pole-Zero Doublet

Z_{CL}: Load Capacitance

Z_{OUT}: gain-boosted output impedance ~ (1+A)g_mr_o²

 Z_{ORIG} : cascoded output impedance ~ $g_m r_o^2$

Z_{TOT}: Total Output Impedance



ECE1371

Pole-Zero Doublet

Why is this a problem?

Doublet introduces a slower settling component in the step response

Step response (where ω_z and ω_p are the doublet pole and zero locations):

$$1 - e^{-\beta \omega_{unity}t} + \frac{\omega_z - \omega_\rho}{\beta \omega_{unity}} e^{-\omega_z t}$$

A higher-frequency doublet will always have an impact but will die away quickly

A lower-frequency doublet will not have as large an impact, but it will persist much longer

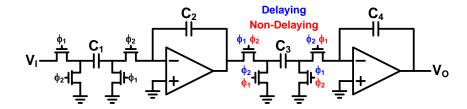
ECE1371 8-43

Delaying vs. Non-Delaying Stage

 Depending on the architecture and stage sizing, this can be a large power penalty

Large C_L greatly reduces the power efficiency of an amplifier

Amplifier must be larger, resulting in a smaller feedback factor and reduced bandwidth



Delaying Stage

Delaying

Subsequent stage does not load the output Very little C_L on output of the amplifier

Example:

1st stage 4x larger than 2nd stage ($C_3 = 0$ for delaying, $C_3 = C_1/4$ for non-delaying) Each stage has gain of 2 ($C_1/C_2 = 2$, $C_3/C_4 = 2$)

$$\begin{aligned} & \boldsymbol{C}_{L,eff} = \frac{\boldsymbol{C}_2(\boldsymbol{C}_1 + \boldsymbol{C}_{IN})}{\boldsymbol{C}_1 + \boldsymbol{C}_2 + \boldsymbol{C}_{IN}} + \boldsymbol{C}_3 = \beta(\boldsymbol{C}_1 + \boldsymbol{C}_{IN}) + \boldsymbol{C}_3 \\ & \boldsymbol{P}_{delay} \propto \beta \omega_{unity} = \frac{\beta \boldsymbol{g}_m}{\boldsymbol{C}_{L,eff}} = \frac{\boldsymbol{g}_m}{\boldsymbol{C}_1 + \boldsymbol{C}_{IN}} \end{aligned}$$

ECE1371 8-45

Non-Delaying Stage

Non-Delaying

Subsequent stage loads the output Applicable in pipeline ADCs, sometimes $\Delta\Sigma$ (usually subsequent stages much smaller, depending on OSR) Opamp is wasted during the non-amplifying stage (could power it down to save power)

Example (continued):

$$\beta \omega_{unity} = \frac{\beta g_m}{C_{L,eff}} = \frac{g_m}{1.75C_1 + 1.5C_{IN}}$$

Increase g_m by 1.75 => C_{IN} increases by 1.75 (approximately the same bandwidth with 1.75x power)

$$P_{non-delay} \propto 1.75 \beta \omega_{unity} = \frac{1.75 g_m}{1.75 C_1 + 2.6 C_{IN}}$$

Amplifier Stability

Both phases are important

Different loading on sampling and amplification phase

 Feedback factor is larger in sampling phase than amplification phase

Amplifier could potentially go unstable if it was originally sized for optimal phase margin in the amplification mode

 Non-Delaying stages are more susceptible to instability in sampling phase since a much smaller load capacitance is present

ECE1371 8-47

Amplifier Stability

Example:

 $C_1 = 2pF, C_2 = 1pF, C_{IN} = 1pF$

 $C_L = 0.5pF$ (load of subsequent stage)

Delaying Stage

Amplification: $\beta \omega_{unity} = g_m/3pF$

Sampling: $\beta = 1/2$, $C_{L.eff} = 1pF$, $\beta \omega_{unitv} = g_m/2pF$

Phase Margin: 73 -> 65

Non-Delaying Stage

Amplification: β = 1/4, $C_{L,eff}$ = 1.25pF, $\beta\omega_{unitv}$ = $g_m/5pF$

Sampling: $\beta = 1/2$, $C_{L,eff} = 0.5pF$, $\beta \omega_{unity} = g_m/1pF$

Phase Margin: 73 -> 33

NLCOTD: Wide-Swing Cascode Current Mirror

ECE1371 8-49

What You Learned Today

- Choice of V_{EFF}
 Trade-offs with various paramters
- 2. Amplifier Topology
- 3. Amplifier Step Response
- 4. Gain-Boosting
- 5. Choice of Delaying/Non-Delaying Stages