ECE1371 Advanced Analog Circuits Lecture 9

AMPLIFIER DESIGN

Richard Schreier richard.schreier@analog.com

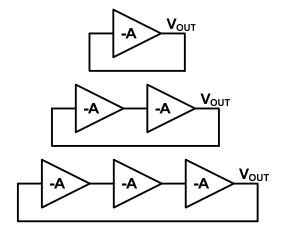
Trevor Caldwell trevor.caldwell@utoronto.ca

Course Goals

 Deepen Understanding of CMOS analog circuit design through a top-down study of a modern analog system

The lectures will focus on Delta-Sigma ADCs, but you may do your project on another analog system.

 Develop circuit insight through brief peeks at some nifty little circuits


The circuit world is filled with many little gems that every competent designer ought to recognize.

Date	Lecture			Ref	Homework				
2008-01-07	RS	1	Introduction: MOD1 & MOD2	S&T 2-3, A	Matlab MOD2				
2008-01-14	RS	2	Example Design: Part 1	S&T 9.1, J&M 10	Switch-level sim				
2008-01-21	RS	3	Example Design: Part 2	J&M 14, S&T B	Q-level sim				
2008-01-28	тс	4	Pipeline and SAR ADCs	J&M 11,13	Pipeline DNL				
2008-02-04	ISSCC – No Lecture								
2008-02-11	RS	5	Advanced $\Delta\Sigma$	S&T 4, 6.6, 9.4, B	CTMOD2; Proj.				
2008-02-18	Reading Week – No Lecture								
2008-02-25	RS	6	Comparator and Flash ADC	J&M 7					
2008-03-03	тс	7	SC Circuits	Raz 12, J&M 10					
2008-03-10	тс	8	Amplifier Design						
2008-03-17	тс	9	Amplifier Design						
2008-03-24	тс	10	Noise in SC Circuits	S&T C					
2008-03-31	RS	11	Switching Regulator						
2008-04-07		Project Presentations							
2008-04-14	TC	12	Matching & MM-Shaping		Project Report				

ECE1371 9-3

NLCOTD: Ring Oscillators

· Which of these circuits will oscillate?

Highlights

(i.e. What you will learn today)

- 1. How to design a folded-cascode OTA
- 2. Learn important trade-offs for OTA design Including simulated examples
- 3. Gain-boosting design example for OTA

ECE1371 9-5

Design Specifications

- Amplifier for 12-bit, 100MHz Pipeline ADC
 1.5bit/stage => Closed-loop gain of 2
- Target Bandwidth: 100MHz

T=10ns

Assume ~1.5ns rise/fall/non-overlap time

Try to settle within < 3.5ns

Settling Error < -80dB

If it is a critically damped system where ω_{p2} = $4\beta\omega_{unity}$

 $\beta\omega_{unity}$ = 500MHz to settle in 2ns

If it is single-pole settling

 $\beta \omega_{unitv}$ = 500MHz to settle in 3ns

Design Specifications

Target Gain Aβ: 75 dB

Input-referred error must be better than 12-bit With all the other sources of error, put it at 13-bit (kT/C noise is ~12.3-bit)

• Swing: +/- 800mV differential

Assume noise has been calculated based on this swing requirement

Input signal +/- 800mV differential
Output signal will also be +/- 800mV differential
Each side of the OTA should swing from CM +/400mV (output CM will be around 900mV)

ECE1371 9-7

Design Specifications

Capacitor Sizing

Based on noise requirements

 $C_1 = 2pF$

 $C_2 = 1pF$

 $C_1 = 1pF$

(assume 2nd stage is half the size of 1st stage – this means that input referred noise contribution is 3dB below the 1st stage)

Power

Pipeline Target FOM: 160dB 74dB + 10log10(100MHz/P) = 160dB P = 250mW

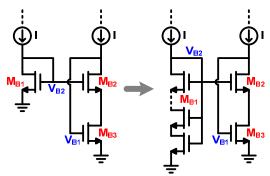
Amplifier Topology

• From Lecture 8...

