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Abstract 

The One-class Classification (OCC) problem is different from the conventional binary / 

multi-class classification problem in the sense that in OCC, the examples in the negative / 

outlier class are either not present, very few in number, or not statistically representative of 

the negative concept. Researchers have addressed the task of OCC by using different 

methodologies in a variety of application domains. This thesis formulates a taxonomy with 

three main categories based on the way OCC is envisaged, implemented and applied by 

various researchers in different application domains. Based on the proposed taxonomy, we 

present a comprehensive research survey of the current state-of-the-art OCC algorithms, their 

importance, applications and limitations.  

The thesis explores the application domain of Raman spectroscopy and studies several 

similarity metrics to compare chemical spectra. We review some standard, non-standard and 

spectroscopy-specific spectral similarity measures. We also suggest a modified Euclidean 

metric to aid in effective spectral library search. These spectral similarity methods are then 

used to build the kernels for developing one-class nearest neighbour classifiers. Our results 

suggest that these new similarity measures indeed lead to better precision and recall rates of 

target spectra in comparison to studied standard methods. 

The thesis proposes the use of kernels as distance metric to formulate a one-class nearest 

neighbour approach for the identification of a chemical target substance in mixtures. The 

specific application considered is to detect the presence of chlorinated solvents in mixtures, 

although the approach is equally applicable for any form of spectral analysis. We use several 

kernels including polynomial (degree 1 and 2), radial basis function and spectral data specific 

kernels. Our results show that the radial basis function kernel consistently outperforms other 

kernels in one-class nearest neighbour setting. But the polynomial and spectral kernels 

perform no better than the linear kernel (which is directly equivalent to the standard 

Euclidean metric). 
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Chapter 1 

One-Class Classification 

In this chapter we introduce the concept of one-class classification (OCC) and formulate the 

motivation and the problem definition for employing them in the classification of chemical 

spectral data. In Section 1.1, an introduction to the definition of OCC is presented. Section 

1.2 compares OCC with the multi-class classification problem and outlines their 

characteristics. In Section 1.3 we discuss the methods to measure the performance of OCC 

algorithms. Section 1.4 discusses the motivation and problem formulation for employing 

OCC algorithms for the classification of chlorinated solvent data. Section 1.5 summarizes 

the overall structure of the thesis and Section 1.6 details the research publications that 

resulted from this research work.  

1.1. Introduction to One-class Classification 

The traditional multi-class classification paradigm aims to classify an unknown data object 

into one of several pre-defined categories (two in the simplest case of binary classification). 

A problem arises when the unknown object does not belong to any of those categories. Let 

us assume that we have a training data set comprising of instances of fruits and vegetables. 

Any binary classifier can be applied to this problem, if an unknown test object (within the 

domain of fruits and vegetables e.g. apple or potato) is given for classification. But if the 

test pattern is from an entirely different domain (for example a cat from the category 

animals), the behaviour of the classifier would be „undefined‟. The binary classifier is 

confined to classifying all test objects into one of the two categories on which it is trained, 

and will therefore classify the cat as either a fruit or a vegetable. Sometimes the 

classification task is just not to allocate a test sample into predefined categories but also to 

decide if  it belongs to a particular class or not. In the above example an apple belongs to 

class fruits and the cat does not. 

In one-class classification [1][2], one of the classes (which we will arbitrarily refer to as the 

positive or target class) is well characterized by instances in the training data, while the 
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other class (negative or outlier) has either no instances or very few of them, or they do not 

form a statistically-representative sample of the negative concept.  

To motivate the importance of one-class classification, let us consider some scenarios. A 

situation may occur, for instance, where we want to monitor faults in a machine. A classifier 

should detect when the machine is showing abnormal / faulty behaviour. Measurements on 

the normal operation of the machine (positive class training data) are easy to obtain. On the 

other hand, most faults would not have occurred hence we may have little or no training 

data for the negative class. Another example is the automatic diagnosis of a disease. It is 

relatively easy to compile positive data (all patients who are known to have the disease) but 

negative data may be difficult to obtain since other patients in the database cannot be 

assumed to be negative cases if they have never been tested, and such tests can be 

expensive. As another example, a traditional binary classifier for text or web pages requires 

arduous pre-processing to collect negative training examples. For example, in order to 

construct a “homepage” classifier [3], sample of homepages (positive training examples) 

and a sample of non-homepages (negative training examples) need to be gleaned. In these 

and other situations, collection of negative training examples is challenging because  it 

either represent improper sampling of positive and negative classes or involves manual bias. 

1.2. One-class Classification Vs Multi Class Classification 

In a conventional multi class classification problem, data from two (or more) classes are 

available and the decision boundary is supported by the presence of example samples from 

each class. Most conventional classifiers assume more or less equally balanced data classes 

and do not work well when any class is severely under-sampled or is completely absent.  

Moya et al. [4] originate the term “One-Class Classification” in their research work. 

Different researchers have used other terms such as “Outlier Detection1” [6], “Novelty 

Detection2” [9] or “Concept Learning” [10] to represent similar concept. These terms 

originate as a result of different applications to which one-class classification has been 

applied.  Juszczak [11] defines One-Class Classifiers as class descriptors that are able to 

learn restricted domains in a multi-dimensional pattern space using primarily just a positive 

set of examples.  

                                                 
1 Readers are advised to refer to detailed literature survey on outlier detection by Chandola et al. [5] 
2 Readers are advised to refer to detailed literature survey on novelty detection by Markou and Singh[7,8] 
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As mentioned by Tax [2],  the problems that are encountered in the conventional 

classification problems, such as the estimation of the classification error, measuring the 

complexity of a solution, the curse of dimensionality, the generalization of the classification 

method also appear in OCC and sometimes become even more prominent. As stated earlier, 

in OCC tasks either the negative examples is absent or available in limited amount, so only 

one side of the classification boundary can be determined using only positive data (or some 

negatives). This makes the problem of one-class classification harder than the problem of 

conventional two-class classification. The task in OCC is to define a classification boundary 

around the positive (or target) class, such that it accepts as many objects as possible from 

the positive class, while it minimizes the chance of accepting the outlier objects.  Since only 

one side of the boundary can be determined, in OCC, it is hard to decide on the basis of just 

one-class how tightly the boundary should fit in each of the directions around the data. It is 

also harder to decide which features should be used to find the best separation of the 

positive and outlier class objects. In OCC a boundary has to be defined in all directions 

around the data, particularly, when the boundary of the data is long and non-convex, the 

required number of training objects might be very high.  

1.3. Measuring Classification Performance of One-class Classifiers 

As mentioned in the work of Tax [2], a confusion matrix (see Table 1) can be constructed to 

compute the classification performance of one-class classifiers. To estimate the computation 

of the true error (as in multi class classifiers), the complete probability density of both the 

classes should be known. In the case of one-class classification, the probability density of 

only the positive class is known. This means that only the number of positive class objects 

which are not accepted by the one-class classifier i.e. the false negatives (F ) can be 

minimized. In the absence of examples and sample distribution from outlier class objects, it 

is not possible to estimate the number of outliers objects that will be accepted by the one-

class classifier (false positive,F  ). Furthermore, it can be noted that since 1  FT and

1  TF , thus the main complication in OCC is that only T and F can be estimated 

and nothing is known about F  and T . Therefore, limited amount of outlier class data is 

required to estimates the performance and generalize the classification accuracy of a one-

class classifier. 
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Object from target 

class 

Object from 

outlier class 

Classified as a target 

object 
True positive, 

T  False positive, 
F  

Classified as an outlier 

object 
False negative, 

F  True negative, 
T  

Table 1: Confusion Matrix for OCC. (Source: Tax [2]) 

1.4. Motivation and Problem Formulation 

As discussed above in Sections 1.1, 1.2 and 1.3, OCC presents a classification scheme in 

which the samples from negative / outlier class are not present, very rare or statistically do 

not represent the negative concept.  It also imposes a restriction on estimating the errors of 

the one-class classifier model when the negative samples are not abundant. If there is a 

severe lack of negative examples, the performance one-class classifier can be estimated 

using artificially generated outliers [1]. Improper or biased choice of outliers may not be 

able to generalize the one-class classifier‟s performance. Tax and Duin [1] propose to 

generate artificial outliers uniformly in a hypershpere such that it fits the target class as tight 

as possible to estimate errors (see detailed discussion of this method in Section 2.4.2). 

Raman Spectroscopy [12] is spectroscopic method based on inelastic scattering of 

monochromatic light when a chemical substance is illuminated using a laser. A Raman 

spectrum is produced due to the vibration and rotational motions of the molecules of the 

substance which shows the intensities at different wavelengths. A Raman spectrum of every 

pure substance is unique and it can be regarded as its „molecular fingerprint‟. This property 

can be used as a signature for unambiguous identification of chemical substances.  

In practice, chemical substances may not occur in their pure form but as mixtures of two or 

more chemical substances in various proportions. This makes the task of identification of 

target substance more challenging as the peaks in the resulting Raman spectrum get 

convolved because of the influence of other chemical substances in the mixture. An example 

would be the spectral library search, where the presence of a substance in a mixture is being 
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searched in a spectral database. There exist standard library search methods; however they 

may not be able to capture the intricacies outlined above. Therefore, there is a room for the 

development of new spectral search methods that can work efficiently in conditions where 

standard search methods fail. 

It is exigent to build classifiers for the detection of target substance in mixtures, when the 

outliers are absent or not properly sampled. For our research, we undertake the task of 

identifying the presence or absence of chlorinated solvents in a mixture of various 

chlorinated and non-chlorinated solvents. Chlorinated solvents are environmentally 

hazardous and there needs to be proper disposal scheme for such substances, if present in 

their raw form or as a constituent of mixture. It is easy to collect samples for training a one-

class classifier that contains chlorinated solvents in pure or mixture form. However to build 

a set of samples that are representative of negative concept is very difficult. Because any 

mixture that does not contain chlorine can be considered an outlier sample, therefore the 

choices are unlimited and the training samples thus gleaned will not statistically represent 

the negative concept. In such a case, it is very difficult to build a multi-class classifier 

(binary classifier here) for detecting the presence or absence of chlorine in a mixture that 

can generalize the results. This limitation paves the way for the deployment of OCC scheme 

that uses the target samples only (or with few outliers) during training phase. 

There are various methods quoted in literature to tackle the problem of OCC (see Section 

2.3, 2.4 and 2.5 for detailed discussion). Recently there is a growing interest in the study of 

kernels in machine learning tasks [13,14]. In our research work, we have used the kernels as 

distance metric to implement one-class nearest neighbour approach to detect the presence or 

absence of chlorinated solvents in a mixture.  

1.5. Overview of Thesis 

The thesis is divided into five chapters. In Chapter 2, we propose a taxonomy for the study 

of OCC methods based on the availability of data, algorithms used and the application 

domains applied. Such a taxonomy is useful for researchers who plan to work in the vast 

field of OCC, to limit their research effort and focus more on the problem to be tackled. 

Based on the proposed taxonomy, we provide a comprehensive literature review on the 

recent advances in the field of OCC, followed by guidelines for the study of OCC and open 

research areas in this field. 
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In Chapter 3, we briefly introduce the concept of Raman Spectroscopy. We also present 

various similarity and dissimilarity measures used to compare spectra. These (dis)similarity 

methods includes the standard, non-standard and more recent measures that are used in 

spectral library search for the identification of substances in mixtures. We also introduce 

two domain-specific spectral kernels and propose a modified Euclidean metric specific for 

chemical spectral data. The chlorinated solvent data used in our research work is explained 

in this chapter. We introduce the concept of spectral library search and conduct spectral 

search experiments on the chlorinated solvent data and present the results. 

Chapter 4 captures the importance of kernels in the machine learning tasks. We present a 

short research review on incorporating kernels as distance metrics for multi class 

classification using the nearest neighbour approach.  We later present the already existing 

one-class nearest neighbour approach and propose the use of kernels as distance metric 

instead of the conventional methods like Euclidean metric for implementing the one-class 

nearest neighbour approach. 

Chapter 5 presents the results of our experimentation on the chlorinated solvent dataset 

using the proposed approach of kernel-based one-class nearest neighbours. We discuss 

several aspects of our experiments including parameter setting, choice of kernels, varying 

the number of neighbours etc.  Then we summarize our conclusions and present the future 

work. 

1.6. Publications Resulting from the Thesis 

The work in the present thesis resulted in the following publications: 

 A Survey of Recent Trends in One-class Classification, Shehroz Khan and Michael G. 

Madden, Proceedings of the 20th Irish Conference on Artificial Intelligence and 

Cognitive Science, Dublin, 2009, in the LNAI volume 6206, pp181-190, Springer-Verlag 

 Kernel-Based One-Class Nearest Neighbor Approach for Identification of Chlorinated 

Solvents, Shehroz S. Khan and Michael G. Madden, Pittsburgh Conference (PITTCON-

2010), Orlando, USA.    
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Chapter 2 

Review: One-class Classification 

and its Applications 

The OCC problem has been studied by various researchers using different methodologies in 

a wide range of application domains. In this chapter we briefly present the related research 

review work in the field of OCC in Section 2. In Section 2.2, we propose a new taxonomy to 

be used for the study of OCC problems. This differentiating factor of this taxonomy from 

the previous survey work in OCC is that the previous surveys have been more focussed on 

either specific application domains or centred on specific algorithms or methods.  Since the 

area of OCC is quite large, our proposed taxonomy gives a researcher the opportunity to 

focus on specific area as per their research requirements. Based on the taxonomy we present 

a comprehensive literature review of the state-of-the-art OCC algorithms, their importance, 

applications and limitations in Sections 2.3, 2.4 and 2.5. In Section 2.6 we discuss certain 

open questions in the field of OCC. 

2.1. Related Review Work in OCC 

In recent years, there has been a considerable amount of research work carried out in the 

field of OCC. Researchers have proposed several OCC algorithms to deal various 

classification problems. Mazhelis [15] presents a review of OCC algorithms and analyzed 

its suitability in the context of mobile-masquerader detection. In the paper, the author 

proposes a taxonomy of one-class classifiers classification techniques based on: 

 The internal model used by classifier (density, reconstruction or boundary based) 

 The type of data (numeric or symbolic), and 

 The ability of classifiers to take into account temporal relations among feature (yes 

or no).  

This survey on OCC describes a lot of algorithms and techniques; however it does not cover 

the entire spectrum studied under the field called one-class classification. As we describe in 

subsequent sections, one-class classification has been termed and used by various 
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researchers by different names in different contexts. The survey presented by Mazhelis [15] 

proposes a taxonomy suitable to evaluate the applicability of OCC to the specific 

application domain of mobile-masquerader detection. In our review work, we neither restrict 

ourselves to a particular application domain, nor to any specific algorithms that are 

dependent on type of the data or model. Our aim is to cover as many algorithms, designs, 

contexts and applications where OCC has been applied in multiple ways (as briefed by way 

of examples in Section 1.1). Little of the research work presented in our review may be 

found in the survey work of Mazhelis, however our review on OCC encompasses a broader 

definition of OCC and does not intend to duplicate or re-state their work.  

2.2. Proposed Taxonomy 

Based on the research work carried out in the field of OCC using different algorithms, 

methodologies and application domains, we propose a taxonomy for the study of OCC 

problems. The taxonomy can be categorized into three categories on the basis of (see Figure 

1): 

(i) Availability of Training Data: Learning with positive data only or learning with 

positive and unlabeled data and / or some amount of outlier samples. 

(ii)  Methodology Used: Algorithms based on One-class Support Vector Machines 

(OSVMs) or methodologies based on algorithms other than OSVMs. 

(iii)  Application Domain Applied: OCC applied in the field of text / document 

classification or in the other application domains. 

The proposed categories are not mutually exclusive, so there may be some overlapping 

among the research carried out in each of these categories. However, they cover almost all 

of the major research conducted by using the concept of OCC in various contexts and 

application domains. The key contributions in most OCC research fall into one of the above-

mentioned categories. In the subsequent subsections, we will consider each of these 

categories in detail. 
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Figure 1: The Proposed Taxonomy for the Study of OCC Techniques 

2.3. Category 1: Availability of Training Data 

Availability of training data plays a pivotal role in any OCC algorithm. Researchers have 

studied OCC extensively under three broad categories:  

a) Learning with positive examples only.  

b) Learning with positive examples and some amount of poorly sampled negative 

examples. 

c) Learning with positive and unlabeled data.  

