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Abstract

Prediction of next bit of pseudo-random sequence is a critical issue in cryptography. If a
pseudo-random sequence can be predicted then cipher / code is considered to be broken.
In this paper we envisage data mining perspective to explore the relationships and
regularities between the bits of pseudo-random sequence that paves the way for the
prediction of subsequent next bits. We present the use of decision tree algorithm (C4.5)
to predict the next bit of pseudo-random sequences generated by Linear Feedback Shift
Registers (LFSR). We also successfully constructed the exact primitive polynomials that
generate maximal length pseudo-random sequences of LFSRs using the association
rules produced from our classificatory prediction approach. This technique is independ-
ent of the parameters and domain (cryptographic) used by the pseudo-random genera-
tor.

1 Introduction

Random number generation forms the core of information security in any cryptographic appli-
cation. Unfortunately, there exists no technique to generate true random numbers, especially
on computers that are typically designed to be deterministic. The best a computer can produce
are pseudo-random numbers, which are generated from some random initial values. The
pseudo-random numbers looks like random numbers and have good statistical properties
[Knuth, 1997]. The period of pseudo-random sequence should be very high and should not re-
peat for a large length. A pseudo-random bit generator (PRBG) is a deterministic algorithm
which given a truly-random binary sequence of length n, produces a binary sequence of length



I(n) that appears to be random, with /() being a polynomial. The input to the PRBG is called the
seed, and the output is called a pseudo-random bit sequence. Normally in cryptographic appli-
cations, random number is a number that cannot be predicted by an eavesdropper before it is
generated. Cryptographically secure pseudo-random sequence must be unpredictable. It must
be computationally infeasible to predict what the next random bit will be, given complete
knowledge of the algorithm or hardware generating the sequence and all of the previous bits in
the stream [Schneier, 1996]. Typically, if the pseudo-random numbers are to be in the range

[0...n—1], an adversary cannot predict that number with probability slightly better than % LA

more formal definition is given by Blum et al [Blum et al, 1984]. Let g:{0.1}' - {0,1}1(") be an
efficient (computable in polynomial time) function, with /() being a polynomial with /(n)>n. Let
Xand 7be random variables uniformly distributed respectively on {0,1}' and on {I,...,/(n)}. Then

£1s a next bit unpredictable PRBG, if for all adversaries A running in polynomial time the suc-
cess probability (prediction probability) of 4 for gis

P[A(I,g(X ){1““,171}): g(X)1] (ﬁ Vp, where pis a polynomial.

This paper deals with prediction of pseudo-random bits using data mining perspective. As men-
tioned in Friedman [Friedman et al, 1997], data mining is at best a vaguely defined field; its
definition depends largely on the background and views of the definer. The view of Fayyad
[Fayyad, 1997] is that any algorithm that enumerates patterns from data, or fits models to data,
is data mining. Fayyad further viewed data mining to be a single step in a larger process of
knowledge discovery in databases (KDD). KDD is considered to be a more encompassing process
that includes data warehousing, target data selection, data cleaning, pre-processing, transfor-
mation and reduction, data mining, model selection, evaluation and interpretation, and finally
consolidation and use of the extracted “knowledge”. Data mining has applications in various
fields like information retrieval [Can et al, 1987], finance [Kovalerchuck et al, 2000], bio-
informatics [Eisen et al, 1998] etc.

The paper is organized is follows. Section 2 presents an introduction to data mining and C4.5
decision tree algorithm. We present the technique of classificatory prediction in section 3 along
with the methodology we employed for the same. Classificatory prediction for Linear Feedback
Shift Register is detailed in section 4. We conclude our presentation in section 5.

2 Data mining: Introduction to C4.5

As discussed above data mining aims at finding patterns from the data set. Our proposed ap-
proach belongs to inductive paradigm, because we try to generalize a concept (to predict next
bit; 0 or 1) from set of examples and counter examples of the concept. The idea is to generate
concept description that can predict the value of the class for all the previously seen instances.