Topology	Gain	Output Swing	Speed	Power Dissipation	Noise
Telescopic	Medium	Medium	Highest	Low	Low
Folded- Cascode	Medium	Medium	High	Medium	Medium
Two-Stage	High	Highest	Low	Medium	Low
Gain- Boosted	High	Medium	Medium	High	Medium

ECE1371 9-9

Folded-Cascode OTA



Biasing

• Use two wide-swing cascode current mirrors for $\rm V_{B3}, \, V_{B4}$ and $\rm V_{B1}, \, V_{B2}$

 M_{B1} is n times smaller so that V_{EFF} is \sqrt{n} times bigger

What if M_{B2} and M_{B3} are only a single finger?
 M_{B1} cannot be 5-6 times smaller

ECE1371

9-11

Amplifier Topology

- Why Folded-Cascode instead of Telescopic?
 - \checkmark Better swing with Telescopic, it is difficult to get the desired swing (assuming $V_{EFF}\sim200mV$ + margins, and only 1.8V supply)
 - ✓ Low (or high) Input CM (saves power since switches are smaller)
 - ✗ Slower (lower non-dominant pole) and less power efficient

Amplifier Topology

- Why PMOS input pair? (we will see more of this)
 - ✓ Input CM: with PMOS input pair, input CM is lower, NMOS switches are used to pass the signal
 - ✓ Non-dominant pole: larger since folding node uses NMOS devices which have smaller capacitance for a given V_{EFF}
 - ✓ Flicker noise: smaller in PMOS devices (not too important in high-speed design)
 - Larger β in NMOS: For the same transconductance, the input capacitance from NMOS input devices will be smaller

ECE1371 9-13

Amplifier Topology

How should currents I₁ and I₂ be ratioed?

Amplifier transconductance g_m is determined by the transconductance of M_1 and M_2 => high current I_1

Output impedance r_{OUT} is determined by the output impedance of M_3 - M_{10} => low current I_2

 I_1 should not be too much larger than I_2 due to amplifier slewing (more on this...)

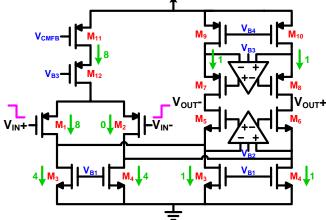
Amplifier Topology

How should currents I₁ and I₂ be ratioed?

But... increased transconductance increases \textbf{C}_{IN} and decreases β

Recall (assuming no load capacitance C_L):

$$\beta \omega_{unity} = \frac{\beta g_m}{C_{L,eff}} = \frac{g_m}{C_1 + C_{IN}}$$


So... once \textbf{C}_{IN} approaches $\textbf{C}_{\text{1}},\,\beta\omega_{\text{unity}}$ does not increase linearly with \textbf{g}_{m}

ECE1371 9-15

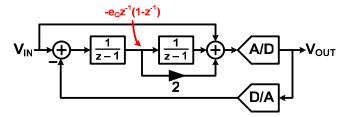
Slewing

• Extra care must be taken if OTA slews

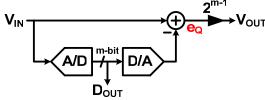
Example: $I_1=4I_2$, Where does the excess current go?

Slewing

M₄ absorbs current from capacitance at V_{OUT}+, $\mathbf{M_{1}},\,\mathbf{M_{11}},\,\mathbf{M_{12}}$ go into triode until the current is equal to I_{D.M3}


Capacitance at V_{OUT}- draws current from M₉

- Therefore, size the currents I_1 and I_2 the same M_{1,2} can still be sized to increase transconductance Slewing is no longer a major problem (can be more power efficient)
- More likely to happen when output changes are large (e.g. no signal, just noise in the output)


ECE1371 9-17

Aside: OTA Output Signal

Input Feed-forward $\Delta\Sigma$

Pipeline ADC Stage

Current Source

- Why Cascode instead of Large L?
 Both can give a high output impedance...
 - ✓ Smaller capacitance to ground increased impedance at high frequency, maintaining a higher CMRR (which is proportional to the tail current source impedance)
 - ★ Larger voltage across transistors (doesn't matter in this case since there is lots of room for the input CM)
 - ★ More complicated biasing (doesn't matter in this case since V_{B3} is already generated)