Category c) has been a matter of much research interest among the text / document 

classification community [16-18] that has been discussed in detail in Section 2.5.1.   
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Tax and Duin [19,20] and Schölkopf et al. [21] develop various algorithms based on support 

vector machines to tackle the problem of OCC using positive examples only; for a detailed 

discussion on them, refer to Section 2.4.2. The main idea behind these strategies is to 

construct a decision boundary around the positive data so as to differentiate them from the 

outlier / negative data. 

For many learning tasks, labelled examples are rare while numerous unlabeled examples are 

easily available. The problem of learning with the help of unlabeled data given a small set of 

labelled examples was studied by Blum and Mitchell [22] by using the concept of co-

training. The co-training settings can be applied when a data set has natural separation of 

their features. Co-training algorithms incrementally build classifiers over each of these 

feature sets. Blum and Mitchell show the use co-training methods to train the classifiers in 

the application of text classification.  They show that under the assumptions that each set of 

features is sufficient for classification, and the feature sets of each instance are conditionally 

independent given the class, PAC (Probably Approximately Correct) learning [23] 

guarantees on learning from labelled and unlabeled data. Assuming two views of examples 

that are redundant but not correlated, they prove that unlabeled examples can boost 

accuracy. Denis [24] was the first to conduct a theoretical study of PAC learning from 

positive and unlabeled data. Denis proves that many concepts classes, specifically those that 

are learnable from statistical queries, can be efficiently learned in a PAC framework using 

positive and unlabeled data. However, the trade-off is a considerable increase in the number 

of examples needed to achieve learning, although it remains polynomial in size. DeComite 

et al. [25] give evidence with both theoretical and empirical arguments that positive 

examples and unlabeled examples can boost accuracy of many machine learning algorithms. 

They noted that the learning with positive and unlabeled data is possible as soon as the 

weight of the target concept (i.e. the ratio of positive examples) is known by the learner. An 

estimate of the weight can be obtained from a small set of labelled examples. Muggleton 

[26] presents a theoretical study in the Bayesian framework where the distribution of 

functions and examples are assumed to be known. Liu et al. [27] extend their result to the 

noisy case. Sample complexity results for learning by maximizing the number of unlabeled 

examples labelled as negative while constraining the classifier to label all the positive 

examples correctly were presented in their research work. Further details on the research 

carried out on training classifiers with labelled positive and unlabeled data is presented in 

Section 2.5.1. 
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2.4. Category 2: Algorithms Used 

Most of the major OCC algorithms development can be classified under two broad 

categories, as has been done either using: 

 One-class Support Vector Machines (OSVMs), or 

 Non-OSVMs methods (including various flavours of neural networks, decision trees, 

nearest neighbours and others).  

Before we move on to discuss OSVM we briefly introduce the support vector machines for 

standard two class classification problem in the next section. 

2.4.1. Support Vector Machines 

The support vector machine (SVM) [13][28] is a training algorithm for learning 

classification and regression rules from the data. The support vector machines are based on 

the concept of projecting a data set in high dimension feature space and determining optimal 

hyper-planes for separating the data from different classes [13]. Two key elements in the 

implementation of SVM are the techniques of mathematical programming and kernel 

functions [28]. The parameters are found by solving a quadratic programming problem with 

linear equality and inequality constraints; rather than by solving a non-convex, 

unconstrained optimization problem.  

For training data that is linearly separable, a hyper-plane is constructed that separates the 

positive from the negative examples with maximum margin. The points x which lie on the 

hyper-plane satisfy 0. bxw , where w is normal to the hyper-plane, wb  is the 

perpendicular distance from the hyper-plane to the origin, and w is the Euclidean norm of 

w (as shown in Figure 2). Let d  (and d ) be the shortest distance from the separating 

hyper-plane to the closest positive (negative) example, and define the “margin” of a 

separating hyper-plane to be   dd . For the linearly separable case, the support vector 

algorithm simply looks for the separating hyper-plane with largest margin.  

This can be formulated as follows: suppose that all the training data satisfy the following 

constraints: 

1,1.  ii ybxw       Equation 1 

1,1.  ii ybxw        Equation 2 
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with the decision rule given by  

   bxwsignxf bw  .,     Equation 3 

The SVM can be used to learn non-linear decision functions by first mapping the data X to 

some higher dimensional feature space H and constructing a separating hyper-plane in this 

space. Denoting the mapping to feature space by  

HX        Equation 4 

 xx        Equation 5 

where  x  is the projection of x in the feature space H. 

 

Figure 2:  Separating hyper-plane for the separable case. The support vectors are shown with double 
circles (Source [28]. 

Omitting mathematical calculations, the decision function as mentioned in    

 Equation 3, comes in the form of inner products   zx  . . Mapping the data to H is 

time consuming and storing it may be impossible, e.g. if H is infinite dimensional. However, 

the data only appear in inner products, a computable function is required that gives the value 

of the inner product in H without performing the mapping. Hence a kernel function can be 

introduced [28]: 

      zxzxK  .,       Equation 6 
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The kernel function allows constructing an optimal separating hyper-plane in the space H 

without explicitly performing calculations in this space. Commonly used kernels include 

[29]:   

Polynomial kernel         dyxyxK ,1,     

Radial Basis Function (RBF)       22
2/exp, yxyxK 

  

     where  is width of the kernel 

 Sigmoidal           yxyxK .tanh,  , with gain   and offset  

This is called „kernel trick‟ or „kernel approach‟ and gives the SVM great flexibility. With a 

suitable choice of parameters, SVM can separate any consistent data set. For noisy data, 

slack variables can be introduced to allow training errors.  

In the following subsection we explain the main algorithms that have been used in the 

OSVM framework and then in Section 2.4.3 we discuss other main Non-OSVM algorithms 

to handle OCC problem. 

2.4.2. One-class Support Vector Machine (OSVM) 

The one-class classification problem is often solved by estimating the target density [4], or 

by fitting a model to the data support vector classifier [13]. Tax and Duin [19,20] seek to 

solve the problem of OCC by distinguishing the positive class from all other possible 

patterns in the pattern space. They constructed a hyper-sphere around the positive class data 

that encompasses almost all points in the data set with the minimum radius. This method is 

called the Support Vector Data Description (SVDD).  

Assume a data set containing N data objects,  Nixi ,,2,1,   and the hyper-sphere is 

described by centre a and radius R (See Figure 3). To fit the hyper-sphere to the data, an 

error function L is minimized that contains the volume of the hyper-sphere and the distance 

from the boundary of the outlier objects. The solution is constrained with the requirement 

that (almost) all data is within the hyper-sphere. In operation, an SVDD classifier rejects a 

given test point as outlier if it falls outside the hyper- sphere. To allow the possibility of 

outliers in the training set, the distance from ix  to the centre a should not be strictly smaller 

than R, but larger distances should be penalized. Therefore, slack variables ξ is introduced 

which measure the distance to the boundary, if an object is outside the description. An extra 
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parameter C has to be introduced for the trade-off between the volume of the hyper-sphere 

and the number of target objects accepted. This results in the following error and 

constraints: 

  
i

iCRaRL  2,,     Equation 7 

iii Rax  ,22      Equation 8 

 

Figure 3 : The hyper-sphere containing the target data, with centre a and radius R. Three objects are on 
the boundary are the support vectors. One object xi is outlier and has i > 0 (Source: Tax [2]). 

In order to train this model, there is a possibility of rejecting some fraction of the positively-

labelled training objects, when volume of the hyper-sphere decreases.  Furthermore, the 

hyper-sphere model of the SVDD can be made more flexible by introducing kernel 

functions. Tax [2] considers Polynomial and a Gaussian kernel and found that the Gaussian 

kernel works better for most data sets (Figure 4). Tax uses different values for the width of 

the kernel, s. The larger the width of the kernel, the fewer support vectors are selected and 

the description becomes more spherical. In Figure 4 it can be seen that except for the 

limiting case where s becomes very large, the description is tighter than the original 

spherically shaped description or the description with the Polynomial kernels. Increasing s 

decreases the number of support vectors. Also, using the Gaussian kernel instead of the 

Polynomial kernel results in tighter descriptions, but it requires more data to support more 

flexible boundary. Their method becomes inefficient when the data set has high dimension. 

This method also doesn‟t work well when large density variation exist among the objects of 

data set, in such case it starts rejecting the low-density target points as outliers. Tax shows 

the usefulness of the approach on machine fault diagnostic data and handwritten digit data. 
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Figure 4 : Data description trained on a banana-shaped data set. The kernel is a Gaussian kernel with 
different width sizes s. Support vectors are indicated by the solid circles; the dashed line is the 

description boundary (Source: Tax [2]). 

Tax and Duin [1] suggest a sophisticated method which uses artificially generated outliers, 

uniformly distributed in the hyper-sphere, to optimize the OSVM parameters in order to 

balance between over-fitting and under-fitting. The fraction of the accepted outliers by the 

classifier is an estimate of the volume of the feature space covered by the classifier. To 

compute the error without the use of outlier examples, they uniformly generate artificial 

outliers in and around the target class. If a hyper-cube is used then in high dimensional 

feature space it becomes infeasible.  In that case, the outlier objects generated from a hyper-

cube will have very low probability to be accepted by the classifier. The volume in which 

the artificial outliers are generated has to fit as tight as possible around the target class. To 

make this procedure applicable in high dimensional feature spaces, they propose to generate 

outliers uniformly in a hyper-sphere. This is done by transforming objects generated from a 

Gaussian distribution. Their experiments suggest that the procedure to artificially generate 

outliers in a hyper-sphere is feasible for up to 30 dimensions.  

Schölkopf et al. [30,31] present an alternative approach to the above-mentioned work of 

Tax and Duin on OCC, using a separating hyper-plane. In their method they construct a 

hyper-plane instead of a hyper-sphere around the data, such that this hyper-plane is 

maximally distant from the origin and can separate the regions that contain no data. They 

propose to use a binary function that returns +1 in „small‟ region containing the data and -1 

elsewhere. For a hyper-plane w which separates the data ix  from the origin with maximal 

margin , the following holds  

iiiixw  ,0,.      Equation 9 
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And the function to evaluate a new test object z becomes 

     zwIwzf .,,     Equation 10 

Schölkopf et al. [31] then minimizes the structural error of the hyper-plane measured by w   

and some errors, encoded by the slack variable i  are allowed. To separate the dataset from 

the origin, a quadratic program needs to be solved. This results in the following 

minimization problem 




  
i

iN
w  1

2

1
min

2

    Equation 11 

with the constraints given by equation iiiixw  ,0,.  . 

A variable ν is introduced that takes values between 0 and 1 that controls the effect of 

outliers i.e. the hardness or softness of the boundary around the data. This variable ν can be 

compared with the parameter C presented in the Tax‟s SVDD. Schölkopf et al. [31] suggest 

the use of different kernels, corresponding to a variety of non-linear estimators. In practical 

implementations, this method and the SVDD method of Tax [2] operate comparably and 

both perform best when the Gaussian kernel is used. As mentioned by Campbell and 

Bennett [32], the origin plays a crucial role in this method, which is a drawback since the 

origin effectively acts as a prior for where the class abnormal instances are assumed to lie 

(termed as the problem of origin). The method has been tested on both synthetic and real-

world data. Schölkopf et al. [31] present the efficacy of their method on the US Postal 

Services dataset of handwritten digits. The database contains 9298 digit images of size 

16×16=256; the last 2007 constitute the test set. They trained the algorithm using a Gaussian 

kernel of width s=0.25, on the test set and used it to identify outliers. In their experiments, 

they augmented the input patterns with ten extra dimensions corresponding to the class 

labels of the digits, to help to identify mislabelled data as outliers. Their experiments show 

that the algorithm indeed extracts patterns which are very hard to assign to their respective 

classes and a number of outliers were in fact identified.  

Manevitz and Yousef [33] investigate the usage of one-class SVM for information retrieval. 

Their paper proposes a different version of the one-class SVM as proposed by Schölkopf et 

al. [21], which is based on identifying outlier data as representative of the second class. The 

idea of this methodology is to work first in the feature space, and assume that not only the 

origin is member of the outlier class, but also all the data points close enough to the origin 
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are considered as noise or outliers (see Figure 5). Geometrically speaking, the vectors lying 

on standard sub-spaces of small dimension i.e. axes, faces, etc., are to be treated as outliers. 

Hence, if a vector has few non-zero entries, then this indicates that the pattern shares very 

few items with the chosen feature subset of the database. Therefore, this item will not serve 

as a representative of the class and will be treated as an outlier. Outliers can be identified by 

counting features with non-zero values and if they are less than a predefined threshold. The 

threshold can either be set globally or determined individually for different categories. 

Linear, sigmoid, polynomial and radial basis kernels were used in this work. They evaluate 

their results on the Reuters Data set [34] using the 10 most frequent categories.  Their 

results were generally somewhat worse than the OSVM algorithm presented by Schölkopf et 

al. [21]. However they observe when the number of categories was increased, their version 

of SVM obtains better results. 

 

Figure 5 : Outlier SVM Classifier. The origin and small subspaces are the original members of the 
second class. The diagram is conceptual only (Source: Manevitz and Yousef [33]). 

Li et al. [35] present an improved version of the OCC presented by Schölkopf et al. [21] for 

detecting anomaly in an intrusion detection system, with higher accuracy than other 

standard machine learning algorithms. Zhao et al. [36] used this method for customer churn 

prediction for the wireless industry data. They investigate the performance of different 

kernel functions for this version of one-class SVM, and show that the Gaussian kernel 

function can detect more churners than the Polynomial and Linear kernel.  
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An extension to the work of Tax and Duin [19,20] and Schölkopf [30] is proposed by 

Campbell and Bennett [32]. They present a kernel OCC algorithm that uses linear 

programming techniques instead of quadratic programming. They construct a surface in the 

input space that envelopes the data, such that the data points within this surface are 

considered targets and outside it are regarded as outlier. In the feature space, this problem 

condenses to finding a hyper-plane which is pulled onto the data points and the margin 

remains either positive or zero. To fit the hyper-plane as tight as possible, the mean value of 

the output of the function is minimized. To accommodate outliers, a soft margin can be 

introduced around the hyper-plane. Their algorithm avoids the problem of origin (as is 

apparent in the OCC algorithm presented by Schölkopf et al.[31])  by attracting hyper-plane 

towards the centre of data distribution rather than by repelling it away from a point outside 

the data distribution. Different kernels can be used to create hyper-planes; however they 

showed that RBF kernel can produce closed boundaries in input space while other kernels 

may not. A drawback of their method is that it is highly dependent on the choice of kernel 

width parameter,  However, if the data size is large and contains some outliers then can 

be estimated. They showed their results on artificial data set, Biomed Data [37] and 

Condition Monitoring data for machine fault diagnosis. 

Yu [38] proposes a one-class classification algorithm with SVMs using positive and 

unlabeled data and without labelled negative data and discuss some of the limitations of 

other OCC algorithms [1][[33]. On the performance of OSVMs under such scenario of 

learning with unlabeled data with no negative examples, Yu comments that to induce 

accurate class boundary around the positive data set, OSVM requires larger number of 

training data. The support vectors in such a case come only from positive examples and 

cannot create proper class boundary, which also leads to overfitting and underfitting of the 

data. Figure 6 (a) and (b) show the boundaries of SVM trained from positives and negatives 

and OSVM trained from only positives on a synthetic data set in a two-dimensional space. 

