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Abstract

A fall is an abnormal activity that occurs rarely, so it is hard to collect real
data for falls. It is, therefore, difficult to use supervised learning methods to
automatically detect falls. Another challenge in automatically detecting falls
is the choice of engineered features. In this paper, we formulate fall detection
as an anomaly detection problem and propose to use an ensemble of autoen-
coders to learn features from different channels of wearable sensor data trained
only on normal activities. We show that the traditional approach of choosing
a threshold as the maximum of the reconstruction error on the training normal
data is not the right way to identify unseen falls. We propose two methods
for automatic tightening of reconstruction error from only the normal activities
for better identification of unseen falls. We present our results on two activity
recognition datasets and show the efficacy of our proposed method against tra-
ditional autoencoder models and two standard one-class classification methods.

Keywords: fall detection, one-class classification, autoencoder, anomaly
detection

1. Introduction

Falls are a major cause of both fatal and non-fatal injury and a hindrance in
living independently. Each year an estimated 424,000 individuals die from falls
globally and 37.3 million falls require medical attention (Organization, 2016).
Experiencing a fall may lead to a fear of falling (Igual et al., 2013), which in turn
can result in lack of mobility, less productivity and reduced quality of life. There
exist several commercial wearable devices to detect falls (Pannurat et al., 2014);
most of them use accelerometers to capture motion information. They normally
come with an alarm button to manually contact a caregiver if the fall is not
detected by the device. However, most of the devices for detecting falls produce
many false alarms (El-Bendary et al., 2013). Automatic detection of falls is long

*Corresponding author: Tel.: 41 416-597-3422; Fax: +1 416-597-6201;
Email addresses: shehroz.khan@utoronto.ca (Shehroz S. Khan), babak.taati@uhn.ca
(Babak Taati)

Preprint submitted to Expert Systems with Applications June 2, 2017



sought; hence, machine learning techniques are needed to automatically detect
falls based on sensor data. However, a fall is a rare event that does not happen
frequently (Stone and Skubic, 2015); therefore, during the training phase, there
may be very few or no fall samples. Standard supervised classification techniques
may not be suitable in this type of skewed data scenario (Khan et al., 2014).
Another issue regarding the use of machine learning methods in fall detection
is the choice of features. Traditional activity recognition and fall detection
methods extract a variety of domain specific features from raw sensor readings
to build classification models (Ravi et al., 2005; Khan, 2016). It is very difficult
to ascertain the number or types of engineered features, specially in the absence
of fall specific training data to build generalizable models.

To handle the problems of lack of training data from real falls and the
difficulty in engineering appropriate features, we explore the use of Autoencoders
(AE) (Japkowicz et al., 1995) that are trained only on normal activities. AEs can
learn generic features from the raw sensor readings and can be used to identify
unseen falls as abnormal activities during testing based on a threshold on the
reconstruction error. We present two ensembles approaches of AE that train on
the raw data of the normal activities from different channels of accelerometer
and gyroscope separately and the results of each AE is combined to arrive upon
a final decision. Typically, while using AE, the maximum of reconstruction
error on the training set is considered as the threshold to identify an activity
as abnormal (Dau et al., 2014). However, we experimentally show that such
threshold may not be appropriate for detecting falls due to noisy sensor data.
We present two threshold tightening techniques to remove few outliers from
the normal data. Then, either a new threshold is derived using inter-quartile
range or by training a new AE on the training data with outliers removed. We
show result on two activity recognition datasets that contain different normal
activities along with falls from wearable sensors.

The rest of the paper is organized as follows. In the next section, we present
a brief introduction to AEs. Section 3 reviews the literature on detecting falls
as anomaly, by using AE and on the use of AE in general outlier detection
tasks. We present the proposed channel-wise ensemble of AE and two threshold
tightening approaches using reconstruction error in Section 5. Experimental
analysis and results are discussed in Section 6, followed by conclusions and
future work in Section 7.

2. Brief Introduction to Autoencoders

An AE is an unsupervised multi-layer neural network that learns compact
representation of the input data (Scholz and Vigario, 2002). An AE tries to learn
an identity function such that its outputs are similar to its inputs. However,
by putting constraint on the network, such as limiting the number of hidden
neurons, it can discover compact representations of the data that can be used
as features for other supervised or unsupervised learning tasks. An AE is often
trained by using the backpropagation algorithm and consists of an encoder and



decoder part. If there is one hidden layer, an AE takes the input x € R? and
maps it onto h € RP, s.t.

h = f(Wx +b) (1)

where W is a weight matrix and b is a bias term and f(.) is a mapping function.
This step is referred to as encoding or learning latent representation, after which
h is mapped back to reconstruct y of the same shape as x, i.e.

y =9g(Wh+b') (2)

This step is referred to as decoding or reconstructing the input back from la-
tent representation. An AE can be used to minimize the squared reconstruction
error, L i.e.,

L(xy) =[x -y || (3)

AE can learn compact and useful features if p < d; however, it can still
discover interesting structures if p > d. This can be achieved by imposing a
sparsity constraint on the hidden units, s.t. neurons are inactive most of the
time or the average activation of each hidden neuron is close to zero. To achieve
sparsity, an additional sparsity parameter is added to the objective function.
Multiple layers of AEs can be stacked on top of each other to learn hierarchical
features from the raw data. They are called Stacked AE (SAE). During encoding
of a SAE, the output of first hidden layer serves as the input to the second layer,
which will learn second level hierarchical features and so on. For decoding a
SAE, the output of the last hidden layer is reconstructed at the second last
hidden layer, and so on until the original input is reconstructed.