Most of the data mining algorithms build decision trees, association rules as a result of their
classification process. There are variety of methods, tools and software that work in this way,
and they differ in the manner they construct these rules. For example, they might try to build



production rules in the form of nested "if ..., then..." statements. There exist many inductive
algorithms like CART [Breiman, 1984], ID3 [Quinlan, 1986], C4.5 [Quinlan, 1993], SLIQ
[Agrawal,1996]. We have chosen C4.5 algorithm as decision tree technique for classificatory
prediction of pseudo-random sequences generated by LFSRs. C4.5 induces classification rules
from training sets to form decision trees. The decision tree is defined as a tree in which each
node is an attribute, each arc from this node is a possible value for that attribute, and each leaf
is the expected value for the category of the pattern obtained following all the path from the
root of the tree to that leaf. The general idea to construct a decision tree is to decide at each
node which of the non-used attributes is most informative for the classification of all the pat-
terns represented by the path from the root to that node. Applying this idea, recursively, for
every node generates the decision tree. C4.5 uses the concept of gain ratio to make a tree of
classificatory decisions with respect to a previously chosen target classification. The information
gain can be described as the effective decrease in entropy resulting from making a choice as to
which attribute to use and at what level. By considering which of the attributes is best for dis-
criminating among cases at a particular node in the tree, we can build up a tree of decisions
that allows us to navigate from the root of the tree to a leaf node by continually examining at-
tributes.

C4.5 is an extension of the basic ID3 algorithm designed by Quinlan to address many issues not
dealt with by ID3 like avoiding over fitting of the data, determining how deeply to grow a deci-
sion tree, reduced error pruning, post-pruning after induction of trees to increase accuracy,
handling continuous attributes e.g. temperature, handling training data with missing attribute
values etc. C4.5 is a widely used decision tree based classification algorithm with applications in
various scientific areas. The C4.5 package with full source code is freely available on the Inter-
net [Web site]. The decision trees generated by C4.5 algorithm can be easily analyzed and in-
terpreted. The package allows the decision tree to be simplified, using pruning techniques,
which reduces the size of the tree according to a user-defined level.

2.1 C4.5 package

We downloaded the C4.5 package Release 8 for Unix/Linux version [Website]. This package con-
sists of four programs viz. C4.5, C4.5rules, Consult and Consultr. We used the C4.5 program
to generate decision trees from a set of examples. We also used C4.6rules program to generate
association rules from the decision trees generated by C4.5 program.

3 Classificatory Prediction

As presented by Stinson [Stinson, 1995] the next bit predictor is an algorithm, when given all
previous bits generated from a pseudo-random generator (PRBG), it can efficiently predict the
next bit with higher than chance probability. Suppose we have a pseudo-random sequence of

bits p,,p,.... p, generated by a PRBG, then a next bit predictor should compute the p,,,” bit
given the previous ones, with probability greater than % without knowing the particular set of

parameters used by the PRBG.



We concentrate our efforts to find patterns and regularities in the binary pseudo-random se-
quences using the data mining perspective. Here, the advantage lies in the fact that no a priori
cryptographic domain knowledge is required to predict the next bits. We translate the technique
of next bit prediction as a classification problem (classificatory prediction), to adjudge prediction
accuracy with the bits to be predicted in hand. We explain the classificatory prediction problem
and the methodology adopted as follows.

Methodology adopted: -

Suppose we have n bits generated from a PRBG i.e. p,,p,,...p, . Choose a suitable block size
(D) as a training pattern (P) associated with a class label (CL — 0 or 1) such that

P =pi,pr,P3---Pp CL— pyy

Py =py, D3 P4 Do CL— ppiy

Pnfh =Pu-bs Pn-b+1s-++ Pn-1 CL—>pn

The n-b patterns from P to Pab serves as the pattern space for the classification model we have
adopted. Out of these n-b patterns an appropriate number of patterns (o) are used for learning
(training the C4.5 network) and the remaining patterns are used to predict (z-b-) bits of the
pseudo-random sequence. The learning process is dependent on a number of prefixed block sizes
so as to accommodate maximum possible regularities, patterns and bit combinations of the
pseudo-random sequence.