In this low-dimensional space, the ostensibly “smooth” boundary of OSVM is the result of 

incomplete SVs due to not using the negative SVs, and not as a result of the good 

generalization. This becomes much worse in high-dimensional spaces where more SVs 

around the boundary are needed to cover major directions. When the numbers of SVs in 

OSVM were increased, it overfits the data rather than being more accurate as shown in 

Figure 6 (c) and (d). However, such OSVM boundary might be the best achievable one 

when only positive data are available. Yu [39] presents an OCC algorithm called Mapping 
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Convergence (MC) to induce accurate class boundary around the positive data set in the 

presence of unlabeled data and without negative examples. The algorithm has two phases: 

mapping and convergence. In the first phase, a weak classifier (e.g. Rocchio [40][41]) is 

used to extract strong negatives from the unlabeled data. The strong negatives are those 

examples that are far from the class boundary of the positive data. In the second phase, a 

base classifier (e.g. SVM) is used iteratively to maximize the margin between positive and 

strong negatives for better approximation of the class boundary. Yu [39] also presents 

another algorithm called Support Vector Mapping Convergence (SVMC) that works faster 

than the MC algorithm. At every iteration, SVMC only uses minimal data such that the 

accuracy of class boundary is not degraded and the training time of SVM is also saved. 

However, the final class boundary is slightly less accurate than the one obtained by 

employing MC. They show that MC and SVMC perform better than other OCC algorithms 

and can generate accurate boundaries comparable to standard SVM with fully labelled data. 

 

Figure 6 : Boundaries of SVM and OSVM on a synthetic data set: big dots: positive data, small dots: 
negative data (Source Yu, H. [38]) 

 



20 

 

2.4.3. One-Class Classifiers other than OSVMs 

2.4.3.1. One-Class Classifier Ensembles 

As in the normal classification problems, one classifier hardly ever captures all 

characteristics of the data. However, using just the best classifier and discarding the 

classifiers with poorer performance might waste valuable information [42]. To improve the 

performance of different classifiers which may differ in complexity or training algorithm, an 

ensemble of classifiers is a viable solution. This may not only increase the performance, but 

can also increase the robustness of the classification [43]. Classifiers are commonly 

ensembled to provide a combined decision by averaging the estimated posterior 

probabilities. This simple algorithm already gives very good results for multi-class problems 

[44]. When Bayes‟ theorem is used for the combination of different classifiers, under the 

assumption of independence, a product combination rule can be used to create a classifier 

ensemble. The outputs of the individual classifiers are multiplied and then normalized (this 

is also called the logarithmic opinion pool [45]). In the combination of one-class classifiers, 

the situation is different. One-class classifiers cannot directly provide posterior probabilities 

for target (positive class) objects, because accurate information on the distribution of the 

outlier data is not available. In most cases, however, assuming that the outliers are 

uniformly distributed, the posterior probability can be estimated. Tax [2] mentions that in 

some OCC methods distance is estimated instead of probability. If there exists a 

combination of distance and probability outputs, the outputs should be standardized before 

they can be combined. To use the same type of combining rules as in conventional 

classification ensembles, the distance measures must be transformed into a probability 

measure. As a result, combining in OCC improves performance, especially when the 

product rule is used to combine the probability estimates. Classifiers can be combined in 

many ways. One of the ways is to use different feature sets and to combine classifiers 

trained on each of them. Another way is to train several classifiers on one feature set. Since 

the different feature sets contain much independent information, combining classifiers 

trained in different feature spaces provide better accuracy.  

Tax and Duin [46] investigate the influence of the feature sets, their inter-dependence and 

the type of one-class classifiers for the best choice of the combination rule. They use a 

normal density and a mixture of Gaussian and the Parzen density estimation [9] as two types 

of one-class classifiers. They use four models, the SVDD [20], K-means clustering [9], K-
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center method [47] and an auto-encoder neural network [10]. The Parzen density estimator 

emerged as the best individual one-class classifier on the handwritten digit pixel dataset 

[48]. They showed that combining classifiers trained in different feature spaces is useful. In 

their experiments, the product combination rule gave the best results. The mean combination 

rule suffers from the fact that the area covered by the target set tends to be overestimated. 

As a result of that more outlier objects may be accepted than it is necessary.  

Juszczak and Duin [49] extend combining one-class classifier for classifying missing data. 

Their idea is to form an ensemble of one-class classifiers trained on each feature, pre-

selected group of features or to compute a dissimilarity representation from features. The 

ensemble should be able to predict missing feature values based on the remaining classifiers. 

As compared to standard methods, their method is more flexible, since it requires much 

fewer classifiers and do not require re-training of the system whenever missing feature 

values occur. They also show that their method is robust to small sample size problems due 

to splitting the classification problem to several smaller ones. They compare the 

performance of their proposed ensemble method with standard methods used with missing 

features values problem on several UCI datasets [50]. Lai et al. [51] study combining one-

class classifier for image database retrieval and showed that combining SVDD-based 

classifiers improves the retrieval precision. Ban and Abe [52] address the problem of 

building multi class classifier based on one-class classifiers ensemble. They studied two 

kinds of once class classifiers, namely, SVDD [20] and Kernel Principal Component 

Analysis [53]. They constructed a minimum distance based classifiers from an ensemble of 

one-class classifiers that is trained from each class and assigns a test sample to a given class 

based on its prototype distance. Their method gave comparable performance as SVMs on 

some benchmark data sets; however it is heavily dependent on the algorithm parameters. 

They also commented that their process could lead to faster training and better 

generalization performance provided appropriate parameters are chosen.  

Boosting methods have been successfully applied to classification problems [54]. Their high 

accuracy, ease of implementation and wide applicability make them as a suitable choice 

among machine learning practitioners. Rätsch et al. [55] propose a boosting-like one-class 

classification algorithm based on a technique called barrier optimization [56].  They also 

show an equivalence of mathematical programs that a support vector algorithm can be 

translated into an equivalent boosting-like algorithm and vice versa. It has been pointed out 

by Schapire et al. [57] that boosting and SVMs are „essentially the same‟ except for the way 
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they measure the margin or the way they optimize their weight vector: SVMs use the l2-

norm and boosting employs the l1-norm. SVMs use the l2-norm to implicitly compute scalar 

products in feature space with the help of kernel trick, where as boosting perform 

computation explicitly in feature space. They comment that SVMs can be thought of as a 

„boosting‟ approach in high dimensional feature space spanned by the base hypotheses. 

Rätsch et al. [55] exemplify this translation procedure for a new algorithm called the one-

class leveraging. Building on barrier methods, a function is returned which is a convex 

combination of the base hypotheses that leads to the detection of outliers. They commented 

that that the prior knowledge that is used by boosting algorithms for the choice of weak 

learners can be used in one-class classification. They show the usefulness of their results on 

artificially generated toy data and the US Postal Service database of handwritten characters.  

2.4.3.2. Neural Networks 

Ridder et al. [58] conduct an experimental comparison of various OCC algorithms. They 

compare a number of unsupervised methods from classical pattern recognition to several 

variations on a standard shared weight supervised neural network [59] proposed by Viennet 

[60]. The following unsupervised methods were included in their study:  

a) Global Gaussian approximation  

b) Parzen density estimation  

c) 1-Nearest Neighbour method  

d) Local Gaussian approximation (combines aspects of a) and c)). 

They use samples from scanned newspaper images (at 600 dpi) as experimental datasets. 

The binary images were then reduced six-fold to approximately 1000×750 pixel grey value 

images. They show that Gaussian methods give the worst results, while the Parzen method 

suffers less from the problems of the Gaussian method. The 1- Nearest Neighbor method 

very clearly distinguishes the images from text better than any other method. The Local 

Gaussian performs much worse than the Parzen and the 1-nearest neighbor method, but it 

outperforms the simple Gaussian method. It is also the only method which does not suffer 

from the fact that background is classified as text. They also show that adding a layer with 

radial basis function improves performance. 

Manevitz and Yousef [61] show how a simple neural network can be trained to filter 

documents when only positive information is available. In their design of the filter, they 

used a basic feed-forward neural network. To incorporate the restriction of availability of 
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only positive examples, they used the design of a feed forward network with a “bottleneck”. 

They chose three level network with m input neurons, m output neurons and k hidden 

neurons, where k < m. The network is trained using standard back-propagation algorithm 

[62] to learn the identity function on the positive examples. The idea is that while the 

bottleneck prevents learning the full identity function on m-space; the identity on the small 

set of examples is in fact learnable. The set of vectors for which the network acts as the 

identity function is a sort of sub-space which is similar to the trained set. For testing a given 

vector, it is shown to the network, if the result is the identity; the vector is deemed 

interesting i.e. positive or else an outlier. Manevitz and Yousef [63] apply the auto-

associator neural network to document classification problem. To determine acceptance 

threshold, they used a method based on a combination of variance and calculating the 

optimal performance. During training, they check the performance values of the test set at 

different levels of error. The training process is stopped at the point where the performance 

starts a steep decline. Then they perform a secondary analysis to determine an optimal real 

multiple of the standard deviation of the average error that serves as a threshold. The 

method was tested and compared with a number of competing approaches, i.e. Neural 

Network, Naïve Bayes, Nearest Neighbour, Prototype algorithm, and shown to outperform 

them.   

Skabar [64] describes to learn a classifier based on feed-forward neural network using 

positive examples and corpus of unlabeled data containing both positive and negative 

examples. In conventional feed forward binary neural network classifier, positive examples 

are labelled as 1 and negative examples as 0. The output of the network represents the 

probability that an unknown example belongs to the target class, with threshold of 0.5 is set 

to decide whether an unknown sample belongs to either of the case. However, in this case, 

since unlabeled data contain some unlabeled positive examples, the output of the trained 

neural network may be less than or equal to the actual probability that an example belongs 

to the positive class. If it is assumed that the labelled positive examples adequately represent 

the positive concept, it can be hypothesized that the neural network will be able to draw a 

class boundary between negative and positive examples. Skabar shows [64] the application 

of the technique to the prediction of mineral deposit location.  
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2.4.3.3. Decision Trees 

Various researchers have used decision tress to classify positive samples from a corpus of 

unlabeled examples. Decomite et al. [25] present experimental results showing that positive 

examples and unlabeled data can efficiently boost accuracy of the statistical query learning 

algorithms for monotone conjunctions in the presence of classification noise and 

experimental results for decision tree induction. They modify standard C4.5 [65] to get an 

algorithm that uses unlabeled and positive data and show the relevance of their method on 

UCI data sets [[50]]. Letouzey et al. [66] design an algorithm which is based on positive 

statistical queries (estimates for probabilities over the set of positive instances) and instance 

statistical queries (estimates for probabilities over the instance space). The algorithm 

guesses the weight of the target concept (the ratio of positive instances in the instance space) 

and then uses a hypothesis testing algorithm. They show that their algorithm can be 

estimated in polynomial time and is learnable from positive statistical queries and instance 

statistical queries only. Then, they design a decision tree induction algorithm, called 

POSC4.5, using only positive and unlabeled data. They present experimental results on UCI 

data sets [50] that are comparable to C4.5 algorithm [65]. Yu [38] comments that such rule 

learning methods are simple and efficient for learning nominal features but are tricky to use 

for problems of continuous features, high dimensions, or sparse instance spaces. 

2.4.3.4. Other Methods 

Wang et al. [67] investigate several one-class classification methods in the context of 

Human-Robot interaction for face and non-face classification. Some of the important 

methods used in their study are:  

 Support Vector Data Description (SVDD) [2] 

 Gaussian data description (GAUSS-DD) - that models the target class as a simple 

Gaussian distribution. Mahalanobis distance is used to avoid the density estimate that 

leads to numerical instabilities, which is defined as: 

       1  xxxf T

    Equation 12 

 KMEANS-DD - where a class is described by k clusters, placed such that the average 

distance to a cluster centre is minimized. The cluster centres ci are placed using the 

standard K-means clustering procedure. The target class is then characterized by  
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   2min i
i

cxxf       Equation 13 

The above two classifiers are defined as: 
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 The PCA-DD method, based on Principal Component Analysis, describes the target data 

by a linear subspace defined by the eigenvectors of the data covariance matrix Σ. Only k 

eigenvectors are used, which are stored in a d×k matrix W (where d is the dimensionality 

of the original feature space). To check if a test object is outlier, the reconstruction error 

is computed, which is the difference between the original object and its projection onto 

the subspace. This projection is computed by:  

  X
T

proj WWWW
1

     Equation 14 

The reconstruction error is then given by   2

projxxf   

 LP-DD is a linear programming method [68]. This data descriptor is constructed to 

describe target classes that can be represented in terms of distances to a set of support 

objects. This classifier uses the Euclidean distance by default. This classifier has the 

following form     ii xxdwxf , . The weights wi are optimized such that just a few 

weights stay non-zero, and the boundary is as tight as possible around the data, 

Wang et al. [67] study the performance of these one-class classification methods on the 

object recognition dataset described in Wang and Lopes [69]. This dataset contains two 

parts. There are 400 pictures from AT&T/ORL face database [70] and 402 non-face pictures 

from their previous work [71]. They resize all patterns to 32×32 and all the experiments 

were carried out based on the PRTOOLS [72] and DDTOOLS [2]. For their analysis, they 

set face as the target class. In their experimentation they observe that SVDD attains better 

performance in comparison to other studied OCC methods. They comment that the good 

performance of SVDD in comparison to other methods can be attributed to its flexibility. 

The other methods use very strict models, such as planar shapes. They also investigate the 

effect of varying the number of features. They remark that more features do not always 

guarantee better results, because with an increase in the number of features, more training 

data are needed to reliably estimate the class models.  

Ercil and Buke [73] report a different technique to tackle the OCC problem, based on fitting 

an implicit polynomial surface to the point cloud of features, to model the target class to 
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separate it from the outliers. They show the utility of their method for the problem of defect 

classification, where there are often lot of samples for the non-defective class but only a few 

samples for various defective classes. They use an implicit polynomial fitting technique and 

show a considerable improvement in the classification rate, in addition to having the 

advantage of requiring data only from non-defective motors in the learning stage. 

Tax [2] presents a one-class nearest neighbour method, called nearest neighbour description 

(NN-d). In NN-d, a test object z is accepted when its local density is larger or equal to the 

local density of its nearest neighbour in the training set    zNNzNN trtr
1 . The first nearest 

neighbour is used for the local density estimation. The following acceptance function is 

used: 
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NNtr   Equation 15 

This means that the distance from object z to its nearest neighbour in the training set NNtr(z)  

is compared to the distance from this nearest neighbour NNtr(z) to its nearest neighbour (see 

Figure 7). 

 

Figure 7 : The Nearest Neighbour Data Description (Source: Tax [2]). 

This NN-d has several predefined choices to tune various parameters. First of all, different 

numbers of neighbours can be considered. One can use the distance to the kth nearest 

neighbour, or the average of the k distances to the first k neighbours. Then this model can be 

termed as KNN-d. The value of threshold (default 1.0) can be changed to either higher or 

lower values. Increasing the number of neighbours will decrease the local sensitivity of the 

method, but it will make the method less noise sensitive. The other variations of one-class 

nearest neighbours are described in Section 4.3. 
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Tax and Duin [74] proposes a nearest neighbour method capable of finding data boundaries 

when the sample size is very low. The boundary thus constructed can be used to detect the 

targets and outliers. The method compares the distance from a test object to the training set 

to the nearest neighbour distance within the training set. This method has the disadvantage 

that it relies on the individual positions of the objects in the target set. Their method seems 

to be useful in situations where the data is distributed in subspaces. They tested the 

technique on both real and artificial data and found to be very useful when very little 

amount of training data exist (less than 5samples per feature). 

Datta [75] modify the standard nearest neighbour algorithm [76] appropriate to learn a 

single class, called the positive class. The modified algorithm, NN-PC (nearest neighbour 

positive class), takes examples from only one-class as input. NN-PC learns a constant  

which is the maximum distance a test example can be from any learned example and still be 

considered a member of the positive class. Any test example that has a distance greater than 

 from any training example will not be considered a member of the positive class.  is 

calculated by  

   yxdistxyMinxMax ,    Equation 16 

where x and y are two examples of the positive class, and Euclidean distance (dist(…)) is 

used as the distance function.  

While classifying test examples, if it varies too much from the positive examples, then it is 

classified as an outlier. Mathematically, if    testxdistx ,: then the test example is 

classified as member of the positive class, otherwise it is not. Datta also experimented with 

another similar modification called NN-PCN, that involves learning a vector  n ,1

,where i  is the threshold for the ith example. This modification records the distance to the 

closest example for each example. i  is calculated by 

  yxdistxyMin iii ,     Equation 17 

where ix  is the ith training example. To classify a test example same classification rule as 

above is used, that is, if   iii testxdistx  ,:  then the test example is classified as a 

member of the positive class. 