ECE1371 9-19

Transistor Lengths

- Generally minimum channel length is not used
 - Use ~1.5x minimum L for analog design
 - Moderately improves output impedance without sacrificing too much speed
 - Better matching between transistors
 - Reduce impact of short channel effects (threshold variation, mobility degradation, velocity saturation, DIBL, hot carrier effects)
- If bandwidth is imperative, use minimum L

Choosing V_{EFF}

Input Pair (M₁,M₂)

Larger V_{EFF} means faster transistors, smaller transistors (increasing β)

Smaller V_{EFF} causes more slewing since it can easily be switched with large transients, but has lower noise and larger g_{m}

Current Source Transistors (M₃,M₄)

Responsible for non-dominant pole

Larger V_{EFF} reduces noise and parasitic capacitances, improves non-dominant pole

ECE1371 9-21

Power

 The power consumed by the 1st-stage OTA will be a significant fraction of the total power

It will be a good indication of the FOM you'll be targeting for your design

Pipeline ADC

With S/H, other stages, and other overhead (clocks, buffers, biasing, comparators, etc.) first stage will probably consume 25-30% of the total power

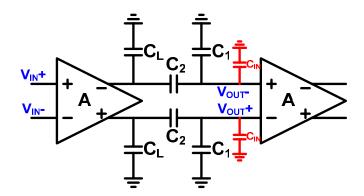
ΔΣ ADC

Since other stages are smaller, but other overhead still exists (possibly a higher resolution quantizer), first stage will probably consume 40-60% of the total power

Quick Design / 1st Iteration

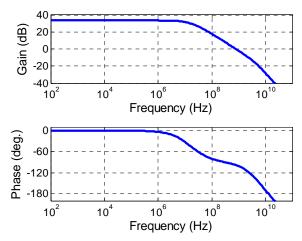
- 1:1 ratio between 1st and 2nd current branch
- Input transistor size: 9u/0.18um fingers
- Size every other transistor with a V_{EFF} ~ 180mV

PMOS: 55uA for 9um/0.24um fingers NMOS: 55uA for 2um/0.24um fingers


• Use 140 fingers (more on this...)

ECE1371 9-23

AC Testbench


• V_{OUT}/V_{IN} gives loop gain $A\beta$

 ${\bf C_1},\,{\bf C_2}$ and input capacitance of ${\bf 2}^{\rm nd}$ OTA gives proper feedback network

AC Simulation

 $\beta\omega_{unitv}\!\!:$ 561 MHz, PM: 84.9 deg., DC Gain: 31.4 dB

ECE1371 9-25

AC Simulation

Observations...

Gain is low

This can be corrected when gain-boosting is added, which should give about 40dB or more using folded-cascode gain-boosters

Phase Margin is high

This can be traded with bandwidth – the unity gain is not as high as it could be (β could be increased)

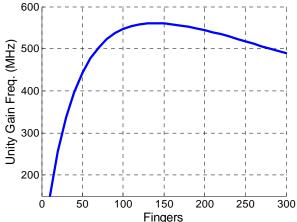
The 2nd pole will reduce somewhat when gainboosting is added (increased capacitance on the critical node), so it is worth having extra PM at this stage of the design

Optimizing Bandwidth

• Why choose 140 fingers?

Once the V_{EFF} 's have been determined, there is nothing else to design except the size of the amplifier

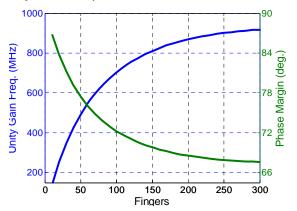
- Increasing the number of fingers reduces β An optimal point is eventually reached beyond which no further bandwidth improvements are achieved
- A parametric sweep can be performed to find this optimal point


Keep in mind: more fingers = more power

ECE1371 9-27

Optimizing Bandwidth

Optimal point ~ 140 fingers


4 branches x 140 fingers x 55uA = 30.8mA

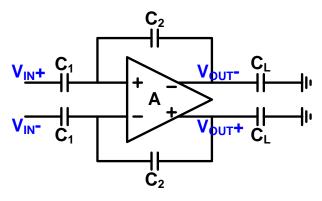
What about NMOS input?

