
Intelligent Data Analysis 10 (2006) 539–554 539
IOS Press

Analyzing a class of pseudo-random bit
generator through inductive machine learning
paradigm

Shri Kanta and Shehroz S. Khanb

aScientific Analysis Group, Defence R&D Organization, Metcalfe House Complex, Delhi-54, India
E-mail: shrikant@scientist.com
bAmerica Online India Pvt. Ltd, RMZ Titanium, 3rd Floor, 135, Airport Road, Bangalore-560017,
Karnataka, India
Tel.: +91 9845935310; E-mail: shehrozkhan@rediffmail.com

Received 11 October 2005

Revised 22 December 2005

Accepted 19 February 2006

Abstract. Random number generation is an integral part of strong cipher systems. If a pseudo-random sequence can be
predicted with better than chance probability then the generator is considered to be cryptographically weak. This paper deals
with next bit prediction of pseudo-random binary sequences generated by Linear Feedback Shift Register (LFSR) and LFSR-
based Pseudo-Random Bit Generators (PRBG), using inductive Machine Learning (ML) paradigm, namely C4.5 the most
common and widely used inductive data mining algorithm. This machine learning technique has been introduced to convert
the theoretical prediction problem into a classification problem, which we coined asClassificatory Prediction problem. We
further extended the use of this technique to predict next bit without having any knowledge of subsequent bits of the PRBG
and can be termed as trueNext Bit Predictor. The technique used is independent of the parameters and domain knowledge of
the pseudo-random bit generators. The present study is a comprehensive extension of the work done by Hernandez et al. [15].
We performed meticulous experiments (over wide range of LFSRs) and came out with a more explanatory analysis. Our
classificatory prediction results paved the way for the evolution of the next bit prediction model.

Keywords: Machine learning, classificatory prediction problem, next-bit prediction, stream cipher, linear feedback shift register,
pseudo random bit generator

1. Introduction

Random number generation is a critical issue in cryptography. Generating true random numbers, espe-
cially on computers that are typically designed to be deterministic is a real challenge in the cryptographic
world. The best a computer can produce are pseudo-random numbers, which are generated from some
random initial values. The pseudo-random numbers look like random numbers and have good statistical
properties [5]. The period of the pseudo-random number generator should be very high and should
not repeat for a large length. Normally in cryptographic applications, random number is a number that
cannot be predicted by an eavesdropper before it is generated. It must be computationally infeasible to
predict the next bit of cryptographically secure pseudo-random sequences, given complete knowledge

1088-467X/06/$17.00 2006 – IOS Press and the authors. All rights reserved

540 S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator

true ith
 bit

Predicted ith
bit

PRBG g()

X random seed

[0, 1, 1, 0, 1, 0, 0, 1 1] output sequence

Adversary A ()

i is randomly chosen, the first i-
1 bits are given to A()

Are the two bits equal?

Fig. 1. Theoretical Next-Bit Prediction Model.

of the algorithm or hardware generating the sequence and all of the previous bits in the stream [1].
Typically, if the pseudo-random numbers are to be in the range[OK n − 1], an adversary cannot predict
that number with probability slightly better than1/n (i.e. chance probability). A more formal definition is

given in [23]. Letg : {0, 1}n → {0, 1}l(n) be an efficient (computable in polynomial time) function,l(n)
being a polynomial withl(n)>n. LetX andI be random variables uniformly distributed respectively on
{0, 1}n and on{1, . . . , l (n)}. Theng is a next bit unpredictable PRBG, if for all adversariesA running
in polynomial time the success probability (prediction probability) ofA for g is

P
[
A

(
I, g (X){1,...,I−1}

)
= g (X)I

]
〈 1

p (n)
∀p,

wherep is a polynomial.
Figure 1 explains the working of a next bit predictor. First a seed and a numberi-1 of bits are randomly

chosen; the adversary must then predict theith bit with the complete knowledge of firsti-1 bits as input,
in polynomial time.

Machine learning techniques are very widely used by data mining community for knowledge discovery,
pattern enumeration and acquiring the predictive ability/knowledge in real-life applications. This paper
deals with prediction of next bit of a pseudo-random bit generator of a class of Pseudo-random Number
Bit Generator namely Linear Feedback Shift Register (LFSR) and LFSR-based PRBGs, using Inductive
Machine Learning (ML) paradigm [21].

Hernandez et al. [15] reported a General Next Bit Predictor (GNBP) for predicting next bit for LFSR by
converting the next bit predictor theoretical model into a classification problem using C4.5 as inductive
algorithm. They have used their GNBP for one particular primitive polynomial

(
x15 + x1 + 1

)
and

depicted the prediction rule for that polynomial to predict the subsequent next bits. The claims made in
their research work are not comprehensive; hence the interpretation of their results can not be generalized.
S.S. Khan [27] extended this work on various other LFSRs and came out with an analysis to completely
break LFSRs by constructing the generating primitive polynomial using decision trees. The present
work is a more comprehensive, exhaustive and analytical study of both the above mentioned works and
introduces the concept and algorithm for the ‘next bit prediction’, to assist an analyst in a scenario when
he is left with fewer amount of bits and has to predict the future bits, without possessing the domain
knowledge and parameters involved in the PRBG.