Datta [75] also suggests a method to learn a Naive Bayes classifier from samples of positive 

class data only. Traditional Naive Bayes [76] attempts to find nni vAvACp  &&| 11  , 
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that is, the probability of a class given an unlabeled example. By assuming that the attributes 

are independent and applying Bayes' theorem the previous calculation is proportional to: 

   ia ttr ibutes

j
ij CpCvAp 


  |     Equation 18 

where Aj is an attribute, v is a value of the attribute, Ci is a class, and the probabilities are 

estimated using the training examples. 

When only the positive class is available, the calculation of  iCp  (from Equation 18) 

cannot be done correctly. Datta [75] modify Naive Bayes to learn in a single class situation 

and call their modification as NB-PC (Naive Bayes Positive Class) that uses the 

probabilities of the attribute-values. NB-PC computes a threshold t as  

 
  attr ibutes

j
ij vApxMint     Equation 19 

where ij vA  is the attribute value for the example x and  ij vAp  is the probability of the 

attribute's ith value. The probabilities for the different values of attribute Aj is normalized by 

the probability of the most frequently occurring v. During classification, if for the test 

example   tvA
attributes

j
ij   , then the test example is predicted as a member of the positive 

class. Datta tested the above positive class algorithms on various data sets taken from UCI 

repository [50] and conclude that NN-PCN seems to perform the worst, since it typically has 

precision and recall values lower than other discussed algorithms. Learning a different  for 

each example does not intuitively seem like a reliable or stable way of predicting class 

membership, since s can easily change depending on the training examples. They also 

observed that NN-PC and NB-PC have classification accuracy (both precision and recall 

values) close to C4.5‟s [65] value, although C4.5 was learning from all classes and they 

were learned using only one-class. 

2.5.  Category 3: Application Domain Applied 

2.5.1. Text / Document Classification  

Traditional text classification techniques require an appropriate distribution of positive and 

negative examples to build a classifier; thus they are not suitable for this problem of OCC. It 

is of course possible to manually label some negative examples, though depending on the 
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application domain, this may be a labour-intensive and a time consuming task. However, the 

core problem remains, that it is difficult or impossible to compile a set of negative samples 

that provides a comprehensive characterization of everything that is `not' the target concept, 

as is assumed by a conventional binary classifier. It is a common practice to build text 

classifiers using positive and unlabeled examples3  as collecting unlabeled samples is 

relatively easy and fast in many text or Web page domains [27], [78]. In this subsection, we 

will discuss some of the algorithms that exploit this methodology with application to text 

classification. 

The ability to build classifiers without negative training data is useful in a scenario if one 

needs to extract positive documents from many text collections or sources. Liu et al. [27] 

propose a method (called Spy EM) to solve this problem in the text domain. It is based on 

Naïve Bayesian classification (NB) and the Expectation Maximization (EM) algorithm [79]. 

The main idea of the method is to first use a technique to identify some reliable / strong 

negative documents from the unlabeled set. It then runs EM to build the final classifier. Yu 

et al. [3,80] propose a SVM based technique called PEBL (Positive Example Based 

Learning) to classify Web pages with positive and unlabeled pages. Once a set of strong 

negative documents is identified, SVM is applied iteratively to build a classifier. PEBL is 

sensitive to the number of positive examples. When the positive data is small, the results are 

often very poor. Li and Liu [17] propose an alternative method to learn to classify texts 

using positive and unlabeled data. Their method differs from PEBL in that they perform 

negative data extraction from the unlabeled set using the Rocchio method [40]4. Although 

the second step also runs SVM iteratively to build a classifier, there is a key difference in 

selection of final classifier. Their technique selects a „good‟ classifier from a set of 

classifiers built by SVM, while PEBL does not. Liu et al. [16] study the same problem and 

suggest that many algorithms that build text classifier with positive and unlabeled data are 

based on two strategies:  

                                                 
3 For further reading on this topic , readers are advised to refer to survey paper by Zhang and Zuo [77] 
4 The basic idea of the algorithm is to represent each document, e, as a vector in a vector space so that 

documents with similar content have similar vectors. The value ei of the ith key-word is represented as the tf-idf 

weight [81] 
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 Identifying a set of reliable / strong negative documents from the unlabeled set. In this 

step, Spy-EM [27] uses a Spy technique, PEBL uses a technique called 1-DNF [3], and 

Roc-SVM [16] uses the Rocchio algorithm [40]. 

 Building a set of classifiers by iteratively applying a classification algorithm and then 

selecting a good classifier from the set. In this step, Spy-EM uses the Expectation 

Maximization (EM) algorithm with a NB classifier, while PEBL and Roc-SVM use 

SVM. Both Spy-EM and Roc-SVM have some methods for selecting the final classifier. 

PEBL simply uses the last classifier at convergence, which can be a poor choice. 

These two steps together work in an iterative manner to increase the number of unlabeled 

examples that are classified as negative, while at the same time maintain the correct 

classification positive examples. It was shown theoretically by Liu et al. [27] that if the 

sample size is large enough, maximizing the number of unlabeled examples classified as 

negative while constraining the positive examples to be correctly classified will give a good 

classifier. Liu et al. [16] introduce two new methods, one for Step 1 (i.e. the Naïve Bayes 

method) and Step 2 (i.e. SVM alone) and perform an evaluation of all 16 possible 

combinations of methods for Step 1 and Step 2 (discussed above). They develop a 

benchmarking system called LPU (Learning from Positive and Unlabeled data) [82]. They 

also propose an approach based on a biased formulation of SVM that allows noise (or error) 

in positive examples. This soft margin version of biased-SVM uses two parameters, C  and 

C  respectively, to weight both positive and negative errors differently. It can be expressed 

mathematically as: 
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They experiment on two data sets, namely Reuters [34] and Usenet articles as compiled by 

Lang [83], and conclude that the biased-SVM approach outperforms all existing two-step 

techniques.  

Yu et al. [84] explore SVMC [38,39] (for detail on this technique refers to Section 2.4.2) for 

performing text classification without labelled negative data. They use two commonly used 

corpora for text classification – Reuters [34] and WebKb [85] and compare their method 
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against six other methods: (1) Simple Mapping Convergence (MC); (2) OSVM; (3) 

Standard SVM trained with positive examples and unlabeled documents substituted for 

negative documents; (4) Spy-EM; (5) Naïve Bayes with Negative noise; (6) Ideal SVM 

trained from completely labelled documents. In their results they show that with a 

reasonable amount of positive documents, the MC algorithm gives the best results among all 

the methods considered. Their analysis shows that when the positive training data is not 

under-sampled, SVMC significantly outperforms other methods because SVMC tries to 

exploit the natural gap between positive and negative documents in the feature space, which 

eventually helps to improve the generalization performance.  

Peng et al. [86] present a text classifier from positive and unlabeled documents based on 

Genetic Algorithms (GA) by adopting a two stage strategy (as discussed above). Firstly, 

reliable negative documents were identified by improved 1-DNF algorithm. Secondly, a set 

of classifiers were built by iteratively applying SVM algorithm on training example sets. 

Thirdly, they discuss an approach to evaluate the weighted vote of all classifiers generated 

in the iteration steps to construct the final classifier based on a GA. They comment that the 

GA evolving process can discover the best combination of the weights. Their problem 

statement is shown in Figure 8. They perform experiments on the Reuter data set [34] and 

compare their results against PEBL [80] and OSVM and showed that their GA based 

classification performs better. 
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Figure 8 :  Illustration of the procedure to build text classifiers from labeled and unlabeled examples 
based on GA. Ci represents the individual classifier produced by the ith iteration of the SVM algorithm. 

(Source: Peng et al. [86]). 

Pan et al. [87] extend the concept of classifying positive examples with unlabeled samples 

in the Collaborative Filtering (CF) application. In CF, the positive data is gathered based on 

user interaction with the web like news items recommendation or bookmarking pages etc. 

However, due to ambiguous interpretations, limited knowledge or lack of interest of users, 

the collection of valid negative data gets hampered. Sometime negative and unlabeled 

positive data are severely mixed up and difficult to discern.  Manually labelling negative 

data is not only intractable considering the size of the web but also will be poorly sampled. 

Traditional CF algorithms either label negatives data, or assume missing data as negative. 

Both of these approaches have their inherent problem of being expensive and biasing the 

recommendation results. Pan et al. [87] propose two approaches to one-class CF to handle 

the negative sparse data to balance the extent to which to treat missing values as negative 

examples. The first approach is based on weighted low rank approximation [88] that works 

on the idea of providing different weights to error terms of both positive and negative 

examples in the objective function. The second is based on sampling some missing values as 

negative examples based on some sampling strategies. They perform their experimentation 
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on real life data from social bookmarking site del.icio.us and Yahoo News data set and show 

that their method outperforms other state of the art CF algorithms. 

Onoda et al. [89] report a document retrieval method using non-relevant documents. Users 

rarely provide a precise query vector to retrieve desired documents in the first iteration. In 

subsequent iterations, the user evaluates whether the retrieved documents are relevant or 

not, and correspondingly the query vector is modified in order to reduce the difference 

between the query vector and documents evaluated as relevant by the user. This method is 

called relevance feedback. The relevance feedback needs a set of relevant and non-relevant 

documents to work usefully. However, sometimes the initial retrieved documents that are 

presented to a user do not include relevant documents. In such a scenario, traditional 

approaches for relevance feedback document retrieval systems do not work well, because 

the systems need relevant and non relevant documents to construct a binary classification 

problem. To solve this problem, Onoda et al. propose a feedback method using information 

of non-relevant documents only, called non-relevance feedback document retrieval. A 

diagrammatic representation of the problem of non relevance feedback is shown in Figure 9. 

Their design of non-relevance feedback document retrieval is based on OSVM [21]. Their 

proposed method selects documents which are discriminated as not non-relevant and near 

the discriminant hyper-plane between non-relevant document and not non-relevant 

documents. In their experiments they compare their approach with conventional relevance 

feedback methods and vector space model without feedback. Their method gives 

consistently better performance than other compared methods. They comment that this 

method is very useful to retrieve relevant documents using information of non-relevant 

documents only.  
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Figure 9 : Outline of a problem in the relevance feedback documents retrieval (Source: Onoda et al. 
[89]). 

Koppel et al. [90] study the „Authorship Verification‟ problem where only examples of 

writings of a single author is given and the task is to determine if given piece of text is or is 

not written by this author. They begin their study by choosing a feature set that might be 

used consistently by a single author over a variety of writings. These features could be 

frequency of words, syntactic structures, parts of speech n-grams [91], complexity and 

richness measures [92] or syntactic and orthographic idiosyncrasies [93]. The traditional 

approaches of text classification doesn‟t work in this kind of classification problem, hence 

they presented a new technique called „unmasking‟. The basic idea of unmasking is to 

iteratively remove those features that are most useful for distinguishing between books A 

and B and to gauge the speed with which cross-validation accuracy degrades as more 

features are removed. Their main hypothesis is that if books A and B are written by the same 

author, then whatever differences be there between them (of genres, themes etc), the overall 

essence or regularity in writing style can be captured by only a relatively small number of 

features. For testing their algorithm, they consider a collection of twenty-one 19th century 

English books written by 10 different authors and spanning a variety of genres. They obtain 

overall accuracy of 95.7% with errors almost equally distributed between false positives and 

false negatives. 

Denis et al. [94] introduce a Naïve Bayes algorithm and shows its feasibility for learning 

from positive and unlabeled documents. The key step in their method is in estimating word 
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probabilities for the negative class because negative examples were not available. This 

limitation can be overcome by assuming an estimate of the positive class probability (the 

ratio of positive documents in the set of all documents). In practical situations, the positive 

class probability can be empirically estimated or provided by domain knowledge. Their 

results on WebKB data set [85] show that error rates of Naïve Bayes classifiers obtained 

from p positive examples, PNB (Positive Naïve Bayes), trained with enough unlabeled 

examples are lower than error rates of Naïve Bayes classifiers obtained from p labeled 

documents. Denis et al. [95] consider situations where only a small set of positive data is 

available together with unlabeled data. Constructing an accurate classifier in these situations 

may fail because of the shortage of properly sampled data. However, learning in this 

scenario may still be possible using the co-training framework (introduced by Blum and 

Mitchell [22], and described earlier in Section 2.3), that looks for two views over the data. 

For example, in the case of retrieval of bibliographic references, the positive examples are 

stored in the user database. A first view of the bibliographic fields consists of - title, author, 

abstract, editor. A second view is the full content of the paper. Unlabeled examples are 

easily available in the bibliographic databases accessible via the World Wide Web. Co-

training algorithms incrementally build basic classifiers over each of the two feature sets. 

They define a Positive Naïve Co-Training algorithm, PNCT that takes a small pool of 

positive documents as it seed. PNCT first incrementally builds Naive Bayes classifiers from 

positive and unlabeled documents over each of the two views by using PNB. Along the co-

training steps, self-labelled positive examples and self-labelled negative examples are added 

to the training sets. They also propose a base algorithm which is a variant of PNB, able to 

use these self-labelled examples. They perform experiments on the WebKB dataset [85] and 

show that co-training algorithms lead to significant improvement of classifiers, even when 

the initial seed is only composed of positive documents. 

2.5.2. Other Application Domain 

In this subsection we will highlight some of the other applications domains where 

methodologies based on one-class classification have been utilized.  

OSVMs have been successfully applied in a wide variety of application domains such as 

Handwritten Digit Recognition [1,2,30], Information Retrieval [33], Classifying Missing 

Data [49], Image Database Retrieval [1,96-98], Face Recognition Applications [67,99,100], 

Chemometrics [101], Spectroscopy [102][103] Classification of Bio-Acoustic Time Series 
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[104], Nosocomial Infection Detection [105], Medical Analysis [106-108], Bioinformatics 

[109-113], Steganalysis [114], Spam Detection [115,116], Detecting Anomalous Windows 

Registry Access [117], Audio Surveillance [118], Ship Detection [119],  Collision Detection 

[120], Anomaly Detection [35,121-126], Yeast Regulation Prediction [127], Customer 

Churn Detection [36], Relevant Sentence Extraction [128], Machine Vibration Analysis 

[129], Machine Fault Detection [73,129-132] and Recommendation Tasks [133]. 

Compression neural networks for one-sided classification have been used in many areas, 

these include detecting Mineral Deposits [64], fMRI Analysis [134] etc. One-class Fuzzy 

ART networks have been explored by Murshed et al. [135] to classify Cancerous Cells.  

Wang and Stolfo have used one-class Naïve Bayes to detect Masquerade Detection [136] in 

a network and showed that less effort in data collection is required with comparable 

performance as that of a multi-class classifier.  Munroe and Madden [137] have presented a 

one-class k-nearest neighbour approach for vehicle recognition from images and showed 

that the results are comparable to that of standard multi-class classifiers. 

2.6. Open Research Questions in OCC 

The goal of One-Class Classification is to induce classifiers when only one class (the 

positive class) is well characterized by the training data. In this chapter, we have presented a 

survey of current state-of-the-art research work using OCC. We observe that the research 

carried out in OCC can be broadly presented by three different categories or areas of study, 

which depends upon the availability of training data, classification algorithms used and the 

application domain investigated. Under each of these categories, we further provide details 

of commonly used OCC algorithms. Although the OCC field is becoming mature, still there 

are several fundamental problems that are open for research, not only in describing and 

training classifiers, but also in scaling, controlling errors, handling outliers, using non-

representative sets of negative examples, combining classifiers and reducing dimensionality. 

Classifier ensembles have not been exploited very much for OCC problems, and techniques 

such as boosting and bagging deserve further attention. Another point to note here is that in 

OSVMs, the kernels that have been used mostly are Linear, Polynomial, Gaussian or 

Sigmoidal. We suggest it would be fruitful to investigate some more innovative forms of 

kernels, for example Genetic Kernels [138] or domain specific kernels (for spectroscopic 

data), for example, Weighted Linear Spectral Kernel [139], that have shown greater 

potential in standard SVM classification. The kernels have been used as distance metric in 
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multi-class classification problems; however, the same is not exploited for the OCC. This 

particular problem is investigated in the Chapter 4 of this thesis. In the case where abundant 

unlabeled examples and some positive examples are available, researchers have used many 

two-step algorithms (as have been discussed in Section 2.5.1). We believe that a Bayesian 

Network approach to such OCC problems would be an interesting exercise. 

