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PROPHET-AMOS CAMPAIGN

3

July 1st – 31st, 2016

University of 

Michigan Biological 

Station

• 22-institute 

collaboration

• Temperate-Boreal 

transition forest 

(mixed wood)

• Average LAI 3.3 

m2/m2

• Site houses two flux 

towers (PROPHET 

34m, AmeriFlux 46m) 

and one lab

Campaign Goal: Improve our 

understanding of radical chemistry 

in forested environments
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Goals of this project: Model gas-

phase chemistry and mixing during 

the PROPHET-AMOS campaign in a 

way that doesn’t sacrifice “too much” 

accuracy in the name of 

computational efficiency. 
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Modelling vertical mixing in 

canopies is non-trivial because of 

the existence of ‘coherent 

structures’



IDENTIFICATION OF COHERENT STRUCTURES
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Diel plots of the number and average duration of coherent (s)

showing campaign median, 25th/75th, and 5th/95th quantiles.
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Diel plots of the number and average duration of coherent (s)

showing campaign median, 25th/75th, and 5th/95th quantiles.

The important question is not how 

many coherent structures occur, but 

how they affect fluxes in and out of 

the canopy.



IMPORTANCE OF COHERENT STRUCTURES

Diel plot of the fractional contribution of coherent structures to

kinematic heat flux showing campaign median, 25th/75th, and

5th/95th quantiles.
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IMPORTANCE OF COHERENT STRUCTURES

Diel plot of the fractional contribution of coherent structures to

kinematic heat flux showing campaign median, 25th/75th, and

5th/95th quantiles.
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Coherent structures appear very 

important for heat and momentum 

fluxes during the PROPHET-AMOS 

campaign



THE FORCAST MODEL
Forkel et al., 2006.
Bryan et al., 2012.

Ashworth et al., 2015.
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FORCAsT (Ashworth et al., 2015) was 

constrained by PROPHET-AMOS observations 

and used to model the campaign chemistry. In 

FORCAsT, mass fluxes are calculated by solving 

the continuity equation:

𝜕𝑐

𝜕𝑡
=
𝜕

𝑧
𝐾𝐻

𝜕𝑐

𝜕𝑧
+ 𝑆𝑐 + 𝐶

Where c is the mixing ratio of the species of 

interest, KH is the turbulence exchange 

coefficient, SC includes contributions from 

emissions, deposition, and advection, and C 

represents chemical production and loss. 
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We define and observed 𝐾𝐻 following Makar 

et al. (1999)

𝐾𝐻,𝑜𝑏𝑠 = 𝜎𝑤
2 0.3ℎ

𝑢∗
Where h is the height, 𝑢∗ is the friction velocity, 

and 𝜎𝑤 is the standard deviation of the vertical 

velocity.



TWO MAJOR QUESTIONS

1) How much faith should we put into a 1D 
canopy model that does not explicitly represent 
coherent structures?

2) How important are sub-canopy constraints on 
our mixing scheme for modelling chemical mixing 
ratios?
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HOW WELL CAN WE MODEL CANOPY EXCHANGE 
WITHOUT EXPLICIT COHERENT STRUCTURES?

Fraction of heat flux 

attributable to coherent 

structures = 0.45

Campaign 

average 

0.52±0.07
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July 20th, 2016 July 23rd, 2016

Fraction of heat flux 

attributable to coherent 

structures = 0.62

36m (12m above canopy height)
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July 20th, 2016 July 23rd, 2016

Fraction of heat flux 

attributable to coherent 

structures = 0.62

36m (12m above canopy height)

We do a better job at modelling 

heat flux out of the canopy when 

coherent structures are responsible 

for a smaller fraction of that heat 

flux 



MODELLING CHEMISTRY DURING PROPHET-AMOS 
July 20th, 2016 July 23rd, 2016

36m (12m above canopy height)



MODELLING CHEMISTRY DURING PROPHET-AMOS 
July 20th, 2016 July 23rd, 2016

36m (12m above canopy height)

We do a better job at modelling 

chemical mixing ratios when coherent 

structures are responsible for a smaller 

fraction of total flux but only minor 

differences exist between simulations 

with full canopy and only top of 

canopy constraints 



IMPACT OF TURBULENCE ON CHEMISTRY
Slow Chemistry Fast Chemistry

(Tturb/Tchem)
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A → B

A → C

IMPACT OF TURBULENCE ON CHEMISTRY
Ratio of B to B+C, Tchem, A = 0.1s

Above canopy sonic assimilation only
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A → B

A → C

IMPACT OF TURBULENCE ON CHEMISTRY
Ratio of B to B+C, Tchem, A = 0.1s

Full vertical sonic assimilation
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SIGNIFICANCE OF SUBCANOPY
CONSTRAINTS ON MIXING

Kavassalis - IACPES 2017  20

Percent change in 
𝐵

𝐵+𝐶
ratio going from only top of canopy 

mixing constraints to full vertical mixing constraints



CONCLUSIONS AND ON-GOING WORK

➢We can model heat flux and chemical mixing ratios with reasonable 
accuracy in a 1D column model without explicit coherent structure 
representation (despite the large contribution coherent structures make 
to fluxes) so long as we fix KH by observations

➢Model preference is best when the fractional contribution of coherent 
structures to fluxes is the lowest

➢Constraining the subcanopy mixing in our model is important for 
chemical compounds with Damköhler numbers near 1 

➢By knowing the conditions in which our model recreates vertical 
exchange the most accurately, we can begin to probe other aspects of 
the model (like choice of chemical mechanism and dry deposition 
parametrization)
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