3. Related Work

AEs can be used both in supervised and unsupervised settings for identifying
falls. In a supervised classification setting, AE is used to learn representative
features from both the normal and fall activities. This step can be followed by
a standard machine learning classifier trained on these compressed features (Li
et al., 2014b) or by a deep network (Jokanovic et al., 2016). In the unsupervised
mode or One-Class Classification (OCC) (Khan and Madden, 2014) setting, only
data for normal activities is present during training the AE. In these situations,
an AE is used to learn representative features from the raw sensor data of normal
activities. This step is followed by either employing (i) a discriminative model by
using one-class classifiers or (ii) a generative model with appropriate threshold
based on reconstruction error, to detect falls and normal activities. The present
paper follows the unsupervised AE approach with a generative model and aimed
at finding an appropriate threshold to identify unseen falls.

Machine learning techniques are extensively used for handling fall detec-
tion problem (Ozdemir and Barshan, 2014); it has also been formulated as an
anomaly detection problem due to the fact that falls occur rarely (Khan and



Hoey, 2017). Popescu and Mahnot (Popescu and Mahnot, 2009) present a fall
detection technique that uses acoustic signals of normal activities for training
and detecting fall sounds from it. They train One-class SVM (OSVM), one-class
nearest neighbour approach (OCNN) and One-class Gaussian Mixture Model
to train models on normal acoustic signals and find that OSVM performs the
best in detecting falls. However, it is outperformed by its supervised counter-
part. Khan et al. (Khan et al., 2015) propose an unsupervised acoustic fall
detection system with interference suppression that makes use of the features
extracted from the normal sound samples, and constructs an OSVM model to
distinguish falls from non-falls. They show that in comparison to Popescu and
Mahnot (Popescu and Mahnot, 2009), their interference suppression technique
makes the fall detection system less sensitive to interferences by using only
two microphones. Principi et al. (Principi et al., 2016) present a floor acous-
tic sensor that can automatically discriminates the sounds produced by falls of
distinct objects. They show that this sensor can capture fall signals with high
signal-to-noise ratio with respect to an aerial microphone by filtering out high
frequency components. Tran et al. (Tran et al., 2014) propose to use image
and audio to tackle the problem of abnormal events detection, such as, falling,
lying motionless, etc. They introduce audio and video based event detection
systems that resulted in high sensitivity and low false alarm rate in two setup
environments. Medrano et al. (Medrano et al., 2014) propose to identify falls
using a smartphone as a novelty from the normal activities and find that OCNN
performs better than OSVM but is outperformed by supervised SVM. Micucci
et al. (Micucci et al., 2015) evaluate several OCC methods for fall detection us-
ing data from smartphone and show that in most of the cases, OCNN performs
better or similar to the supervised SVM and KNN. Zhou et al.(Zhou et al.,
2012) present a method to detect falls using transitions between the activities
as a cue to model falls. They train supervised classification methods using nor-
mal activities collected from a mobile device, then extract transitions among
these activities, and use them to train an OSVM. They show that this method
performs better than an OSVM trained with only normal activities. Khan et
al (Khan et al., 2014) present ‘X-Factor’ HMM approaches that are similar to
normal HMMs, but have inflated output covariances that can be used as alter-
native models to estimate the parameters of unseen falls. Their results show
high detection rates for falls on two activity recognition datasets.

A lot of work has been done in evaluating the feasibility of learning generic
representations through AEs for general activity recognition and fall detection
tasks. P16tz et al. (Pl6tz et al., 2011) explore the potential of discovering univer-
sal features for context-aware application using wearable sensors. They present
several feature learning approaches using PCA and AE and show their supe-
rior performance in comparison to standard features across a range of activity
recognition applications. Budiman et al. (Budiman et al., 2014) use SAEs and
marginalized SAE to infer generic features in conjunction with neural networks
and Extreme Learning Machines as the supervised classifiers to perform pose-
based action recognition. Li et al. (Li et al., 2014a) compare SAE, Denoising AE
and PCA for unsupervised feature learning in activity recognition using smart-



phone sensors. They show that traditional features perform worse than the
generic features inferred through AEs. Jokanovic et al. (Jokanovic et al., 2016)
use a SAE to learn generic lower dimensional features and use softmax regres-
sion classifier to identify falls using radar signals. Other researchers (Jankowski
et al., 2015; Wang, 2016) have used AEs to reduce the dimensionality of domain
specific features prior to applying traditional supervised classification models or
deep belief networks.

AEs have also been extensively used in general anomaly detection tasks.
Japkowicz et al. (Japkowicz et al., 1995) present the use of AE for novelty
detection. For noiseless data, they propose to use a reduced percentage of max-
imum of reconstruction error as a threshold to identify outliers. For noisy data,
they propose to identify both the intermediate positive and negative regions
and subsequently optimizing the threshold until a desired accuracy is achieved.
Manevitz and Yousef (Manevitz and Yousef, 2007) present an AE approach to
filter documents and report better performance than traditional classifiers. They
report to carry out certain type of uniform transformation before training the
network to improve the performance. They discuss that choosing an appropriate
threshold to identify normal documents is challenging and present several vari-
ants. The method that works best in their application is to tighten the threshold
sufficiently to disallow the classification of the highest 25 percentile error cases
from the training set. Dau et al. (Dau et al., 2014) use an AE to learn compact
representation of different benchmark datasets and use maximum of the recon-
struction error as the threshold; however, they mention that some instances of
anomalies consistently have low reconstruction error. Erfani et al. (Erfani et al.,
2016) present a hybrid approach to combine the AEs and OSVM for anomaly
detection in high-dimensional and large-scale applications. They first extract
generic features using SAE and train an OSVM with a linear kernel on learned
features from SAE. They also use SAE as a one-class classifier by setting the
threshold to be 3 times of standard deviation away from the mean. Sakurda
and Yairi (Sakurada and Yairi, 2014) show the use of AE in anomaly detection
task and compare it with PCA and Kernel PCA. They demonstrate that the
AE can detect subtle anomalies that PCA could not and is less complex than
Kernel PCA. Marchi et al. (Marchi et al., 2015a,b) present an unsupervised
approach to acoustic novelty detection using auditory features and DAE with
bidirectional Long Short-Term Memory recurrent neural networks. They use
reconstruction error as a basis to identify unseen novel sounds. They set the
threshold proportional to the median of the reconstruction error of the error
signal of a sequence.