This survey provides a broad insight into the study of the field of OCC. Depending upon the 

data availability, algorithm use and application, appropriate OCC techniques can be applied 

and improved upon. We hope that this survey will provide researchers with a direction to 

formulate future novel work in this field and reduce their research time and effort 

considerably. 
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Chapter 3 

Spectral Data, Similarity Metrics and 

Library Search 

This chapter presents a brief description of the Raman Spectroscopy and the spectral data 

thus obtained, followed by short review of the common spectral search and comparison 

algorithms. This chapter highlights some standard spectral search and comparison methods, 

and some recent / non-standard methods for finding similarity between spectra. A few 

similarity measures that are specific for comparing the spectra are also introduced in this 

chapter. The spectrum-specific comparison methods will be used to develop kernels to be 

used in Chapter 4. 

In our present research work we are interested in vibrational spectroscopy and related 

techniques; therefore we have restricted our review, study and analysis of similarity and 

search methods that have been applied in those fields, especially the sub-field of Raman 

Spectroscopy.  

3.1. Raman Spectroscopy 

Raman Spectroscopy is a spectroscopy technique which is based on scattering of 

monochromatic light in the visible, near infrared, or near ultraviolet range [12].  When a 

chemical substance is illuminated by a laser, most of the light is elastically scattered due 

Rayleigh scattering. A small portion of the light (1 in 106), however, is inelastically scattered 

at a different wavelength to the incident light. This inelastic scattering of incident light is 

known as Raman scattering. This scattering is due to the interaction of light with the 

vibrational and rotational motions of molecules and other low-frequency modes within the 

material. A Raman spectrum is thus obtained which shows the change in frequency of the 

scattering light as well as its intensity. This Raman scattering can be treated as a „molecular 

fingerprint‟ of a given chemical substance providing information on the vibrational and 

rotational motions of the chemical bonds between the molecules (see Figure 10). Every 
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substance has a unique Raman spectrum and for machine learning tasks, this „molecular 

fingerprint‟ can be exploited for unambiguous identification of substances. 

 

Figure 10: Raman Spectrum of Azobenzene polymer (Source Horiba Scientific [140] 

Each point in a Raman spectrum (see Figure 10) represents the value of intensity 

corresponding to particular frequency. The Raman shift is either represented as wavelengths 

or wavenumbers. The wavenumber is defined as number of waves per unit length [141], 

which is directly proportional to the frequency of the scattered light (wavelength is inversely 

proportional to the frequency). The wavenumber unit, cm-1, is commonly used.  

Raman Spectroscopy has been used in wide variety of applications, such as gemstone 

identification [142], identification and quantification of narcotics [143] and illicit substances 

[144], chemical identification [145], and explosive detection [146].  

Raman spectra can also be used to determine the quantity of a particular chemical substance 

or estimate its presence within a mixture of various substances [139]. Figure 11 shows 

Raman spectra of three different compounds, namely, Caffeine, Glucose and Cocaine. It can 

be seen that all the three pure compounds have distinctive Raman spectra.  
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3.2. Some Definitions 

In this section, we provide some basic definitions of the terms and concepts we will be using 

in this and subsequent chapters. 

 

Figure 11: Raman Spectra of three different compounds (Source: [139]) 

3.2.1. Similarity 

Similarity can be defined as a degree of symmetry (quantitative or qualitative) between two 

or more objects. In text recognition, it can be defined as number of matching characters 

between two text strings. In Bioinformatics, it can be defined as the number of matching 

DNA sequences. In geometrical application, it can be expressed as a score that represents 

some kind of resemblance between two vectors. For spectroscopic data, similarity means 

matching of peaks and overall shape of the spectrum. Common similarity measures are 

Cosine and Correlation Coefficient.  Each of these measures computes similarity between 

spectra in its own way (for details refer to Section 3.4).  
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3.2.2. Dissimilarity 

Dissimilarity can be defined as a degree of being distinct or unlike. In geometry, it can be 

represented as a distance score (Manhattan, Euclidean, Mahalanobis, Chebychev etc) 

between two or more vectors. The more dissimilar two vectors are the higher the value of 

score. If two vectors are less dissimilar or bear more resemblance to each other than the 

dissimilarity score will be low or close to zero.  

Note: Similarity and Dissimilarity can be treated as reciprocal concepts in terms of 

interpreting the value of score. 

3.2.3. Comparison 

Comparison means comparing two spectra based on some similarity or dissimilarity measure 

and computes a score. This score can be used to access the degree of resemblance between 

two spectra and can be employed in a library search (defined below). 

3.2.4. Search 

In spectroscopy, usually an unknown spectrum is searched against a known library of pure 

substance to find a match (or nearest matches), called hits, for further analysis [147]. The 

unknown spectrum is searched for using a search algorithm (see Section 3.4 to 3.6) which 

computes a score based on similarity or dissimilarity measure it employs and provides a score 

and a list of nearest matches.  

3.2.5. Spectral Library 

A spectral library is a database of spectra of known substances [147]. The spectral library is 

usually used for spectrum search and comparison purposes and as an aid to identify unknown 

spectrum. The companies that sell digitized spectral libraries for use by researchers and other 

practitioners include Thermo Scientific, Sigma Aldrich, Bio-Rad Laboratories - Sadtler 

Division, National Institute of Standards and Technology and many others.  Spectral libraries 

can also be developed within organisations to reflect their own requirements and applications 

[148]. 

3.3. Spectral Data Pre-processing 

The spectral data in its raw form is usually not used for comparison and spectral search 

purposes. There are two basic steps that are usually employed to pre-process the raw spectral 
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data before it can be deemed useful for further use. These methods are discussed in the 

following subsections. 

3.3.1. Normalization 

Spectral measurements suffer from variation in intensities in their spectrum. These variations 

in intensity may arise due to changes in laser-intensity output, a sample‟s refractive index, 

opacity, position, absorptivity and density and instrument design [149]. To counter this 

problem, normalization is employed to the entire spectrum to fix intensities to a known or 

constant value. 

One common way of normalizing a spectrum is to normalize it to a constant Euclidean norm 

[150]  

x

x
x i

normi ,

      
Equation 21 

where ix  is the intensity of the spectrum at the ith wavenumber, normix ,  is the corresponding 

normalized value at ith wavenumber, x  is the Euclidean norm of the spectral vector x. For a 

spectral vector X defined as Nxxx 21, , where N is the total number of spectral points, then 

Euclidean norm is defined as 22
2

2
1 Nxxxx  . This normalization transforms the input 

spectra on a unit hypersphere, such that all data are approximately in the same scaling.  

Another normalization method, called mean normalization [150], where every point of the 

spectrum is divided by its mean value, 
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Equation 22 

where ix  is the intensity of the spectrum at the ith wavenumber, normix ,  is the corresponding 

normalized value at ith wavenumber, N is the total number of spectral points. After mean 

normalization all the spectra have the same area. 

In the min-max normalization method, all the points in a spectrum are mapped in a desired 

range (or between 0 and 1) using this formula 

minmax

min
, 

 i
normi

x
x      Equation 23 
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where         is the corresponding normalized value for the spectral point   , min and max 

are the minimum and maximum values of the spectral vector X. 

3.3.2. Baseline Correction 

Sometime the spectrum obtained for a substance does not have a flat baseline and may come 

up with curved or sloping baseline. This can happen due to sample scattering, inappropriate 

choice of background or instrumentation drift [147]. If the baseline is not flat it leads to 

improper identification of peaks and introduce errors for estimating quantitative 

measurements [151]. Such spectra with poor baseline are detrimental for the spectral library 

search methods. Therefore, baseline correction methods are employed so that the resulting 

spectrum has a flat baseline that makes spectral library search more successful. 

There are various ways for correcting the baseline. The general idea is to construct and fit a 

polynomial function (linear, quadratic or nth degree polynomial) that resembles the shape of 

baseline in sample spectrum. Once the function is obtained, it is subtracted from the sample 

spectrum, resulting in spectrum that should have no slope or curved baseline [147][149].  

Note: It is a common practice to pre-process the spectral data using normalization and 

baseline correction before employing searching and comparing with the spectral library to 

obtain meaningful and interpretable results [147]. 

Before we introduce next sections on standard and more recent search and comparison 

methods, we define some notations that we shall use later on. 

An unknown spectrum is defined as a vector  NxxxX 21, , where xi denotes the 

responses at ith wave number.  

Similarly, a known spectrum from the database is defined as a vector NyyyY 21, , 

where yi denotes the responses at ith wave number and N is the total number of data points in 

a spectrum. 

3.4. Standard Spectral Search and Comparison Methods 

The similarity, search and comparison methods described in this section are well established 

and standard. These methods are used by several spectroscopy/chemometric companies in 

their products (e.g. Thermo Fisher Scientific [152]).  
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3.4.1. Euclidean Distance  

The Euclidean Distance method is the most commonly used spectral search algorithm [153]. 

It can be defined as: 

   N

i
ii yxYXDist

1

2),(
    

Equation 24 

Euclidean distance computes squared difference of responses at every wave number and 

gives a squared sum over all data points. This method is very fast in computation. 

3.4.2. Pearson Correlation Coefficient 

The Pearson product-moment correlation coefficient (r) [154] computes linear dependence 

between two spectra using the following formula: 
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Equation 25 

where 

X  and 


Y  are sample mean and XS  and YS are sample standard deviation. 

The correlation coefficient ranges from −1 to 1. A value of 1 implies that there exists a linear 

relationship between spectra X and Y such that when X increases then Y also increases (high 

positive interdependence). A value of −1 implies that there exists a linear relationship 

between spectra X and Y such that when X increases then Y decreases (high negative 

interdependence). A value of 0 means that there exists no linear relationship between spectra 

X and Y.  

In cases where the baseline in the spectrum is not well established (see Section 3.3.2), First 

Derivative Correlation method instead should be considered; this is described next. 

3.4.3. First Derivative Correlation  

The First Derivative Correlation method [155] is an extended version of the Correlation 

search algorithm. The Correlation algorithm can cater for noise and negative spikes present in 

the spectrum. However, the correlation algorithm cannot correct a bad baseline [155], which 

can be rectified by using the First Derivative Correlation search algorithm. These algorithms 

enhances differences in the peak positions and small peak shifts between unknown spectrum 

and known spectra, and tend to give more importance to position of peaks rather than their 

intensities [156]. 
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3.4.4. Absolute Value Search  

The Absolute Value algorithm [157] calculates the similarity value by taking the average 

absolute difference between unknown spectrum and the spectra in the database and can be 

expressed as 

N

yx
Score

N

i
ii 

 1

     Equation 26 

The Absolute Value search algorithm gives more emphasis to the small differences between 

the unknown spectrum and library spectra. This algorithm, sometimes, works well in 

scenarios where there exist spurious peaks in the unknown spectrum [157].This method is 

very similar to the Least Squares method (see Section 3.4.6). In cases where the baseline in 

unknown spectrum is not well established, First Derivative Absolute Value may be 

considered to remove baseline effects [158].  

3.4.5. Citiblock 

The Citiblock or the Manhattan distance metric [159] computes the sum of absolute 

differences between the absorbance values of two spectrums at every wave number. It can be 

defined as: 

  N

i
ii yxScore

1
      Equation 27 

This metric is very similar in concept to absolute value search defined in Section 3.4.4 

3.4.6. Least Square Search  

The Least Squares method [160] is similar to the Absolute Value method in that it computes 

point-to-point differences between the unknown spectrum and the spectra in the database. 

However, the similarity value is calculated by averaging the square of the differences 

between the two spectra, which can be expressed as 
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     Equation 28 

This method gives more emphasis on the larger peaks in the unknown spectrum and 

compensates for noise present in the spectra [160]. First Derivative Least Square [161] 

method may be used to remove some baseline effects, if the unknown spectrum‟s baseline 

cannot be corrected using the method described in Section 3.3.2. 
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3.4.7. Peak Matching Method 

The peak matching algorithm takes each peak occurring in the unknown spectrum and 

attempt to find its corresponding matching peak in the spectra present in the library and 

compute a score to assess their similarity [162]. There are two types of peak matching 

methods: Forward search and Reverse search.  In the Forward peak search method, the 

difference between peak values between the unknown spectrum and the spectra in library is 

computed and minimum absolute distance is saved. A score is then computed based on this 

distance. This algorithm penalize spectra in library if they do not have peaks at matching 

positions to the unknown spectrum, but imposes no penalty if the spectra in the library has 

more peaks present than the unknown spectrum. 

In a Reverse peak search [162], the method of searching reverses in the sense that each peak 

present in the spectra in library is compared against the corresponding peaks in the unknown 

spectrum and a score is computed. This algorithm does not penalize the unknown spectrum if 

it has more peaks than the spectra present in the library. 

3.4.8. Dot Product Metric 

Dot product [154] computes similarity point to point between unknown and library spectra. It 

can be expressed as: 

 N

i
ii yxYXScore

1     
Equation 29 

where  is the dot product between spectral  vectors X and Y, ix and iy  are response values at 

i th wave number . In principle, dot product and least square search method (see Section 3.4.6) 

provides comparative information, however the former requires less number of computational 

steps [154]. 

3.5. More Recent / Non-Standard Spectral Search and Comparison 

Methods 

This section presents a brief description of some recent and non-conventional similarity 

metrics that are being developed for spectral search and similarity. As will be described 

below, these methods have been reported to perform equal or better than standard methods 

described in Section 3.4. 
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3.5.1. Match Probability  

Match probability is a similarity measure developed by Ellison and Gregory [163] for 

identifying spectra within a spectral library by matching the common peaks between 

unknown spectrum and spectra from the database. Suppose an unknown spectrum has m 

peaks and library spectrum has q peaks, and at any p possible position they share n peaks. 

Then the probability for finding the n peaks common to both m and q, taken from same 

population of size p, is calculated using hypergeometric distribution and expressed as: 
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Equation 30 

Figure 12 [163] shows diagrammatic representation of two spectra with m and q peaks and 

they share n peaks. Figure 13 [163] shows the Venn diagrammatic representation, which 

shows the region N as the common region for the two peak sets M and Q taken at random 

from P positions. 

 

Figure 12: Peak Matching: n matches are common to two spectra with m and q peaks, each from p 
possible line positions. (Source: Ellison and Gregory[163]) 
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Figure 13: Venn diagram for underlying hypergeometric distribution. (Source Ellison and Gregory [163]) 

They observe that this method yields better search results when an unknown spectrum is 

searched against the spectral library than using the simple binomial distribution predictions. 

3.5.2. Nonlinear Spectral Similarity Measure 

This is a non-linear method for measuring spectral similarity measure between two spectra 

[164]. The method not only considers the shape similarity of spectra but also the function of 

various absorption features. The adjacent bands in spectrum are usually highly correlated, 

which is removed by first projecting the spectral vectors in feature space and applying Kernel 

Principal Component Analysis (KPCA). In this method, the kernel function of polar 

coordinates is used. Finally, a linear similarity measure is used to find similarity between the 

two non-linearly transformed spectra. The method is reported to be effective in spectral 

similarity measure [164].  

3.5.3. A Spectral Similarity Measure using Bayesian Statistics 

This spectral similarity method [165] is based on differentiating subtle differences between 

two spectra. These subtle differences mean that the two spectra may overlap quite well in 

general except for some local regions. In these local regions, the differences among the 

spectra may look insignificant, which may not be the case. Such subtle differences will cause 

problems for many spectral search methods. For example, correlation coefficient will give a 

similarity index value of approximately 1.0 (or 100%) for these kinds of spectral pairs. This 

method transforms the spectral similarity measure into a hypothesis test of the similarities 

and differences between the unknown spectra and the spectra from the library. A difference 

vectors is defined that denotes the difference between the two spectra and its scalar mean is 

used as the statistical variable for the hypothesis test. A threshold is also proposed for the 
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hypothesis that the spectra are different. The Bayesian prior odds ratio is estimated from 

several spectra of the same sample. The posterior odds ratio is used to quantity the spectral 

similarity measure of the two spectra. They demonstrated the effectiveness of their method on 

diffuse reflectance near-infrared spectra of tobacco samples of two formulations and show 

that their method can detect subtle differences between the spectra. 