To use C4.5 package as a next bit predictor for classification problem, we supply o patterns as
training data set, and n-b-o patterns as test data for the prediction of n-b-o bits. Intuitively, the
size of the training data set should be sufficient to capture maximum regularities and extract
generalized conclusions that yield high degree of prediction. The algorithmic steps followed are
presented below: -

Algorithm: Classificatory. Prediction(pi,n)
Input: pi— the binary pseudo-random sequence, n - the length of the pseudo-random sequence
Output: Classificatory prediction results on test data

1. Select a suitable block size ()

2. Generate m b blocks and associate every pattern with their class label, i.e. next bit (de-
scribed in section 3)

P =p.py.p3-.-pp CL— pyy

Py =py.p3.P4 - P CL—> p,iy

Pn—b = Pn-b>Pn-b+15+++ Pn-1 CL%[)”



Select o number of patterns for training
Select remaining n- b o number of patterns as test data

Run the C4.5program to generate decision trees

AR

Run the C4.5rules program to generate the association rules from the decision trees gen-
erated by C4.5 program.

7. Choose the simplified simplified decision trees along with association rule set for further
analysis

In the succeeding section we show the use of our proposed methodology for classificatory predic-
tion of next bit of pseudo-random sequences generated by various degree of LFSRs. We also pre-
sent an empirical formulation of the construction of primitive polynomials that defines maximal
period LFSR.

4 Classificatory Prediction of Linear Feedback Shift Register

The simplest kind of feedback shift register is the Linear Feedback Shift Register (LFSR)
[Schneier, 1996]. The feedback function is simply the XOR of certain bits (taps) in the register;
the list of these bits is called a tap sequence. The degree of the polynomial is the length of the
shift register (say J. The period of a LFSR is the length of the output sequence before it starts
repeating. In order for an LFSR to have maximal period the polynomial formed from a tap se-
quence plus the constant 1 must be a primitive polynomial mod 2. A primitive polynomial of

om=

degree m is an irreducible polynomial that divides x 'y 1, but not x' +1 for any ¢ that divides

2" —1 [Golomb, 1982]. Cryptographers like to analyze the sequences generated from LFSRs to
convince themselves that they are random enough to be secure. Barlekamp-Massey algorithm
[Massey, 1969] can determine an LFSR of length / after examining 2/ bits of the key stream.
Once LFSR is determined (or the primitive polynomial is constructed), the cipher is considered
to be broken.

Hernandez et al [Hernandez et al, 2000] reported a General next bit Predictor (GNBP) for pre-
dicting next bit for LFSR by converting the next bit predictor theoretical model into a classifica-
tion problem using C4.5 as inductive algorithm. They showed the utility of their process by con-
sidering one particular primitive polynomial (xls +x! +1) and predicting the subsequent next
bits. The claims made in their research work were not comprehensive. The interpretation of
their results cannot be generalized. They do not comment about the block size required to pre-
dict correctly. We analyze the same problem in a more comprehensive manner. We considered
various primitive polynomials ranging from degree 10 to 17 to carry out our analysis. We looked
into the problem of classificatory prediction in two-dimensional manner as

a) To check the minimum block size required to learn correctly from the pattern space

b) To check how many bits are needed to learn from the pattern space such that the predic-
tion is maximally correct



We took various primitive polynomials (table 1) to start the process. As discussed in section 3,
we generated n-b patterns for each of these polynomials respectively, where n is the period of

the LFSR of degree di.e. n=2¢ —1and b1is the arbitrarily chosen block size. We carried out the
experiment to check the minimum size of block required to learn correctly using C4.5 algorithm.
At first, we took 99% of the pattern space for training and the remaining 1% for testing the
classificatory prediction accuracy. It has been found experimentally that for a LFSR of degree d,
the minimum block size required is d. Hernandez et al claimed that larger the block size, the
better the prediction. They presented a value of block length equal to 10*10g(n) to distinguish

an unpredictable source from a predictable one. We agree to the first claim, but they did not
justify this numerically. Experimentally we found a lower bound for the block size for maximum
prediction. The results are summarized in table 1.