Ensembles of AE have been used to learn diverse feature representations,
mainly in the supervised settings. Ithapu et al. (Ithapu et al., 2014) present
an ensemble of SAE by presenting it with randomized inputs and randomized
sample sets of hyper-parameters from a given hyperparameter space. They show
that their approach is more accurately related to different stages of Alzheimer’s
disease and leads to efficient clinical trials with very less sample estimates. Reeve
and Gavin (Reeve and Brown, 2015) present a modular AE approach that con-
sists of M AE modules trained separately on different data representations and



the combined result is defined by taking an average of all the modules present.
Their results on several benchmark datasets show improved performance in com-
parison to baseline of bootstrap version of the AE. Dong and Japkowicz (Dong
and Japkowicz, 2016) present a supervised and unsupervised ensemble approach
for stream learning that uses multi-layer neural networks and AE. They train
their models from multi-threads which evolve with data streams. The ensemble
of the AE is trained using only the data from positive class and is accurate when
anomalous training data are rare. Their method performs better as compared
to the state-of-the-art in terms of detection accuracy and training time for the
datasets.

The literature review shows that AEs can successfully learn generic features
from raw sensor data for activity and fall recognition tasks. We observe that
AE can be effectively used for anomaly detection tasks and their ensembles
can perform better than a single AE. In this paper, fall detection problem is
formulated as an OCC or anomaly detection, where abundant data for normal
activities is available during training and none for falls. We investigate the
utility of features learned through AEs and their ensembles for the task of fall
detection in the next section.

4. Autoencoder Ensemble for Detecting Unseen Falls

In the absence of training data for falls, a fall can be detected by training an
AE/SAE on only the normal activities to learn generic features from a wearable
device. These features can be fed to standard OCC algorithms to detect a test
sample as a normal activity or not (a fall in our case). Alternatively, a threshold
can be set on the reconstruction error of the AE/SAE to identify a test sample
as an abnormal activity (a fall in our case), if its reconstruction error is higher
than a given threshold. Intuitively, this would mean that the test sample is
very different from the training data comprising of normal activities. Below, we
discuss two types of AE approaches used in the paper.

4.1. Monolithic Autoencoders

Figure 1 shows the AE/SAE for training normal activities using raw sensor
data from a three-channel accelerometer and gyroscope. The raw sensor read-
ings coming from each of the channels of accelerometer (a,, ay, a,) and gyroscope
(Wg, wy,w,) are combined and presented as input to the AE/SAE. For a sliding
window of a fixed length (n samples), ax = [a},a2,...,a2], ay = [a}, a2, ..., a}],
and so on. The input vector for a time window is constructed by concatenating
these sensor readings as f = [ax, ay, a,, Wg, Wy, w,]T. We call this feature learn-
ing approach as monolithic because it combines raw sensor data from different
channels as one input to an AE.

4.2. Channel-wise Autoencoders

Li et al. (Li et al., 2014a) present the use of ensemble of SAE by extract-
ing generic features per each of the three accelerometer channels and additional
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Figure 1: Monolithic AE for detecting unseen falls.

channel for the magnitude of the accelerometer vector in 3-dimensions. They
extract fixed number of features for each of these 4 channels and concatenate
them. Supervised classification methods are then used on these extracted fea-
tures. This setting can work for supervised classification but not in OCC sce-
nario. In our case, we deal with OCC scenario with only normal data available
during training. Therefore, separate AEs are trained on the raw data from dif-
ferent channels of the sensors. Each AE can detect a test sample as an unseen
fall or not based on the reconstruction error and their overall result is combined
to take a final decision. We propose to use two types of channel-wise ensemble
strategies for detecting unseen falls as follows:

e Six Channel Ensemble (6_.C'E): For each of the 6 channels of an accelerom-
eter and a gyroscope (i.e., ax, ay, 85, Wg, Wy, W), 6 separate AE/SAE are
trained to learn a compact representation for each channel. A decision
threshold is computed separately for each of these 6 AEs to decide whether
a test sample is normal or a fall.

e Two Channel Ensemble (2.CE): Alternatively, we can compute the mag-
nitude/norm of the 3 accelerometer channels and that of the 3 gyroscope
channels.The magnitude vector gives direction invariant information. The
input vector for a time window is the concatenation of these norms.We
train two separate AE/SAE to learn a compact representation for each
of the two magnitude channels. Thresholding the reconstruction error on
these two channels can be used to decide whether a test sample is normal
activity or a fall.

For a given test sample, the 6_C' E will give 6 different decisions and the 2.CFE
give 2 decisions. These decisions can be combined by majority voting to arrive
at a final decision; as a convention, ties are considered as falls. For simplicity,
we keep the hyper-parameters for each AE/SAE corresponding to a channel as
the same. The ensemble approach can be faster than the monolithic approach
because AE/SAE per channel uses less amount of data in comparison to the
combined 6 channel data to a single AE/SAE. Figure 2 shows the graphical
representation of the 6_.C'E and 2_C'F approaches.
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Figure 2: Channel-wise AE for detecting unseen falls.