3.6. Spectral Similarity Methods Specific for Spectral Data 

3.6.1. Spectral Linear Kernel 

Spectral Linear Kernel [139] (SLK) is a special similarity metric designed specifically for 

computing the spectral similarity between two Raman spectra. The kernel function is 

sometimes described as a similarity metric which can be then applied in spectroscopy. This 

measure compares two sample spectra and returns a score: the higher this score, the more 

similar the two spectra are to each other. This method utilizes information about the spectra 

profile such as the presence of peaks or troughs in a particular region. This method not only 

takes into consideration the original intensity values at each wavenumber, but also includes 

the difference between the intensity at a point and number of its neighbouring points on the 

spectrum (called a window). The use of neighbouring points within a window places greater 

importance on differences between points sharing the same spectral region than on difference 

between points that are far apart on the spectrum. The similarity metric can be expressed as: 

                                             Equation 31 

where           is the similarity value as computed by the SLK, W is the window size that 

consists of neighbouring points in a spectra at value i. Figure 14 illustrates the working of 

spectral linear kernel.  

3.6.2. Weighted Spectral Linear Kernel 

The Weighted Spectral Linear Kernel [166] (WSLK) is similar to SLK with a small 

modification that it also incorporates the pure spectrum, meaning thereby, it gives more 

weights to similarities between spectra in those regions where the corresponding pure 

substance has peaks of high magnitude. The similarity metric can be expressed as: 
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                                                        Equation 32 

where     is the intensity of pure substance at wave number i. The value of w is normalized 

between 0 and 1. Figure 15 shows the comparison of two spectra using WSLK. The kernel 

gives more importance to similarities between two sample spectra that occur in spectral 

regions in which strong peaks exist in the pure target spectrum. Similarities in spectral region 

that do not overlap with target spectrum peaks are given lower weighting. 

 

 

Figure 14: Spectral Linear Kernel (Source [139]) 
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Figure 15: Comparing two spectra using Weighted Spectral Linear Kernel (Source [139]) 

3.7. A New Modified Euclidean Spectral Similarity Metric  

As mentioned in Section 3.2.4, in spectral library search an unknown spectrum is matched 

against a database of pure materials and based on a match score, a list of nearest matches is 

produced. The unknown spectrum can be a pure material or a mixture of several pure 

materials. If the unknown spectrum is a mixture of several pure materials then the task to find 

a nearest match from the database of pure materials becomes very difficult. A mixture may 

contain Raman spectra of several pure materials in various proportions which may lead to 

either summation of the peaks of individual pure materials or appearance of new peaks at 

certain wavelengths in the resulting spectrum of mixture. The convolution of peaks in the 

resulting mixture spectrum makes the task of spectral searching more challenging.  

The standard Euclidean metric (defined in Section 3.4.1) gives equal importance to peaks of 

query spectrum and the spectra in spectral library. However, for computing the similarity of a 

mixture against pure materials, this might be undesirable. In this section, we present a new 

Modified Euclidean Spectral Similarity Metric that gives weights to the peaks in terms of 

penalty or reward according to their absence or presence or the difference in intensities in the 
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unknown spectrum (mixture) and the pure spectra in the spectral library.  The performance of 

this new similarity method is evaluated relative to other similarity methods in Section 3.8. 

Before we explain the new similarity metric, we define some notations to be used in this 

section: 

Let X be the query spectrum (mixture), 

x be the value of intensity of the unknown spectrum at a given wavelength,  

A be the pure spectrum from the spectral library, and 

a be the value of intensity of the pure spectrum at a given wavelength. 

While computing the similarity between an unknown spectrum of mixture against a spectrum 

of pure material from the spectral library, at any given wavelength, the following four 

scenarios might occur: 

1. When the mixture has a peak smaller than the pure substance 

 

If xXaA  ,  and xa  

This means that A is (most probably) present in X in some percentage, which means A 

bears similarity with X. Therefore this condition should be rewarded i.e. giving 

importance to the fact that pure substance is indeed present in the mixture. 

2. When the mixture doesn‟t have a peak corresponding to the pure substance 

 

If 0,  XaA  

X 
A 

X A 
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This means that A is not present in the mixture. Therefore, its occurrence should be 

penalized, to accommodate scenarios where the mixture has presence of its constituents. 

3. When the mixture has a peak larger than the pure substance  

  

If xXaA  ,  and xa    

This condition means that A is present in X in some proportion. So this is a desirable 

match. Therefore, no need to penalize it (no reward either).  

4. When the mixture has a peak and the corresponding peak in pure substance is absent 

 

If xXA  ,0   

Here, if the mixture X has a peak, and A has no peak in the same place, then the peak must 

come from one of the other constituents in the mixture forming X. However, this is not a 

proof that A is definitely not a constituent of the mixture X. In this scenario the best we can 

say is that this situation provides no evidence against A being part of the mixture, and only 

weak evidence for it. Therefore, it should neither be penalised nor rewarded.  

The idea of „penalty‟ means that it is a bad match and the metric should be pushed by a 

constant. The „reward‟ means that the match is good and the metric should be reduced. We 

penalize by multiplying and reward by dividing with the same constant (the variance of the 

mixture). 

The Modified Euclidean Spectral Similarity algorithm can be illustrated by following steps: 

i. Compute variance of the mixture,  

A 
X 

A X 
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ii.  For i=1, 2 … N, where N is the number of points in the spectra, Set SqDist=0, Repeat 

Step iii.a to iv 

iii.  Compute distance at every point, as given under: 

a. 0 iii XANDXAif ,    N

i

ii
iii

axAXceDis
1

2

),(tan    

b. 0 iii XANDXAif ,    N

i
iiiii axAXceDis

1

2),(tan   

c. Else    N

i
iiiii axAXceDis

1

2),(tan  

iv.  iii AXceDisSqDistSqDist ,tan  

v. SqDistEuclideanModified _  

The Modified Euclidean metric thus capture certain subtleties that need to be considered 

while doing a spectral search.  

3.8. Comparative Analysis of Spectral Search Methods  

In this section we present the measures taken to perform a comparative analysis of various 

spectral search algorithms defined in Section 3.4, 3.6 and 3.7. This section details the data 

pre-processing steps taken, methodology adopted to compute search performance and the test 

strategy formulated for fair comparison of search results. As a representative Raman 

spectroscopy dataset, we use a set of spectra from chlorinated and non-chlorinated solvents, 

taken from the work of Conroy et al. [167], which is described next. 

3.8.1. Description of the Dataset 

The chlorinated data set used in our research work is taken from the work of Conroy et al. 

[167]. The Raman spectra were recorded on a Labram Infinity (J-Y Horiba) spectrometer. 25 

chlorinated and non-chlorinated solvents of different grades were used (see Table 2 ). These 

solvents were then mixed in various concentrations to create 225sample mixture of both 

chlorinated and non-chlorinated solvents (see Table 3). This exercise was done to try and 

replicate possible industrial scenarios. 
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Solvents Grade Solvents Grade 

Acetone HPLC Acetophenol* Analytical 

Toluene Spectroscopic n-Pentane Analytical 

Cyclohexane Analytical & Spectroscopic Xylene Analytical 

Acetonitrile Spectroscopic Nitromethane Analytical 

2-Propanol Spectroscopic Dimethylformamide Analytical 

1,4-Dioxane Analytical & Spectroscopic Nitrobenzene* Analytical 

Hexane Analytical Tetrahydrofuran Analytical 

1-Butanol Analytical & Spectroscopic Diethyl Ether Analytical 

Methyl Alcohol Analytical Petroleum Acetate Analytical 

Benzene Analytical Chloroform Analytical & Spectroscopic 

Ethyl Acetate Analytical Dichloromethane Analytical & Spectroscopic 

Ethanol Analytical 1,1,1-Trichloroethane Analytical & Spectroscopic 

Cyclopentane Analytical - - 

Table 2: List of chlorinated and non-chlorinated solvents and the various grades used. *Solvents 
containing fluorescent impurities (Source Conroy et al. [167]) 
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Pure 

Solvents 

Binary 

Mixture 

Ternary 

Mixtures 

Quaternary 

Mixtures 

Quintary 

Mixtures 
Total 

Chlorinated 3 96 40 12 0 151 

Non-

Chlorinated 
22 23 12 10 7 74 

Total Number 25 119 52 22 7 225 

Table 3: Summary of various chlorinated and non-chlorinated solvent mixtures (Source Conroy et al. 
[167]) 

3.8.2. Data Pre-processing 

We implemented quadratic polynomial curve fitting for baseline correction. Here a quadratic 

polynomial is approximated for each spectrum and then subtracted from the given spectrum 

to get corrected baseline. The normalization of baseline corrected spectrum is done using 

min-max normalization method described in Section 3.3.1 

3.8.3. Methodology for Measuring Search Performance 

The performance of search and comparison algorithms is evaluated using the spectral library 

search method. In this method an unknown test spectrum (X) is provided by the user as the 

input. This spectrum, X, is from a material of known composition but its composition is 

hidden for the purposes of testing. This spectrum can either be a pure material or mixture of 

two or more materials. The spectrum X will be searched against all the spectra present in the 

spectral database. The spectral database consists of spectra of pure substances. The searching 

of unknown spectrum against the spectral library is done using a variety of spectral search 

algorithms mentioned in Section 3.8.5.  

A diagrammatic representation of the Spectral Search method is provided in Figure 16. In the 

figure, top ten search results are shown in two different colours. Green colour signifies a 

correct search result or the presence of target chemical in the search results, and red colour 

signifies an incorrect search result or absence of target chemical in the search results.  
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Figure 16: Spectral Search System 

The performance of spectral library search result is estimated using the precision and recall 

values returned by the search algorithm, which are defined as: 

 Precision - The ratio between the correct search results and the total number of 

returned search results. 

 Recall - The ratio between the correct search results and the number of results that 

should have been returned. 

For the purpose of experiments, the value of Recall is fixed to 0.5 (i.e. when 50% of the 

relevant results are retrieved by the query). At this value of recall, value of Precision will be 

calculated to estimate which search algorithm is performing best.  

3.8.4. Testing Strategy 

The spectra of three different chlorinated solvents, in pure form or mixtures that are 

investigated are listed next: 

 Dichloromethane (60 targets, 170 non-target) 

 Trichloroethane (79 targets, 151 non-targets) 

 Chloroform (79 targets, 151 non-targets) 

Here the „target‟ means that the mixture contains the spectra of the given material, and non-

target means that the mixture does not contain the spectra of the given material. It is to be 

noted that the above three datasets are formed from the same dataset described in Section 

3.8.1 by relabeling according to the specific „target‟. 
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To test search accuracy of spectral search algorithms, three separate sets of experiments have 

to be executed (for each of the above defined chemical materials). All these experiments have 

these common steps: 

 Randomly Split the target chemical spectra into two parts: 25% for testing the 

efficiency of the search algorithm (test set), and 75% to be part of spectral library. 

 Creating the spectral library by adding to it all the non-target spectra plus 75% of target 

spectra.  

 For every test spectrum i in the test set, do the following,  

 For every spectral search algorithm j, fix the value of Recall=0.5 (approx.) 

 Compute the value of jiecision,Pr  at this recall value  

 Compute the average value of jiecision,Pr  across all test set (for a particular 

spectral search algorithm), to show overall precision of the occurrence of target 

chemical when (around) 50%  of the target chemical spectra in search results have 

been retrieved successfully. 

Mathematically, it can be expressed as 

                                                                                      Equation 33 

 Compare                   values of different search algorithms. An algorithm 

with higher value of                   shall be deemed as better than others at a 

fixed value of recall. 

3.8.5. Spectral Search Algorithms 

The various spectral search algorithms that will be evaluated are as follows:  

1. Euclidean metric 

2. Modified Euclidean Metric 

3. Citiblock Metric 

4. Cosine 

5. Spectral Linear Kernel (SLK) 

6. Weighted Spectral Linear Kernel (WSLK) 



59 

 

3.9. Evaluation Relative to Standard Algorithms 

The data set to be used for evaluation of spectral search algorithms is presented in Section 

3.8.1 and 3.8.4. The search algorithms (see Section 3.8.5) are tested on this dataset and the 

value of                   (at fixed recall) is used as a metric to measure the performance 

of these algorithms. 

Note: Although the value of recall is set to 0.5, but in computation it is slightly higher. The 

reason is that the number of retrieved spectra is always a natural number and cannot be 

expressed as a decimal. For example, for the dataset described in Section 3.9.1, the total 

number of target spectra to be retrieved by a given query is 45. The threshold here is to 

retrieve 50% of the 45 spectra that equals to 22.5 spectra, which is rounded of to 23 spectra 

and therefore the recall becomes 511.045
23  . The recall values of datasets in Section 3.9.2 

and 3.9.3 can be explained in the same way. 

The paired t-test [168] is used as statistic to evaluate significant different between average 

precision values obtained from search algorithms. The null hypothesis was set so that “the 

values of average precision from two search algorithms are same”. The confidence interval is 

set to 95% and two-tailed test is employed. If the calculated p-value is lower than this 

threshold then we reject the null hypothesis and interpret that the mean values of average 

precision from two search algorithms are not same. MS-Excel 2007‟s TTEST function [169] 

is used to compute the p-value and determine whether the two average precision have same 

mean or not. 

3.9.1. Dichloromethane 

The details of the Dichloromethane data used for testing the spectral library are as follows: 

Total number of Spectra = 230 

Number of Targets Spectra = 60 

Number of Non-Target Spectra = 170 

Number of Test Spectra = 15  

Size of Spectral Library = 45 target + 170 Non Target = 215 

The results for dichloromethane data set are presented in Table 4. 
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(Dis)similarity Metrics Average Precision (Recall = 0.511) Standard Deviation 

Euclidean 0.2194 0.0393 

Modified Euclidean 0.2664 0.0480 

Citiblock 0.2402 0.0417 

Cosine 0.1896 0.0427 

SLK 0.1802 0.0152 

WSLK 0.2888 0.0305 

Table 4: Average Precision Results for Dichloromethane Data 

These results of Table 4 are presented graphically in Figure 17. 

 

Figure 17: Average Precision search results for Dichloromethane 

It can be observed from Table 4 and Figure 17 that for a recall value of 0.511, WSLK 

performed the best with highest average precision rate. The paired t-test shows that WSLK‟s 

average precision value is statistically different from rest of the other search algorithms 

except Modified Euclidean. Modified Euclidean comes a close second but it is not statistically 
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much different from WSLK and Citiblock, which comes a close third. The other three search 

algorithms perform worse in comparison to these algorithms. 

3.9.2. Trichloroethane 

The details of Trichloroethane data used for testing the spectral library are as follows: 

Total number of Spectra = 230 

Number of targets Spectra = 79 

Number of Non-target Spectra = 151 

Number of Test Spectra = 20 

Size of Spectral Library = 59 target + 151 Non Target = 210 

The results for trichloroethane data set are presented in Table 5 

(Dis)similarity Metrics Average Precision (Recall = 0.508) Standard Deviation 

Euclidean 0.2689 0.0208 

Modified Euclidean 0.2909 0.0403 

Citiblock 0.2920 0.0331 

Cosine 0.2643 0.0405 

SLK 0.2860 0.0559 

WSLK 0.3725 0.0574 

Table 5: Average Precision results for Trichloroethane Data 

The above tabular results can be visualized graphically in Figure 18. 
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Figure 18: Average Precision search results for Trichloroethane 

Table 5 and Figure 18 shows that, for a fixed recall value of 0.508, WSLK metrics performs 

the best for the Trichloroethane data with highest average precision. The paired t-test shows 

that it is statistically different from the average precision values obtained from other 

algorithms. Modified Euclidean and Citiblock comes close second and third with no statistical 

difference among them. Both of them are not statistically significantly different from SLK 

either. Therefore it is difficult to say that SLK performs worse than them. Cosine and 

Euclidean metric performs worst with no statistical difference among them.  