It can be seen from table 1 that if the block size for a primitive polynomial is less than its degree
then the prediction accuracy is equivalent to chance probability. Hence from this point onwards
it is established that for a primitive polynomial of degree d, the minimum block size will be d for
accurate classificatory prediction. If we further increase the block size, there will be no signifi-
cant change in the formation of decision trees and association rules as generated by C4.5 algo-
rithm.

Degree Blo Classifica- Bloc Classifi- Bloc Classifica-
of - ck toxjy Pre- k cat:or_y k tor:y Pre-
1:)(:1113;:1- Polynomial chosen size d;;:‘iloc;n size Przci;::)t:on size d;:-:-?rn
(d) (&) (%age) ) (%age) &) (%age)
10 20+ x% 41 9 36.4 10 0 11 0
11 x4 10 52.4 11 0 12 0
12 Pl extexrr | 1 56.1 12 0 13 0
13 Pt x| 12 50.0 13 0 14 0
14 M+ x4 | 13 56.1 14 0 15 0
15 x4 x+l 14 50.0 15 0 16 0
16 e | 15 51.5 16 0 17 0
17(a) PeE e | 16 50.5 17 0 18 0
17(b) 27 +1 16 54.4 17 0 18 0
17(c) K+ x% 41 16 56.6 17 0 18 0

Table 1



The next important point to consider is to investigate that how many bits are required to learn
from the pseudo-random output of LFSR to get correct prediction. To check these results we
performed a comprehensive analysis for primitive polynomials ranging from degree 10 to 17.
We fix the block size as equal to d. We generated 25 different pseudorandom sequences corre-
sponding to every primitive polynomial by varying its initial settings. We take only the upper
bounds results into account. Hernandez et al claimed that experimentally they found that train-
ing patterns needed to predict accurately is close to 1% of period of generator. Their analysis is
based on a particular LFSR of degree 15; hence limitations exist in their claim.

We define an index Bit Prediction Ratio (BPR), to estimate the ratio of minimum bits (44) re-
quired for correct classificatory prediction to the period of primitive polynomial (2¢ —1) of the

LFSR. Mathematically, @BPR=-——-<x100

Experimentally, we found that BPR value for the under considered primitive polynomials varies
from 0.13% to 14.23%. This variation in the values of BPR is due to the number of taps in
LFSRs. The higher the number of taps the more the number of bits required for correct classifi-
catory prediction. We can also infer that x+5-1 bits are required to predict the next n-x b+1 bits
correctly. Table 2 summarizes this result.

Degree of Mirtx)iirtr;um

primitive Training Patterns BPR
polynomial (d) neﬁd,

10 70 80 7.82
' 61 72 3.51
12 571 583 14.23
13 899 912 11.13
14 1473 1487 9.07
o 81 96 0.29
16 2558 2574 3.92
17(a) 159 176 0.13
17(b) 319 336 0.25
17(c) 319 336 0.25

Table 2



4.1 Primitive polynomial construction of LFSR

C4.5 makes classification decision on the basis of the decision trees and association rules gener-
ated from the learning data. We observe that the primitive polynomial can be determined from
the pruned trees but not the way Hernandez et al showed. We observed experimentally that all
the production rules lead to primitive polynomial generation in a different fashion. The empiri-
cal formulation of construction of primitive polynomial for any n degree LFSR can be summa-
rized as under.