5. Optimizing the Threshold on the Reconstruction Error

For the fall detection problem, we assume that fall data is rare and is not
present during training phase (Khan et al., 2017). Therefore, we train mon-
lithinc and channel-wise AE and SAE on the raw sensor data to learn a com-
pact representation of the normal activities. The next step is to identify a test
sample as normal or fall based on the trained AE/SAEs. The typical approach
to identify a fall as an anomaly is to set a threshold on the reconstruction error.
This threshold is generally set as the maximum of the reconstruction error on
the full training data (Dau et al., 2014). We call this threshold MazRE. During



testing, any sample that has a reconstruction error greater than this value can
be identified as a fall. However, sensor readings are not perfect and may contain
spurious data (Khan et al., 2014), which can affect this threshold. Due to the
presence of a few outliers in the training data, MaxzRE is often too large, which
could result in many of the falls being missed during testing time. To handle this
situation, tightening of threshold is often required (as discussed in Section 3).
We use the approach of Erfani et al. (Erfani et al., 2016) that sets the threshold
as 3 standard deviations away from the mean of the training data reconstruction
error. We call this threshold method as StdRE. The StdRE threshold can result
in identifying more falls during testing in comparison to MazRE at the cost of
few false alarms because the threshold in this case is smaller in comparison to
MazRE. A problem with StdRE is that it is chosen in an ad-hoc manner and it
may not be an appropriate choice for a given dataset.

We now present two new approaches to tighten the threshold on reconstruc-
tion error. These approaches derive the threshold from the training data such
that it can better identify unseen falls. These methods are similar to finding
an optimal operating point on an ROC curve by reducing false negatives at the
cost of false alarms. However, in a OCC framework, it is difficult to adopt a
traditional ROC approach because of the unavailability of the validation data
for the negative class. The proposed methods overcome these difficulty by re-
moving outliers from the training data prior to setting a threshold using only
the training data.

5.1. Reduced Reconstruction Error

As we discussed earlier, the raw sensor data may not be perfect and may con-
tain spurious or incorrectly labeled readings (Khan et al., 2014). If an AE/SAE
is trained on normal activities on such data, the reconstruction error for some
of the samples of the training set may be very large. In this case, choosing the
maximum of reconstruction error as the threshold to identify falls may lead to
accepting most of the falls as normal activities.

Khan et al. (Khan et al., 2017) propose to use the concept of quartiles
from descriptive statistic to remove few outliers present in the normal activities.
They train an hidden Markov model (HMM) on the normal activities, then
compute the log-likelihood of all the training samples, followed by applying IQR
technique on these log-likelihood values to find outliers in the training data. We
use a similar idea but adapt it to AE/SAE to tighten the threshold on the
reconstruction error. We first train an AE/SAE on normal activities, then find
the reconstruction error of each training sample. Given the reconstruction error
on the training data comprising of only samples of normal activities, the lower
quartile (Q1), the upper quartile (Q3) and the inter-quartile range (IQR =
Q3 — @Q1), a point P is qualified as an outlier of the normal class, if

P>Qs+QxIQR || P<Q—QxIQR (4)

where € is the rejection rate that represents the percentage of data points
that are within the non-extreme limits. Based on €2, the extreme values of



reconstruction error that represents spurious training data can be removed and
a threshold can be chosen as the maximum of the remaining reconstruction
errors. We call this method as Reduced Reconstruction Error (RRE). The
value of €2 can be found experimentally or set to remove a small fraction of the
normal activities data. We describe a cross-validation technique in Section 5.3
to find RRE from only the normal activities.

5.2. Inlier Reconstruction Error

In this method, we first train an AE/SAE on full normal data and then
remove the corresponding anomalous training samples based on 2 from the
training set (as discussed in the previous section). After this step, we are left
with training data without the outlier samples (or inlier). Then, we train a
new AE on this reduced data comprising of just the inlier. The idea is that the
variance of reconstruction error for such inlier data will not be too high and
its maximum can serve as the new threshold. We call this method as Inlier
Reconstruction Error (IRE).

For the channel-wise ensemble approach, each AE/SAE is trained only using
the raw sensor data from a specific channel of normal activities, then various
thresholds, i.e., MazRE, StdRE, RRE and IRE are computed for each channel
separately. During testing, for a given threshold method, the final decision is
taken as the majority voting outcome of all the AE/SAE. The intuition behind
RRE and IRE is that they should provide a better trade-off between false pos-
itive and true positive rate in comparison to MaxRE and StdRE. The threshold
MazRE may work better in detecting only normal activities, whereas StdRFE is
an adhoc approach to reduce the reconstruction error to allow for detection of
falls. Both RRE and IRFE are derived from the data and not arbitrarily set to a
fixed number. These methods attempt to find a threshold after removing spu-
rious sensor data from the normal activities, which can improve the sensitivity

of AE/SAE in detecting unseen falls.

5.8. Cross Validation

The parameter € to tighten the threshold for RRE and IRE cannot be
directly optimized because there is no validation set due to the absence of fall
data during training. Khan et al. (Khan et al., 2017) propose to remove some
outliers from the normal data and consider them as proxy for unseen falls. They
show that rejected outliers from the normal activities can be used to create a
validation set and tune parameters of a learning algorithm in the absence of
fall data. They use HMMs and show that some of the proxy for falls bear
resemblance to actual falls. We modify this idea with respect to the AEs and
present a cross-validation method to optimize {2 in our setting.