3.9.3. Chloroform 

The details of Chloroform dataset used for testing the spectral library are as follows: 

The data description for testing the spectral library is as under: 

Total number of Spectra = 230 

Number of targets Spectra = 79 

Number of Non-target Spectra = 151 

Number of Test Spectra = 20 

Size of Spectral Library = 59 target + 151 Non Target = 210 

The results for chloroform data set are presented in Table 6 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Euclidean M.Euclidean Citiblock Cosine SLK WSLK

A
v

e
ra

g
e

 P
re

ci
si

o
n

(Dis)similarity Metrics

Trichloroethane



63 

 

(Dis)similarity Metrics Average Precision (Recall = 0.508) Standard Deviation 

Euclidean 0.2513 0.0174 

Modified Euclidean 0.2718 0.0142 

Citiblock 0.2661 0.0177 

Cosine 0.2468 0.0166 

SLK 0.2710 0.0196 

WSLK 0.9586 0.0851 

Table 6. Average Precision results for Chloroform Data 

These tabular results are shown graphically in Figure 19. 

 

Figure 19: Average Precision search results for Chloroform 

From Table 6 and Figure 19, it can be seen that WSLK performed with much superior average 

precision rate (0.9586) for fixed recall of 0.58. The paired t-test also suggests that it is 

statistically different from other search algorithms. Modified Euclidean and SLK come second 

and very close to each other with no statistical difference in the means. Both of them also do 

not have statistical difference in their means when compared with Citiblock, therefore, it 
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cannot be interpreted to perform worse than them. Euclidean and Cosine performs the worst 

and their means are statistically same using paired t-test. 

3.9.4. Evaluation of Spectral Search Algorithms 

The evaluation is based on the best three search algorithms for the chlorinated solvent test 

data set. The results are presented in Figure 20.  

Data Sets 
Best Search Algorithms 

First Second Third 

Dicholormethane WSLK Modified Euclidean  Citiblock 

Trichloroethane WSLK Modified Euclidean / Citiblock SLK 

Chloroform WSLK Modified Euclidean / SLK Citiblock 

Figure 20: Overall Evaluation of Best 3 Spectral Search Algorithms on Chlorinated Solvent data 

It can be seen that WSLK similarity measure gives consistently the best average precision rate 

for all the three chlorinated solvent data considered. Modified Euclidean dissimilarity 

measure emerged as the second best spectral search algorithm consistently for the three 

chlorinated solvent data set. The next best choice for the choice of spectral search algorithm 

is SLK and Citiblock. The paired t-test shows that some of the spectral algorithms‟s average 

precision values may not be significantly different than others, however Euclidean metric 

perform worst in almost all the cases.  

It can be concluded that for the chlorinated solvent data, WSLK is the overall best of the 

similarity metrics that have been evaluated. The reason for the superior performance of 

WSLK lies in the fact that it gives importance to those regions in a spectrum where the pure 

substance has peaks and also the points in the neighbourhood at any point in a spectrum. 

Modified Euclidean came the modest second among spectral search algorithms we evaluated. 

The reason for its good and consistent performance is that it does not give equal importance 

to peaks of an unknown material to be searched in spectral library (unlike Euclidean metric), 

rather it rewards or penalizes the occurrence or absence of peaks in conjunction with 

calculating Euclidean distance as well. SLK and Citiblock are the next close choices. SLK‟s 

strength lies in the fact that it considers not only a portion of spectrum to be searched against 
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spectral library but also its nearby points to capture a general similarity spread across a 

localized region. The better performance of Citiblock in comparison to other standard spectral 

search methods might be due to the presence of sharp peaks in the unknown spectrum. 

Standard Euclidean search method never gave good results in comparison to other spectral 

search algorithms. Cosine metric gave the worse results in all the three chlorinated solvents 

data.  

This study shows that in spectroscopic applications, standard spectral search algorithms are a 

good starting point to develop an understanding about the spectral search mechanism. 

However, it does not guarantee the best spectral library search results. The reason is that they 

do not embody any domain specific insight into the data. Therefore, from our experiments we 

deduce that spectral search accuracy can be improved by devising customized non-standard 

spectral search algorithms that are more specific to spectroscopic data and capture more 

information that traditional spectral search algorithms might not. 
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Chapter 4 

One-class K-Nearest Neighbour 

Approach based on Kernels 

The K-nearest neighbour (KNN) [76] is a standard approach for solving multi class 

classification problems. It has been modified to tackle the problem of one-class classification 

by Tax in his thesis [2]. Various other researchers have also presented variants of one-class 

nearest neighbour approach (see Section 4.3). In this chapter we present modification on the 

standard one-class KNN based algorithms presented by Tax. We incorporate the use of kernel 

functions as distance metric instead of the conventional Euclidean based distance metrics. In 

a traditional KNN classifier, the k nearest neighbours‟ class labels are used to decide the class 

allotment of a test case. We extend that approach by not only considering j nearest 

neighbours, but their k nearest neighbours also and an averaged decision is taken to allocate a 

class to a test sample. 

4.1. Kernel as Distance Metric 

The conventional nearest neighbour (NN) classifier uses Euclidean measure as a distance 

metric to compute similarity between two vectors.  This distance metric can be redefined by 

incorporating the „kernel approach‟ and applied to conventional NN classifier [170]. The idea 

of applying a kernel is to transform the data into high dimensional feature space by 

performing a nonlinear mapping and then try to define a classification boundary around it in 

that space. For further details on „kernel approach‟, refer to Section 2.4.1.  

As described by Yu et al. [170], suppose an n dimensional vector is transformed to m 

dimensional feature space using some non-linear mapping:                                                                                            

Here   is the original n dimensional space and    is the transformed m dimensional feature 

space. x is a vector in space    and      is the corresponding vector is space   .   is a non 
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linear mapping that transforms the vector in original space    to a high dimensional space   . 

And           are the mapping functions.  

A kernel function, K(...), can be expressed as inner dot product of the vector in new 

transformed space without actually carrying out the mapping  . Mathematically it can be 

written as:                                              Equation 34 

where             denotes the dot product of      and     . The popular kernel functions 

that are used commonly are [29] (also see Section 2.4.1): 

 Polynomial kernel         dyxyxK ,1,   , where d is the degree of 

the polynomial  

 Radial Basis Function (RBF)       22
2/exp, yxyxK 

 , 
where  is 

width of the kernel 

 Sigmoidal           yxyxK .tanh,  , with gain   and 

offset  

The parameters p, ,  and   are all adjustable to tune the suitability of a kernel function. 

As described by Yu et al. [170], the norm distance between two vectors can be expressed as:                    Equation 35 

By decomposing of               into inner products and substitution of                                              Equation 34 for the inner products we get                                      Equation 36 

Or it can be simplified further as:                                  Equation 37 

where         is the distance metric between vectors x and y in the kernel space.  

4.2. Kernel-based KNN Classifiers 

The „kernel approach‟ has been used by various researchers to implement different flavours 

of NN-based classifier. Yu et al. [170] applied the „kernel approach‟ to modify the norm 

distance metric and present the Kernel KNN classifier. They proved that the conventional NN 
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classifier is a special case of the Kernel NN when radial basis kernel or polynomial kernel 

with degree 1 is chosen. They therefore argue that the Kernel KNN will not perform worse 

than conventional NN. Also, since the distance metric calculation process is only altered, the 

computation time of the Kernel NN and the conventional NN shall remain comparable.  They 

show their results on BUPA Liver Disorder data set [50] and US Postal Service data. Their 

experimental results on Kernel KNN are better than conventional KNN classifiers and can 

compete with SVM.  

Peng et al. [171] present a quasiconformal kernel method for nearest neighbour classification. 

In traditional NN methods, when the data becomes sparse in high dimensional space, to find 

nearest neighbourhood one need to look far away from the test sample that may induce severe 

bias. Their method produces neighbourhoods where the class conditional probabilities tend to 

be homogenous. This is done by employing quasiconformal kernels as distance metric which tend to 

move the samples closer to the test example if the class posterior probabilities are similar. Similarly, if 

the class posterior probabilities of samples are different from the test example, they are moved farther 

away from it. The resulting effect is to create neighbourhood with homogenous class conditional 

probabilities.  Their experimental results on UCI datasets [50] demonstrate that the algorithm 

can potentially improve the performance of KNN in some classification and data mining 

problems.  

Daqi and Jie [172] propose a Kernel Fisher Discriminant used with KNN algorithm to solve 

large scale learning problems. Their main idea is to first, to decompose a large scale multi- 

class classification problem into multiple two class problems. Secondly, the samples in each 

class of the two class problems are covered by hyper-dimensional spheres with different 

sizes, and repeat the process until all of them are included within hyper-spheres of different 

sizes. Such spheres can be considered as new prototypes and they are relatively less than the 

original number of samples. Finally, if the Euclidean distance between a test sample and the 

surface of the sphere of a class is smallest, the sample is assigned the class of the sphere. This 

kind of kernel KNN classifier only needs to store a small proportion of samples in the form of 

prototypes. Their results on USPS and letter recognition data show that their method has 

higher classification accuracy than the standard classification methods they compared with. 

4.3. One-class KNN Classifiers 

Tax [2] presents a one-class nearest neighbour method, called nearest neighbour description 

(NN-d). In NN-d, a test object z is accepted when its local density is larger or equal to the 
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local density of its nearest neighbour in the training set (for detail refer to Section 2.4.3.4). 

Munroe and Madden [137] extends the idea of one-class KNN to tackle the recognition of 

vehicles using a set of features extracted from their frontal view and presented high accuracy 

of classification. They also implemented multi class classifiers to compare their method. 

They comment that it is not reasonable to draw direct comparisons between the results of the 

multi-class and single-class classifiers, because the experimental methodology and 

underlying assumptions are quite different. They also make a note that the performance of 

multi class classifier could be made arbitrarily worse by adding those vehicle types to the test 

set that do not appear in the training set, however, since one-class classifiers can represent the 

concept „none of the above‟, their performance should not deteriorate in these conditions. 

Cabral et al. [173] propose a one-class nearest neighbour data description using the concept 

of structural risk minimization. KNN suffers with the drawback of storing all training 

samples as prototypes that would be used to classify an unseen sample. Their paper is based 

on the idea of removing redundant samples from the training set, thereby obtaining a compact 

representation aiming at improving generalization performance of the classifier. Their results 

on artificial and UCI datasets [50] have shown improved performance than the NN-d 

classifiers. Their method also achieved considerable reduction in number of stored 

prototypes. Cabral et al. [174] extended their work and presented another approach where 

they not only consider the 1 NN but all the k-nearest neighbours and arrive at a decision 

based on majority voting. In their experiments they observe that K nearest neighbour version 

of their classifier outperforms the 1 NN and is better than NN-d algorithms. They tested their 

algorithm on artificial data, biomedical data [37] and data from the UCI repository [50].  

Gesù et al. [175] presents a one-class KNN and tested it on synthetic data that simulate 

microarray data for the identification of nucleosomes and linker regions across DNA. They 

presented a decision rule to classify an unknown sample X as: 

                                                                                                                     Equation 38 

where     is the training set for the patterns P representing positive instance,    is the 

dissimilarity function between patterns. Also, j=1 means that x is positive. The above rule 

translates to that if there are at least K patterns in     dissimilar from x at most  , then x is 

classified as a positive pattern, otherwise it is classified as negative. This KNN model 

depends on parameters K and   and their values are chosen by using optimization methods. 
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Their results have shown good recognition rate on synthetic data for nucleosome and linker 

regions across DNA. 

Haro-Garcia et al. [176] used one-class KNN along with other one-class classifiers for 

identifying plant/pathogen sequences. They find the suitability of above methods owing to 

the fact that genomic sequences of plant are easy to obtain in comparison to pathogens. They 

built one-class classifier based only on information from the sequences of the plant and 

presented a comparison of results. 

4.4. Kernel-based One-class KNN classifier  

We noted in Sections 4.2 and 4.3 that Kernel-based KNN and one-class KNN methods have 

been studied in various application domains. In Section 3.6.1 and 3.6.2 we presented two 

kernels (SLK and WSLK) that can be used as distance metrics to find similarity between 

spectra and they outperform other traditional similarity measures. The spectral library search 

similarity method searches for the closest match (similar in concept to 1-NN). The idea of 

using kernels as similarity metric can be translated in a one-class nearest neighbour 

classification framework wherein the traditional Euclidean distance measure is replaced by 

the kernels. 

In this section, we propose a Kernel-based One-class NN Classification Method and 

investigates it applicability for the chemical spectral data. Our main contribution is to  

 Replace the standard Euclidean metric with Kernel-based distance measures for 

estimating the similarity between spectra.  

 Formulate an extended one-class Kernel-based KNN classifier that not only depends on 

target‟s j nearest neighbours but also on the k nearest neighbours of these j nearest 

neighbours.  

In our research work, we implemented the following kernels:  

 Polynomial Kernel of degree 1 (Poly1)  Equivalent to Euclidean distance metric 

 Polynomial Kernel of degree 2 (Poly1) 

 RBF Kernel (RBF) 

 Spectral Linear Kernel (SLK) [139] 

 Weighted Spectral Linear Kernel (WSLK) [139] 

These kernels will be used as distance metrics as described in Section 4.1. 
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In the subsequent subsections 4.4.1 and 4.4.2, we propose two variants of the above concept. 

4.4.1. Kernel-based One-class KNN Algorithm (KOCKNN) 

The Kernel-based One-class 1-NN Algorithm that uses kernel as a distance metric is 

presented diagrammatically in Figure 21. 

. 

Figure 21: One-class 1-NN Classifier 

The classification rule in this method is the same as suggested by Tax [2] and Munroe and 

Madden [137]. The distance from a test sample A to its nearest neighbour B is computed and 

called D1.  Then distance from B  to its nearest neighbour in the target sample is computed 

and called D2.If D1/D2 > threshold value then test sample is rejected as an outlier or else 

accepted as member of target sample.  

A variant of above method is called Kernel Based One-class KNN. It works on the same 

principle except that the k nearest neighbours of B are determined and averaged out to give 

D2 (see Figure 22). 

The algorithmic steps of our algorithm are similar in concept with the work of Tax [2] and 

Munroe and Madden [137], the difference being the formulation of kernel as a distance 

metric. The algorithm can be summarized by following steps: 
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Figure 22: Kernel-based One-class KNN Classifier 

Algorithm (KOCKNN): 

Input: Target Data, Test sample A 

Output: Class Label of test sample A 

To classify a test sample, A as a member/not member of target class  

1. Set a threshold value (e.g. 1.0) and choose the number of k neighbours  

2. Find the nearest neighbour for A in the target class, call it B, compute their distance and 

call it D1 (the distance used here will be one of the above defined Kernel-based distance 

metrics) 

3. Find the k nearest neighbours of B in target class. 

3.1. Find the average distances of these k-nearest neighbours and call this distance D2  

4. If D1 / D2 > threshold value  

4.1. Reject A as a target class,  else  

4.2. Accept A as a target class 

4.4.2. Kernel-based One-class J+KNN Classifier (KOCJKNN) 

KOCNN is extended to not only consider the jth nearest neighbour of a test sample to target, 

but to check similarity of k nearest neighbours of these j neighbours. The rationale is to 

consider the contribution of not one neighbourhood but many while arriving at classification 
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decision. The distance metric used will be based on kernels rather than Euclidean. In this 

method, first the j nearest neighbours of a test sample in target class are computed, then the k 

nearest neighbours of these j neighbours are computed in the target class and averaged out 

(See Figure 23).  The overall results obtained for these j neighbours can be arrived at by using 

majority voting rule.  