We can try the same simulations with an NMOS input – what should happen?

Larger bandwidth ($\beta\omega_{unity}$ larger), less phase margin ($\beta\omega_{unity}$ larger, ω_{p2} smaller)

ECE1371

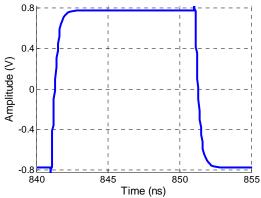
9-29


What about NMOS input?

- Unity-gain is only 400MHz with an 80 degree PM Although it is 70% less power!
- Make it more stable with larger PMOS V_{EFF}
 Change PMOS fingers to 2um/0.24um
 PMOS V_{EFF} becomes ~300mV
- Result

50 fingers, UG = 551MHz, PM = 79.8, DC Gain = 34.9dB Swing reduced by 120mV, SNR reduced by 1.5dB, Capacitor (and amplifier) increased by ~35% Still about 50% less than the original power

Transient Testbench


 Make sure settling behaviour is as expected Configured in amplification phase Use differential step at input for full-scale output

ECE1371 9-31

Transient Testbench

Settles to within 0.01% of final value in 2.1ns
 Similar to predicted settling of 2-pole system
 Zero adds some time (measured as ~0.05ns)

Gain-Boosting

 Need to increase the DC gain without losing too much bandwidth or stability

Gain-Boosting theoretically decouples improved gain from frequency response

Single-Ended or Differential

Single-ended has lower-frequency mirror pole, slows down gain-booster (more difficult to optimize polezero doublet)

Differential gain-boosting does not increase commonmode gain of overall amplifier significantly

Differential requires CMFB

ECE1371 9-33

Gain-Booster Design

Type of Amplifier

Input CM is very close to rail (either VDD or VSS)
Output CM is approximately mid-rail

Want ~40dB gain with moderate to high speed (singlestage with cascoding)

=> Choose differential Folded-Cascode (Telescopic cannot handle the input/output CM, single-ended not fast enough)

PMOS input for NMOS (V_{B2}) biases NMOS input for PMOS (V_{B3}) biases

Gain-Booster Design

Gain

Need another 43-44dB for the 75dB total

Frequency response

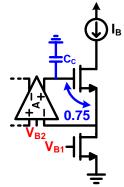
 $\beta\omega_{unity} \sim 560 MHz, \ \omega_{p2} \sim 4 GHz$ Gain-booster unity-gain should be $\sim 1 GHz$

V_{EFF}

Can use higher V_{EFF}'s since swing is not as important

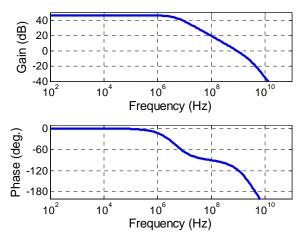
Input Pair

Size of PMOS input pair in the $V_{\rm B2}$ gain-booster impacts the non-dominant pole and should be kept small


ECE1371 9-35

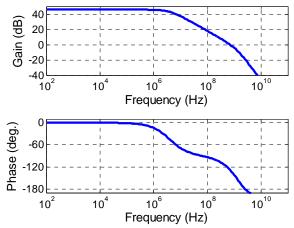
Gain-Boosted Loop

Source Follower introduces a gain of ~ 0.75
 (assuming deep N-well is not used – body effect is present)


This reduces the bandwidth by the same amount Gain-Boosted amplifier A needs a unity-gain frequency of approximately 1.33 GHz

 Also, add a compensation capacitor of ~100fF so that parasitics do not dominate the capacitance at that node