Firstly, we train an AE on full normal data and compute reconstruction er-
ror of each training example. Then we reject some samples from the normal
activities based on a parameter p, using their reconstruction error. The pa-
rameter p also uses IQR technique (as discussed in Section 5.1); however it is
very different from the parameter ). The parameter p represents the amount
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of outlier data removed from normal activities to generate samples for proxy
falls to create a validation set. The remaining normal activities are called non-
falls. The parameter ) represents the amount of reconstruction error removed
to set a ‘threshold’ to identify unseen falls during testing. For a given value of
p, several values of ) can be tested and the best is used for further analysis.
Therefore, p is considered as a hyper-parameter and ) as a parameter to find
RRE and IRE. Then the data from both the classes (non-falls and proxy fall)
is divided into K-folds. The non-fall data from (K — 1) folds is combined and
an AE is trained on it. The data from K** fold for non-fall and proxy fall is
used for testing and tuning the parameters. The process is repeated K times for
different values of 2; the one with the best average performance over K folds
is chosen for further analysis. The peformance metric is discussed in Section
6.1. Lastly, for a given p, we retrain on the non-fall data. The maximum of the
reconstruction error corresponding to the best 2 (obtained in the step discussed
above for a given p) is taken as RRE. To compute IRE, we remove the outliers
from the non-falls corresponding to €2; then retrain on the reduced training set
and take the maximum of the reconstruction error as IRFE.

The value of hyper-parameter p can be varied to observe an overall effect on
the performance of the proposed threshold tightening methods, RRE and IRFE.
Intuitively, a large value of p means less number of samples are removed from
normal activities as proxy for fall, which may lead to classify a lot of test samples
as normal activities and may miss to identify some falls. Whereas, a small value
of p means more samples from normal activities may be rejected as proxy for
falls; thus, the normal class will be smaller that may result in identifying most
of the falls but at the cost of more false alarms. In summary, we exect that
with increase in p, both the true positive rate and false positive rate should
reduce (fall is the positive class). By varying p, we can find an optimum range
of operation with a good balance of true positives and false positives. It is to be
noted that in this cross-validation method, no actual falls from the training set
are used because it is only comprised of normal activities and all the parameters
are tuned in the absence of actual falls.

6. Experimental Analysis

6.1. Performance Metrics

We consider a case for detecting falls where they are not available during
training and occur only during testing. Therefore, during the testing phase, we
expect a skewed distribution of falls. Hence, the standard performance metrics
such as accuracy may not be appropriate because it may give an over-estimated
view of the performance of the classifier. To deal such a case, we use the
geometric mean (gmean) (Kubat and Matwin, 1997; Khan et al., 2014) as the
performance metric to present the test results and optimize the parameters
during cross-validation. gmean is defined as the square root of the multiplication
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of true positive and true negative rate, i.e.

gmean = VI'PR+TNR
gmean = \/TPR % (1 — FPR)

(5)

where T PR is the true positive rate, TNR is the true negative rate and
F PR is the false positive rate. The value of gmean varies from 0 to 1, where a
1 means a perfect classification among falls and normal activities and 0 as the
worst outcome. We also use the TPR and FPR as other performance metrics
to further elaborate our results.

To evaluate the performance of the proposed approaches for fall detection,
we perform leave-one-subject-out cross validation (LOOCV) (He and Jin, 2009),
where only normal activities from (N — 1) subjects are used to train the clas-
sifiers and the N** subject’s normal activities and fall events are used for test-
ing. This process is repeated N times and the average performance metrics are
reported. This evaluation is person independent and demonstrates the general-
ization capabilities as the subject who is being tested is not included in training
the classifiers.

6.2. Datasets
We show our results on two activity recognition datasets that includes dif-
ferent normal activities and fall events collected via wearable devices.

6.2.1. German Aerospace Center (DLR) (Nadales, 2010)

This dataset is collected using an Inertial Measurement Unit with a sam-
pling frequency of 100 Hz. The dataset contains samples from 19 people of
both genders of different age groups. The data is recorded in indoor and out-
door environments under semi-natural conditions. The sensor is placed on the
belt either on the right or the left side of the body or in the right pocket in
different orientations. The dataset contains labelled data of the following 7
activities: Standing, Sitting, Lying, Walking (up/downstairs, horizontal), Run-
ning/Jogging, Jumping and Falling. One of the subjects did not perform fall
activity; therefore, their data is omitted from the analysis.

6.2.2. Coventry Dataset (COV) (Ojetola et al., 2015)

This dataset is collected using two SHIMMER™sensor nodes strapped to
the chest and thighs of subjects with a sampling frequency of 100 Hz. Two
protocols were followed to collect data from subjects. In Protocol 1, data for
six types of fall scenarios are captured (forward, backward, right, left, real fall-
backward and real fall forward) and a set of ADL (standing, lying, sitting on
a chair or bed, walking, crouching, near falls and lying). Protocol 2 involved
ascending and descending stairs. 42 young healthy individuals simulated various
ADL and fall scenarios (32 in Protocol 1 and 10 in Protocol 2). The data from
different types of falls are joined together to make one separate class for falls.
The subjects for Protocol 2 did not record corresponding fall data; therefore,
that data is not used. In our analysis, we used accelerometer and gyroscope
data from the sensor node strapped to the chest.
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6.3. Experimental Setup

For both the datasets, all the normal activities are joined together to form
a normal class. For COV dataset, different types of falls are joined to make
a fall class. The raw sensor data is processed using a 50% overlapping sliding
window. The time window size is set to 1.28 seconds for the DLR dataset
and 2.56 seconds for the COV dataset (as shown in Khan et al. (Khan et al.,
2017)). After pre-processing, the DLR dataset has 26576 normal activities and
84 fall segments, and the COV dataset has 12392 normal activities and 908 fall
segments.