 

Figure 23: Kernel-based One-class J+KNN Classifier 

The algorithmic steps are described below: 

Algorithm (KOCJKNN): 

Input: Target Data, Test sample A 

Output: Class Label of test sample A 

To classify a test sample, A as a member/not member of target class  

1. Set a threshold value (e.g. 1.0), choose the number of j and k neighbours, set counter 

accept to zero (this counter will keep the number of acceptance of test sample as member 

of target class) 
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2. Find the j nearest neighbours of the test sample A in the target class, call it          , 
and compute their distance from A and call it             . (the distance used here will 

be one of the above defined Kernel-based distance metrics) 

3. For every j nearest neighbour (i=1,2,...j), repeat Step 4 to 5 

4. Find k nearest neighbours for Bj in the target class, call it          , compute their 

distance from Bj and call this distance              (the distance used here will be one 

of the above defined Kernel-based distance metrics) 

5. Find the average distances of the k nearest neighbours for Bj in the target class and call 

this distance D2  

5.1. If D1j / D2 < threshold value  

5.2. Increase the counter accept 

6. If accept ≥ Ceiling(j/2) [majority voting rule], then  

6.1. Accept A as a member of target class, else  

6.2. Reject A as a member of target class 

Note: When j is set to 1 and k is set to 1in KOCJKNN, it condenses to Kernel-based 1-NN, 

similarly when j is set to 1 it condenses to KOCKNN 

In the next chapter we present classification results on the chlorinated solvents data using 

Kernel-based One-class nearest approaches proposed above. 
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Chapter 5 

Experimentation and Results 

This chapter describes the experimentation, results obtained, and their analysis on the 

chlorinated solvent data set, for the application of identifying chlorinated solvents using the 

kernel as distance metric applied to one-class nearest neighbour classification. At the end of 

the chapter, conclusions are presented and future directions for this research are discussed. 

5.1. Experimentations 

5.1.1. Dataset 

The chlorinated solvent data is used to evaluate the performance of Kernel-based One-class 

nearest neighbour classifier. This data set is described in Section 3.8.1.  

5.1.2. Setting Parameters 

In the experiment KOCJKNN classifier (see Section 4.4.2) is implemented with values of j 

nearest neighbours set to 1, 3 and 5 and k nearest neighbours set to 1, 3, 5 and 7. This 

exercise is done to study the effect of varying number of nearest neighbours to the test sample 

in the target class and its nearest neighbours. The value of threshold to accept or reject a test 

sample as member of target or outlier class is set to 1. For the first 3 datasets, five one-class 

kernels were implemented as mentioned in Section 4.4. A fourth dataset is also created from 

the three main chlorinated solvent data sets, called ChlroinatedOrNot. This data contains the 

spectra of all those substances that contain one or more of the chlorinated solvents (in any of 

the three chlorinated solvent data sets) as one of its constituent. For this data, WSLK is not 

implemented as it only works for the case when we have the spectra of pure substances. As 

mentioned in Section 3.6.2, WSLK computes similarity between two spectra (at given 

wavenumber) by computing similarity between their peaks in a neighbourhood with 

providing more weights at positions where the corresponding pure substance has a peak of 

higher magnitude. Since ChlroinatedOrNot only contains information about whether 

chlorinated solvent is present or not and no information about individual pure chlorinated 

solvents, WSLK is omitted from implementation for this dataset. For kernels Poly1 and Poly2 
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default settings are used. For RBF kernel, kernel width of 1 is chosen. For SLK and WSLK the 

window size (neighbourhood) of 3 is used in the experiment.  

5.1.3. Splitting into Training and Testing Sets 

To perform an experiment, we randomly divide a dataset (i.e. target class) into 67% to form a 

training set and the remaining 33% to form a test set. An outlier dataset (equal to the number 

of test set samples) is also constructed by randomly selecting samples from the non-target 

class.  This process is repeated 10 times and the average error is reported. The numbers of 

test set and outlier samples are kept equal for fair estimation of errors. 

5.2.  Performance Evaluation  

The performance of the KOCJKNN is measured by first computing accuracy, which can be 

expressed as: 

jectAcceptjectAccept

jectAccept

OOTT

OT
accuracy

ReRe

Re


   Equation 39 

where  

AcceptT  is the number of targets accepted as targets 

jectTRe is the number of targets rejected as outliers 

AcceptO  is the number of outliers accepted as targets 

jectORe is the number of outliers rejected as outliers 

 

 Error is calculated as: 

accuracyerror 1      Equation 40 

Error is used as performance metric to evaluate different kernels used as distance metric. In 

the following tables any entry in a cell can be read as average error for a particular Kernel 

(the row) and (j,k) nearest neighbour (column). The values in grey and bold emphasize the 

best results obtained. 
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5.2.1. Dichloromethane 

Kernels 
Nearest Neighbour (j,k) 

1,1 1,3 1,5 1,7 

 

3,1 3,3 3,5 3,7 

 

5,1 5,3 5,5 5,7 

Poly1 0.275 0.178 0.173 0.295 0.437 0.308 0.27 0.293 0.487 0.397 0.3 0.305 

Poly2 0.27 0.2 0.175 0.283 0.437 0.315 0.265 0.283 0.487 0.385 0.29 0.285 

RBF 0.275 0.125 0.097 0.18 0.462 0.31 0.235 0.222 0.515 0.408 0.285 0.245 

SLK 0.305 0.185 0.173 0.25 0.445 0.32 0.28 0.252 0.482 0.4 0.308 0.265 

WSLK 0.272 0.205 0.283 0.327 0.392 0.22 0.298 0.355 0.497 0.335 0.332 0.342 

Table 7: One-class Kernel-based j+kNN results for Dichloromethane Data 

The above tabular results can be presented in graphical form as shown in Figure 24 (a), (b) 

and (c). 
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(b) 

 

(c) 

Figure 24: Effect of varying j and k Nearest Neighbours on different Kernels for Dichloromethane Data 

Table 7 suggests that the lowest value of error is obtained for j=1 and k=5 for the one-class 

RBF Kernel. Figure 24 shows the effect of increasing k neighbours with fixed value of j. 

When the value of k is increased error initially decreases but after certain value of k it tends to 

increase. A different view is to look at error values by fixing k neighbours and increasing j. 

Doing so, in general, tend to increase error for almost all the kernels.  

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

3,1 3,3 3,5 3,7

A
v

e
ra

g
e

 E
rr

o
r

Nearest Neighbour (j,k)

Poly1

Poly2

RBF

SLK

WSLK

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

5,1 5,3 5,5 5,7

A
v

e
ra

g
e

 E
rr

o
r

Nearest Neighbour (j,k)

Poly1

Poly2

RBF

SLK

WSLK



79 

 

5.2.2. Trichloroethane 

Table 8 shows the KOCJKNN results for Trichloroethane data.  

Kernels 
Nearest Neighbours (j,k) 

1,1 1,3 1,5 1,7 

 

3,1 3,3 3,5 3,7 

 

5,1 5,3 5,5 5,7 

Poly1 0.256 0.198 0.222 0.322 0.374 0.267 0.257 0.322 0.485 0.374 0.339 0.335 

Poly2 0.267 0.198 0.23 0.326 0.374 0.278 0.263 0.319 0.485 0.376 0.346 0.354 

RBF 0.256 0.154 0.139 0.178 0.426 0.283 0.207 0.204 0.55 0.435 0.326 0.267 

SLK 0.276 0.207 0.239 0.333 0.391 0.281 0.28 0.331 0.481 0.363 0.331 0.335 

WSLK 0.265 0.209 0.309 0.398 0.411 0.28 0.293 0.367 0.487 0.394 0.326 0.346 

Table 8: One-class Kernel-based j+kNN results for Trichloroethane 

Figure 25 (a), (b) and (c) presents the above results in graphical form. 
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(b) 

 

(c) 

Figure 25: Effect of varying j and k Nearest Neighbours on different Kernels for Trichloroethane Data 

From Table 8 it can be seen that RBF kernel gave the lowest error rates at j=1 and k=5. 

Figure 25 shows the effect of fixed j nearest neighbours with increasing k for all kernels. We 

observe that, for almost all kernels, increasing the value of k initially decreases the error but 

after certain value of k the error gradually increases.  
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5.2.3. Chloroform 

The classification results of KOCJKNN for chloroform data are shown in Table 9 

Kernels 
Nearest Neighbour (j,k) 

1,1 1,3 1,5 1,7 

 

3,1 3,3 3,5 3,7 

 

5,1 5,3 5,5 5,7 

Poly1 0.287 0.22 0.243 0.333 0.411 0.328 0.296 0.339 0.48 0.385 0.35 0.363 

Poly2 0.278 0.222 0.248 0.328 0.411 0.328 0.298 0.331 0.483 0.389 0.348 0.361 

RBF 0.287 0.181 0.143 0.198 0.472 0.341 0.25 0.263 0.572 0.45 0.346 0.33 

SLK 0.259 0.211 0.237 0.317 0.406 0.32 0.289 0.343 0.481 0.374 0.341 0.35 

WSLK 0.287 0.22 0.243 0.333 0.411 0.328 0.296 0.339 0.48 0.385 0.35 0.363 

Table 9: One-class Kernel-based j+kNN results for Chloroform Data 

These tabular results are presented graphically in Figure 26 (a), (b) and (c) 
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(b) 

 

(c) 

Figure 26: Effect of varying j and k Nearest Neighbours on different Kernels for Chloroform Data 

It can be seen from Table 9 that RBF kernel gave the lowest error rate at j=1 and k=5. Figure 

26 shows that for fixed j neighbours and increasing k, the value of error initially reduces but 

as k increases, the error also increases. This trend is similar for all kernels.  
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5.2.4. ChlorinatedOrNot 

The classification results for ChlroinatedOrNot using KOCJKNN are shown in Table 10. 

Kernels 
Nearest Neighbours (k,j) 

1,1 1,3 1,5 1,7 

 

3,1 3,3 3,5 3,7 

 

5,1 5,3 5,5 5,7 

Poly1 0.236 0.141 0.112 0.1 0.399 0.271 0.209 0.177 0.479 0.378 0.306 0.251 

Poly2 0.23 0.14 0.119 0.111 0.396 0.278 0.214 0.174 0.474 0.385 0.302 0.253 

RBF 0.236 0.124 0.079 0.059 0.41 0.275 0.2 0.162 0.491 0.387 0.308 0.249 

SLK 0.238 0.151 0.123 0.112 0.407 0.287 0.219 0.192 0.477 0.382 0.308 0.265 

Table 10: One-class Kernel-based j+kNN results for ChlorinatedOrNot 

The above tabular results are presented in graphical form in Figure 27 (a), (b) and (c) 
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(b) 

 

(c) 

Figure 27: Effect of varying j and k Nearest Neighbours on different Kernels for ChlorintedOrNot data 

Table 10 shows the results of ChlroinatedOrNot data set. The lowest value of error is 

obtained with RBF kernel for j=1 and k=7.  Figure 27 shows the effect of fixed j neighbours 

with increasing value of k neighbours. As the value of k is increased the error shows a 

decreasing trend for all kernels with RBF kernel giving the lowest error rates. Alternatively, it 

can also be observed from Table 10 that by fixing k neighbours and increasing j neighbours, 

in all kernels, the error increases. The error rates for this dataset are very low in comparison 

to other three chlorinated solvent datasets, because here the task is much simpler to find only 
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the presence or absence of any chlorinated solvent in a mixture and not individual chlorinated 

solvents. 

5.2.5. Analysis of Results 

We present our analysis of results based on the following criteria: 

 Increasing the number of k nearest neighbours 

From Figure 24, Figure 25, Figure 26 and Figure 27 we observe a common trend that for any 

given j nearest neighbours  (for almost all kernels),  increasing the value of k nearest 

neighbour decreases the error rates till a particular value after which it error tends to increase. 

This is due to the fact that some of the nearest neighbours are quite close to each other, 

however when the number of neighbours are increased the classifier finds far away samples 

and this leads to decrease in accuracy. 

 Increasing the number of j nearest neighbours 

From Figure 24, Figure 25, Figure 26 and Figure 27 we observe that for any given kernel and 

k nearest neighbour, increasing j nearest neighbours increases the classification error. This 

trend is common almost all the data. The reason for this is that the classifier finds nearest 

neighbours that are farther away and lead to bad classification results. 

 On Using Different Kernels 

From Table 7, Table 8, Table 9 and Table 10 we observe that for any given k and j nearest 

neighbours, One-class RBF Kernel gave the lowest error rates for all the four datasets studied.  

By looking at the overall results, we can infer that RBF Kernel when used as distance metric 

for implementing KOCJKNN gives the lowest values of errors at j=1 and k=5 or k=7. This 

experiment show that a one-class KOCJKNN approach performs better when j=1. Increasing 

the value of j neighbours is detrimental for this data set‟s classification accuracy. However 

increasing the value of k nearest neighbours to a certain limit may boost the accuracy. We 

also deduce that for KOCJKNN classifier, RBF Kernel is much better in performance in 

comparison to the Polynomial Kernel of degree 1 (which is equivalent to Euclidean metric) 

and other kernels considered. In all the chlorinated datasets studied, only the RBF Kernel 

performs significantly better than other kernels. In fact, the quadratic polynomial and spectral 

kernels perform no better than the linear kernel which is directly equivalent to the standard 

Euclidean metric. Moreover, the spectral kernels that give significantly better performance in 
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the spectral search setting in comparison to Euclidean metric, do not perform any better than 

it in the one-class KNN setting.  

5.2.6. Effect of Varying Kernel Width in RBF Kernel  

In Section 5.2.5 we observe that RBF kernel (on default setting) suits the most as a distance 

metric in the implementation of One-class Nearest Neighbour classifier for the chlorinated 

solvent data set. To study the effect of varying width of RBF kernel we extended our 

experiment and results are shown below. 

In the following figures RBF1, RBF5, RBF25 and RBF100 corresponds to RBF kernel with 

width, =1, 5, 25 and 100. 

 

Figure 28: RBF Kernel with different widths for Dichloromethane 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1,1 1,3 1,5 1,7 3,1 3,3 3,5 3,7 5,1 5,3 5,5 5,7

A
v

e
ra

g
e

 E
rr

o
r

Nearest Neighbour (j,k)

Dichloromethane

RBF1

RBF5

RBF25

RBF100



87 

 

 

Figure 29: RBF Kernel with different widths for Trichloroethane 

 

Figure 30: RBF Kernel with different widths for Chloroform 
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Figure 31: RBF Kernel with different widths for ChlorinatedORnot 

The same inferences can be drawn by increasing k and j nearest neighbours. The best results 

came when j=1 and k=5 or 7. An important point to note is that increasing the kernel width 

does not necessarily improves the error rates. In fact, most of the time kernel width, =1 gave 

the lowest error rates. This behaviour may be because the chlorinated solvent data is dense in 

localized regions and beyond that it gets sparse. 

5.3. Conclusions and Future Work 

We can summarize our key research contributions as follows: 
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open research areas in OCC that should be of interest to researchers working in this 

field. 

 We studied various similarity metrics for effective spectral library search and 
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more specific to the spectroscopic data. We conducted our experiments on the real 

world Chlorinated Solvents data that contains Raman Spectra of various chlorinated 

solvents present in pure and mixture form. Our results suggest that domain specific 

(dis)similarity metrics perform much better than the standard search algorithms. 

 We adapted the use of the kernels as distance metric to the task of One-class 

classification and use them to induce extended One-class j+k nearest neighbour 

classifier for the identification of chlorinated solvents. Our experiments showed that 

for j=1 and k=5 or 7 we get low error rates for the all four variants of chlorinated 

solvents we created. This indicates that in higher dimension data gets sparse and 

considering more neighbourhoods proves detrimental to classification accuracy. 

Moreover, RBF kernels proved to be the best choice. We further varied the kernel 

width,, of the RBF kernel in the proposed one-class nearest neighbour framework 

and deduce that low values of  can provide low error rates.  

A surprising finding arises from the experiments that the spectral kernels works well in the 

spectral search setting, however, they do not perform well in the one class KNN setting when 

used as distance metric. In future, we would like to investigate this deviation of behaviour of 

the spectral kernels. 

We would like to test our proposed kernel-based nearest neighbour approach on other 

spectroscopic data. We would also like to explore new kernels, especially those which are 

specific to the domain of spectroscopy because our experiments show that domain specific 

kernels perform better than conventional ones. We would like to test our methodology on 

„unexpected outliers‟ as studied by Glavin and Madden [103]. According to the authors, 

unexpected outliers can be defined as those outliers that do not come from the same 

distribution of data as in normal training and outlier data set. For example, for the chlorinated 

solvents data set, mixtures of sugars, salts etc can be considered „unexpected outliers‟, 

because they do not come from the same set of chlorinated solvents. 
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