V_{B2} Gain-Booster AC Simulation


 $\omega_{unity}\!\!:$ 901 MHz, PM: 64.2 deg., DC Gain: 46.8 dB

ECE1371 9-37

V_{B3} Gain-Booster AC Simulation

 $\omega_{unity}\!\!:$ 703 MHz, PM: 55.7 deg., DC Gain: 46.4 dB

Size of Gain-Boosters

- V_{B2} gain booster is similar to main amplifier Size of amplifier is 6 Compensation capacitor is 100fF 4 branches x 6 fingers x 55uA = 1.32mA
- V_{B3} gain booster has NMOS inputs
 Size of amplifier is 20
 Compensation capacitor is 200fF
 4 branches x 20 fingers x 55uA = 4.4mA
 Much larger since load capacitance on PMOS transistors is ~4x larger

ECE1371 9-39

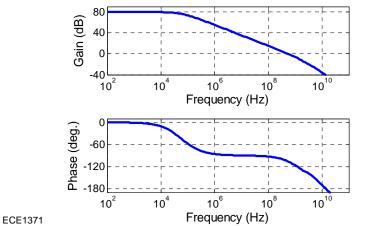
Pole-Zero Doublet

Recall settling behaviour

$$1 - e^{-\beta \omega_{unity}t} + \frac{\omega_z - \omega_p}{\beta \omega_{unity}} e^{-\omega_z t}$$

Advantage of PMOS main amplifier

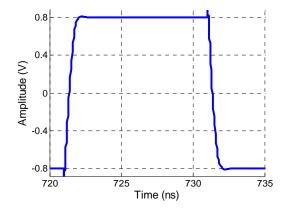
Distance between $\beta\omega_{unity}$ and ω_{p2} is larger


More room to have $\beta \omega_{unity} < \omega_{u,GB} < \omega_{p2}$

The farther $\omega_{u,GB}$ is from $\beta\omega_{unity}$, the closer together the pole and zero are in the doublet

=> Smaller impact of pole-zero doublet

Main Amplifier with Gain-Booster


 $\beta\omega_{unity} \!\!:$ 545 MHz, PM: 74.1 deg., DC Gain: 79.5 dB Where is the pole-zero doublet?

9-41

Transient Response

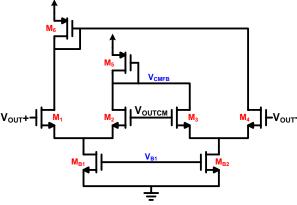
Settles to within 0.01% of final value in 2.54ns
 Very small 8mV overshoot (0.5%)
 About 25% slower with gain-booster

ECE1371

CMFB Loop Stability

- Two different CMFB loops to look at Continuous-time CMFB for gain-boosters Discrete-time CMFB for main amplifier
- Analyze loop gain through CMFB network Break the loop somewhere (tail current)

Load the amplifier as it was when the loop was broken

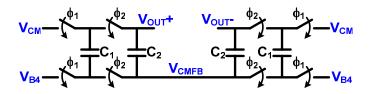

Analyze the gain from the tail current to the tail current control voltage

Make sure all voltages are at their correct DC values

ECE1371 9-43

CMFB in Gain-Boosters

 Continuous-time CMFB should be sufficient Swing is not as important since voltages should not change very much



CMFB in Main Amplifier

As presented in SC lecture

Allows larger swing than continuous-time CMFB Large capacitors overload the output more than is necessary, while small capacitors cause CM offset voltages from charge injection

Typically use minimum size switches/transmission gates depending on the voltage level passed

ECE1371 9-45

Summary of Results

• Full-scale (+/- 800mV differentially) settling time

DC Gain: 79dB

Phase Margin: 74 deg.

0.01% (80dB): 2.54ns with 0.5% overshoot

Power

(30.8mA + 1.3mA + 4.4mA) x 1.8V = 66mW ~25% of total power => total power ~ 250mW

Common Modes

Design based on using 400mV input CM and 900mV output CM

400mV should allow all switches to be relatively small (except the ones attached to the output)

NLCOTD: Ring Oscillators

ECE1371 9-47

What You Learned Today

- 1. Design of a folded-cascode OTA
- 2. Important trade-offs in OTA design
- 3. Gain-boosting design example for OTA