We test two types of AE for the analysis; one with a single hidden layer
and other with three layered SAE. For the monolithic AE, the raw data within
a time window for each of the 3 channels of accelerometer and gyroscope is
concatenated, which leads to 768(= 128 x 6) input layer neurons for the DLR
dataset and 1536(= 256 x 6) input layer neurons for the COV dataset. The
number of hidden neurons in the monolithic AE is set to 31 (as suggested for
the engineered features case in the work of Khan et al. (Khan et al., 2017)).
For the monolithic SAE, the number of hidden neurons in the first layer is
chosen to be half of the number of input neurons, i.e. 384 for DLR dataset and
768 for COV dataset and the second layer has 31 number of features. For the
channel-wise ensemble method, each channels is fed to the AE/SAE separately.
Therefore, the number of neurons in the input layer per AE is set to 128 for DLR
dataset and 256 for COV dataset and the hidden layers has 31 neurons. For
the channel-wise SAE, the hidden neurons for first layer is half the number of
input layer, i.e. 64 for DLR dataset and 128 for the COV dataset. The second
hidden layer for both the datasets has 31 neurons. The number of training
epochs is fixed to 10 for all the different autoencoders. Rest of the parameters
such as the sparsity parameter, activation function etc., are kept at the default
values (MATLAB, 2017a). Compressed features learned through monolithic
AE and SAE are further used to train OSVM and OCNN classifiers (Khan and
Madden, 2014) for comparison.

6.3.1. Internal Cross-Validation

For OCNN, the number of nearest neighbours to identify an outlier is kept
as 1. OSVM has a parameter v (or the outlier fraction), which is the expected
proportion of outliers in the training data. The value of this parameter is tuned,
similar to parameter optimization discussed in Section 5.3. That is, reject a
small portion of normal class data as a proxy for unseen falls for a given p and
create a validation set. Then perform a K fold cross-validation for different
values of v and choose the one with the largest average gmean over all the K-
folds. The ‘KernelScale’ parameter is set to ‘auto’ and ’Standardize’ to ‘true’,
other parameters are kept to default values (MATLAB, 2017b).

An internal K = 3-fold cross validation is employed to optimize the param-
eters v for the OSVM and € for the RRFE and IRFE thresholding methods. The
parameter §) is varied from from [0.001,0.01,0.1,0.5,1,1.5,1.7239, 2, 2.5, 3] and
v is varied from [0.1,0.3,0.5,0.7,0.9]. The best parameter is chosen based on
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the average gmean over K folds. To understand the effect of removing outlier
data from the normal activities in building classification models for unseen falls,
the hyper-parameter p is varied from [0.001, 0.01,0.1,0.5,1,1.5,1.7239, 2,2.5, 3].
Along with 6 channel raw data to train different classifiers to detect unseen
falls, we also use 2 channel magnitude data from each of the datasets to train
different classifiers. Therefore, in the experiment we compare the following
different classifiers for two types of channels data (i.e. 6 and 2 channels):

e Two types of AE, i.e. single layer AE and three layered SAE.
e Four types of thresholding methods i.e. MazRE, StdRE, RRE and IRE.

e Two types of feature learning techniques - (i) monolithic and (ii) channel-wise
ensemble.

e Two one-class classifiers (OCNN and OSVM ) trained on features learned
from AE and SAE (not for the channel-wise case).

This results in 20 different classifiers trained per 6 / 2 channels input raw
sensor data; we compare their performance in the next section.

6.4. Results and Discussion

Tables 1 and 2 show the results for the DLR datasets for 6 and 2 channel
input raw data. The results correspond to p = 1.5. Tables 1d and 2d show
the results when the features learned using AE and SAE are fed to OSVM and
OCNN. We observe that for the 6 channel case, the best gmean is obtained
for channel-wise AE with RRFE followed by IRE method (see Tables 1a). The
traditional thresholding methods of MazRE and StdRE do not perform well.
We observe similar results for DLR dataset with 2 channel input; however, the
gmean values using 6 channel input data are higher. Both the RRE and IRFE
methods with channel-wise AE give good trade-off between TPR (see Tables
1b and 2b) and FPR (see Tables 1c and 2¢). Figure 3a shows the distribution
of various thresholds after training on combined normal data of the first (N —
1) subjects. The value of MazRE, which represents the maximum value of
reconstruction error on the training set is very large. Due to this large threshold,
most of the test samples are classified as normal data. This large value also
indicates the presence of some outliers within the normal data, which are hard
to reconstruct and result in large reconstruction error. The values of RRE
and IRE are much lower than MaxzRE and StdRE and gives a good balance
between TPR and F'PR for unseen falls.

Results on the COV dataset for the 6 and 2 channels input data are shown
in Table 3 and 4. For the 6 channel case, channel-wise ensemble method with
AE for RRE and IRE give equivalent values of gmean, which is higher than
other methods of thresholding. Both the best methods give a good trade-off
between TPR and FPR (see Tables 3b and 3c). Figure 3b shows that RRE
and IRFE have very similar value and much lower than MaxRE and StdRE
that leads to good identification of unseen falls. For the 2 channel case, the IRE
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Figure 3: Different thresholds after training a 6-channel monolithic AE on combined normal
activities of Subject 1 to (N —1). RRE and IRE are corresponding to p = 1.5.

threshold method for both the monolithic and channel-wise approaches for AE
and SAE give equivalent performance along with monolithic SAE with RRE.
The channel-wise approach gives more false alarms but detects more falls than
the monolithic approach. For both the DLR and COV datasets, the OCNN
classifier perform worse than the proposed methods because it gives a large
number of false alarms; whereas, OSVM classifies all the test samples as falls
(see Tables 1d, 2d, 3d, 4d).