(a, b, cd ... - Significant bits / attributes from association rules
(n-a, n-b, nc, n-d, ... - Subtract from length of LFSR
(n-a+1, n-b+1, n-c+1, n-d+1,...) -Add 1

n—a+l | _n—b+l | _n—c+l | n—d+l

Hence, x +x +x +x +...+1, is the required primitive polynomial.

The above rules are generated when block size was equal to d. It the block size exceeds d, the
rules generated are equivalent, we only have to subtract the number of exceeding bits from the
block size d to get the required primitive polynomial. Hence, Iif significant bits are known then
the exact primitive polynomial can be constructed. The rule sets that we discovered for different
polynomial are depicted in the form of significant attributes in table 3

As an example let us consider the primitive polynomial of degree 10 (x'° + x*> +1) as presented
in table 1. The simplified association rules generated from decision trees after pruning are

If bit at position 1 is O and bit at position 8 is 1 then class label is 1
If bit at position 1 is 1 and bit at position 8 is 0 then class label is 1
If bit at position 1 is 1 and bit at position 8 is 1 then class label is 0
If bit at position 1 is 0 and bit at position 8 is 0 then class label is 0

C4.5rules program identifies bit 1 and 8 as significant attributes or bits. Here, we can infer that
class label = bit 1 XOR bit8

Now consider bit 1 and 8 as the significant bits obtained from the association rules generated
from decision trees. Since the rules are generated for a 10-degree LFSR, therefore subtract
them from 10 and add 1 to them to get the desired primitive polynomial. The steps can be sum-
marized as

(1, ® - Significant bits from association rules
(9, 9 - Subtract from 10 (length of LFSR)
(10, - Add 1

Hence, X+ x* +1 is the required polynomial.

We conclude from the above experiments and discussions that if we analyze of the results pre-
sented in table 1, 2 and 3 we can know a lot about the pseudo random sequence generated from



an LFSR. We can estimate the minimum number of bits and determine the block size (.e.
length of LFSR) for correct classificatory prediction. We can also construct the primitive poly-
nomial that generates the maximal period LFSR.

e x| Rules gener
polynomial (d) ated
10 1,8
11 1,10

12 1,7,9,12

13 1,10,11, 13

14 1,10, 12, 14
15 1,15

16 1,12, 14,15
17(a) 1,15
17(b) 1,13
17(c) 1,12

Table 3

5. Conclusion

We propose an alternative approach to predict the next bit of pseudo-random binary sequences
generated by LFSR based pseudo-random generators using C4.5 as decision tree algorithm. We
show the utility of our approach for prediction of next bit of pseudo-random sequences gener-
ated by LFSRs by transforming the next bit prediction problem as classificatory prediction prob-
lem. We were successful in determining the primitive polynomial that defines the maximal pe-
riod LFSR using the association rules generated from decision trees produced during classifica-
tory prediction. Although, there exist techniques to predict and crypt analyze the above consid-
ered LFSR based PRBG’s but they are domain specific. The advantage of our proposed approach
is that it is domain independent and does not rely on the type of generator used and the pa-
rameters used by PRBG. We achieved high classificatory prediction accuracy for LFSRs, which
proves that relationship and regularities exists between the pseudo-random bits. And therefore,
LFSR based pseudo-random sequences should not hold priority in the wish list of a cryptogra-
pher. We would like to extend this work for other type of PRBG’s and study the association
rules thus produced. We hope to use this approach to check the classificatory prediction accu-
racy of other cryptographically secure pseudo-random number generators. We may achieve less
prediction accuracy, in some cases, but sledging in this direction we will reduce the complexity
domain of a cryptanalyst so that he has a reduced set of bits that can be subjected to a brute
force attack in real time. Off course, this is not a simple task but if we can find some regularity



and patterns in cryptographically secure pseudo-random generators then it will definitely be
conducive aid to the cryptanalyst.
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