By convention, we classify a test sample as a fall in case of a tie in the
channel-wise approach. The probability of a tie occurring is higher in 2 channel
ensemble method than in 6 channel ensemble; therefore, its sensitivity to detect
falls is higher than the 6 channel case with an increase in the false alarm rate.
We observe this behavior for both the DLR and COV datasets (see the Channel-
wise rows in Tables lc, 2¢, and 3c, 4¢ ). From this experiment, we infer that the
traditional methods of thresholding, i.e., MaxRE and StdRFE, are not suitable for
the task of fall detection. MaxRE may perform poorly because of the presence of
noise in the sensor data that can significantly increase the value of maximum of
reconstruction error of an AE/SAE, leading to classify most of the test samples
as normal activity. The StdRE is an ad-hoc approach that arbitrarily chooses a
threshold lower than the maximum of the reconstruction error of an AE/SAE
that may identify more falls. The proposed threshold tightening methods, RRE
and IRE, attempt to find a discriminating threshold from the training dataset to
get a good trade-off between TPR and FPR. Our experiments suggest that for
both the datasets, RRE and IRE with channel-wise ensemble approach perform
equivalently and consistently better than the traditional methods of threshold
tightening.

We vary the hyper-parameter p to understand its impact on the performance
of different thresholding techniques. Figures 4 and 5 show the variation of TPR,
FPR and gmean with increasing p. We observe that as the value of p increases,
both TPR and F PR reduce. The reason is that at smaller values of p, a large
portion of normal data is rejected as outliers and used for parameter tuning;
thus, the number of samples in the non-fall class is small. This means that the
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(a) gmean values.

Features | Autoencoder Thresholding
Types Type
MaxRE \ StdRE \ RRE \ IRE
... | AE 0 0.106 0.825 | 0.757
Monolithic/ 7 0 0234 | 0.840 | 0.837
Channel- | AE 0 0.547 0.860 | 0.849
wise SAE 0 0.334 0.818 | 0.811
(b) TPR values.
Features | Autoencoder Thresholding
Types Type
MaxRE \ StdRE \ RRE \ IRE
... | AE 0 0.056 0.856 | 0.762
Monolithic|—g7 0 0.133 | 0.803 | 0.893
Channel- | AE 0 0.428 0.902 | 0.840
wise SAE 0 0.226 0.774 | 0.750
(c) FPR values.
Features | Autoencoder Thresholding
Types Type
MoaxzRE | StdRE | RRE | IRE
Monolithic AE 5.9¢-6 0.025 0.189 | 0.169
SAE 5.9e-6 0.025 0.199 | 0.204
Channel- | AE 0 0.010 0.169 | 0.122
wise SAE 0 0.008 0.088 | 0.079

(d) Performance on OSVM and OCNN methods.

Classifier | Autoencoder| gmean | TPR | FPR

Type

AE 0 1 1
OSVM 535 0 1

AE 0.460 0.911 | 0.761
OCNN SAE 0.423 0.681 | 0.701

Table 1: Performance of different fall detection methods on DLR dataset (6 channels) for

p=15

AE/SAE will learn on a smaller dataset and will reject most of the deviations
from this small subset of normal activities as falls. Consequently, many falls
will also be identified correctly. The reverse behavior will happen when p is
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(a) gmean values.

Features | Autoencoder Thresholding
Types Type
MaxRE \ StdRE \ RRE \ IRE
... | AE 0 0 0.504 | 0.774
Monolithic/ 7 0 0 0.630 | 0.776
Channel- | AE 0.013 0.487 0.839 | 0.822
wise SAE 0 0.446 0.678 | 0.655
(b) TPR values.
Features | Autoencoder Thresholding
Types Type
MaxRE \ StdRE \ RRE \ IRE
... | AE 0 0 0.966 | 0.949
Monolithic|—g7 0 0 0.950 | 0.041
Channel- | AE 0.003 0.323 0.941 | 0.926
wise SAE 0 0.329 0.629 | 0.579
(c) FPR values.
Features | Autoencoder Thresholding
Types Type
MoaxzRE | StdRE | RRE | IRE
Monolithic AE 7.4e-5 0.037 0.705 | 0.363
SAE 3.7e-5 0.039 0.544 | 0.353
Channel- | AE 1.0e-4 0.032 0.245 | 0.264
wise SAE 7.7e-5 0.033 0.099 | 0.094

(d) Performance on OSVM and OCNN methods.

Classifier | Autoencoder| gmean | TPR | FPR

Type

AE 0 1 1
OSVM 535 0 1

AE 0.459 0.815 | 0.719
OCNN SAE 0.318 0.317 | 0.449

Table 2: Performance of different fall detection methods on DLR dataset (2 channels) for

p=15

large, less number of normal data is rejected as outliers and the class of normal
activities will be large. This will reduce the number of false alarms but can also
lead to missing to identify some falls. The experimental observation for each of
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(a) gmean values.

Features | Autoencoder Thresholding
Types Type
MaxRE \ StdRE \ RRE \ IRE
Monolithic AE 0.015 0.744 0.774 | 0.771
SAE 0.019 0.743 0.772 | 0.771
Channel- | AE 0.014 0.463 0.795 | 0.795
wise SAE 0 0.226 0.737 | 0.707
(b) TPR values.
Features | Autoencoder Thresholding
Types Type
MaxRE \ StdRE \ RRE \ IRE
Monolithi AE 0.004 0.589 0.744 | 0.740
ORI IR R 0.007 0.588 | 0.738 | 0.738
Channel- | AE 0.003 0.248 0.7 0.7
wise SAE 0 0.082 0.665 | 0.573
(c) FPR values.
Features | Autoencoder Thresholding
Types Type
MoaxzRE | StdRE | RRE | IRE
Monolithic AE 1.1e-4 0.017 0.169 | 0.169
SAE 1.1e-4 0.017 0.166 | 0.167
Channel- | AE 0 0.002 0.067 | 0.072
wise SAE 0 5.9e-5 0.128 | 0.078

(d) Performance on OSVM and OCNN methods.

Classifier | Autoencoder| gmean | TPR | FPR

Type

AE 0 1 1
OSVM 535 0 1

AE 0.432 0.977 | 0.805
OCNN SAE 0.484 0.949 | 0.751

Table 3: Performance of different fall detection methods on COV dataset (6 channels) for

p=15

the 6 and 2 channel datasets is consistent with this intuition discussed in Section
5.3. Similar observation can be made for the COV dataset from Figures 6 and
7. For both datasets, we notice that at large value of p, the performance of best
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(a) gmean values.

Features | Autoencoder Thresholding
Types Type
MaxRE \ StdRE \ RRE \ IRE
Monolithic AE 0.041 0.743 0.668 | 0.785
SAE 0.019 0.724 0.784 | 0.784
Channel- | AE 0.337 0.767 0.726 | 0.788
wise SAE 0.331 0.757 0.739 | 0.786
(b) TPR values.
Features | Autoencoder Thresholding
Types Type
MazRE \ StdRE \ RRE \ IRE
Monolithi AE 0.012 0.587 0.729 | 0.698
ORI IR R 0.007 0557 | 0.677 | 0.674
Channel- | AE 0.147 0.621 0.805 | 0.779
wise SAE 0.142 0.606 0.781 | 0.779
(c) FPR values.
Features | Autoencoder Thresholding
Types Type
MoaxzRE | StdRE | RRE | IRE
Monolithic AE 1.7e-4 0.013 0.287 | 0.094
SAE 1.7e-4 0.012 0.06 0.056
Channel- | AE 1.1e-4 0.015 0.298 | 0.186
wise SAE 1.1e-4 0.016 0.255 | 0.182

(d) Performance on OSVM and OCNN methods.

Classifier | Autoencoder| gmean | TPR | FPR

Type

AE 0 1 1
OSVM 535 0 1

AE 0.594 0.905 | 0.606
OCNN SAE 0.580 0.606 | 0.432

Table 4: Performance of different fall detection methods on COV dataset (2 channels) for

p=15

thresholding approaches drops slower. This experimental observation suggests
that a smaller amount of data (corresponding to p > 1.5) may be removed
from the normal activities class as outliers, which can be used as a validation
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set to optimize the parameters of the AE/SAE and better performance can be
achieved for identifying unseen falls. We also infer that channel-wise approach
outperforms monolithic in all the 6 and 2 channel data variants of both the
datasets.

7. Conclusions and Future Work

A fall is a rare event; therefore, it is difficult to build classification mod-
els using traditional supervised algorithms in the absence of training data. An
associated challenge for fall detection problem is to extract discriminative fea-
tures in the absence of fall data for training generalizable classifiers. In this
paper, we presented solutions to deal with these issues. Firstly, we formulated
a fall detection problem as a OCC or anomaly detection problem. Secondly,
we presented the use of AE, more specifically a novel way to train separate AE
for each channel of the wearable sensor, to learn generic features and create
their ensemble. We proposed threshold tightening methods to identify unseen
falls accurately. This work provides useful insights that an ensemble based on
channels of a wearable device with optimized threshold is a useful technique
to identify unseen falls. In future work, we are exploring extreme value theory
and combining it with the proposed approaches to identify unseen falls. We are
also interested in tuning the parameters of autoencoders (such as learning rate,
activation functions, network topology etc) using the IQR, technique discussed
in the paper to improve the performance of the proposed ensemble methods in
detecting unseen falls.
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Figure 4: Performance of top 5 fall detection methods by varying p on DLR dataset. AE - Sin-
gle Layer Autoencoder, SAE - 3 Layer Stacked Autoencoder, RRE - Reduced Reconstruction
Error, IRE - Inlier Reconstruction Error, CW - Channel-wise Ensemble
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Figure 5: Performance of top 5 fall detection methods by varying p on DLR-norm dataset.
AE - Single Layer Autoencoder, SAE - 3 Layer Stacked Autoencoder, RRE - Reduced Recon-
struction Error, IRE - Inlier Reconstruction Error, CW - Channel-wise Ensemble
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Figure 6: Performance of top 5 fall detection methods by varying p on COV dataset. AE - Sin-

gle Layer Autoencoder, SAE - 3 Layer Stacked Autoencoder, RRE - Reduced Reconstruction
Error, IRE - Inlier Reconstruction Error, CW - Channel-wise Ensemble
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Figure 7: Performance of top 5 fall detection methods by varying p on COV-norm dataset.
AE - Single Layer Autoencoder, SAE - 3 Layer Stacked Autoencoder, RRE - Reduced Recon-
struction Error, IRE - Inlier Reconstruction Error, CW - Channel-wise Ensemble
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