S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator 541

The rationale behind this work is to learn and extract knowledge from the bit sequences generated by
LFSR based PRBG’s and to be able to predict the future output sequences and hence to capture it’s all
parameters for solution. The analytical study has been carried out without any domain knowledge and
apriori knowledge of parameter of the LFSR, so that this model can be generalized for analysis of any
stream cipher crypto primitive. The aim is to find regularities and hidden patterns in the output of key
stream generator i.e. PRBGs and to develop a generalized predictive classification model.

The paper is organized as follows. Section 2 presents a brief introduction to LFSR as a stream cipher.
Section 3 gives an introduction to machine learning, Minimum Description Length (MDL) and C4.5
inductive algorithm. We present the technique of next bit prediction as a classification problem, which
we termed as Classificatory Prediction in Section 4. Classificatory Prediction for Linear Feedback Shift
Register and Geffe generator [1] is detailed in Section 5. Section 6 introduces the concept and presents
the algorithm for next bit prediction. We conclude our presentation in Section 7.

2. Linear feedback shift register (LFSR) as stream cipher

Before introducing stream cipher and LFSR we introduce here the basic definition of cryptography,
because stream cipher is one of the prevalent methods for cryptography. Cryptography is a science of
transforming the plain messages into the disguised form in such a way so that an unauthorized receiver
should not be able to deduce any information out of it [1,3]. Cryptography is categorized as symmetric
key and asymmetric key on the basis of whether the sender and receiver uses the same key or different
key. Since the present work is more related to symmetric key cryptography we will describe it briefly as
follows.

In symmetric key cryptography plaintext bitsp1, p2, . . . , pn are transformed into ciphertext bits
c1, c2, . . . , cn by using certain invertible transformation together with akey. These transformation
mechanisms are broadly categorized as block cipher cryptography and stream cipher cryptography.
Block cipher specifies a memory-less device which transforms a message block [p 1, p2, . . . , pn] under
control of a key into cipher text block [c1, c2, . . . , cn], where the message text alphabet and cipher text
alphabet usually are identical. A stream cipher is a device that transforms each message bitp i into a
cipher bitci by means of a function which depends on both the secret keyK and the internal state of the
stream cipher at timei. In general the stream ciphers algorithm converts eachp i into ci as follows

ci = mi ⊗ ki, (⊗ is Exlusive-OR)

whereki’s are generated through a key stream generator. In general, a symmetric key cipher is considered
secure if there is no method less expensive (in time, memory requirements, etc) than brute force. Abrute
force attack is a method of defeating a cryptographic scheme by trying a large number of possibilities;
for example, exhaustively working through all possible keys in order to decrypt a message. In most
schemes, the theoretical possibility of a brute force attack is recognised, but it is set up in such a way
that it would be computationally infeasible to carry out. In a brute force attack, the expected number of
trials before the correct key is found is equal to half the size of the key space. For example, if there are
264 possible keys, a brute force attack would, on average, be expected to find a key after 263 trials. The
security of stream cipher depends entirely on the non-linear structure of the key stream generator. If the
generator’s output is endless stream of 0’s or 1’s then theci’s andmi’s are same or merely transpose will
give usmi’s. If it produces long repeating bit pattern the algorithm will be a simple XOR with negligible
security. If the generator spits out an endless stream of random bits (true random), then it behave like a

542 S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator

Fig. 2. Linear Feedback Shift Register.

Vernam cipher [22]. In such ciphers the device emits a random sequence where each bit is equally likely
to be 0 or 1 independently of the preceding bits. Such system in general is impractical due to both key
generation time and key distribution.

The operational disadvantages of such system led to the development of synchronous key stream
generator generating the same key stream at the both end (enciphering and deciphering) under the
influence of the same shared secret key. The basic problem of key stream generator design is to generate
a running keyki with very large period, large linear complexity and uniform distribution properties. The
large period ensure the repetition of not getting the same cipher text for same plain text; the large linear
complexity implies large period and uniform distribution properties frustrate the prediction of next bit
with knowledge of previous bits. One of the most useful devices in the generation of running keys is the
Linear Feedback Shift Register (LFSR).

A linear feedback shift register [1] is a shift register whose input is the exclusive-or (XOR) of some of
its outputs (Fig. 2). The outputs that influence the input are calledtaps. A maximal LFSR produces an
n-sequence (n = 2l−1, wherel is the number of stages i.e. the number of bit positions in the register,
before the shift register returns to its original state and then-bit output sequence repeats), unless it
contains all zeros. The tap sequence of an LFSR can be represented as a polynomial mod 2 – called
the feedback polynomial. For example, if the taps are at 11th, 13th, 14th and 16th bits (Fig. 2), the
polynomial isx16 + x14 + x13 + x11+ 1. If this polynomial is primitive, then the LFSR is maximal. A
primitive polynomial of degreem is an irreducible polynomial that dividesx2m−1

+ 1, but notxt + 1 for
anyt that divides2m − 1 [29].

LFSRs have long been used as a pseudo-random number generator for use in stream ciphers (especially
in military cryptography), due to the ease of construction from simple electromechanical or electronic
circuits, long periods, and very uniformly distributed outputs. J.L. Massey [16], showed that iterative
algorithm introduced by Berlekamp [7] for decoding BCH codes provides general solution to the prob-
lem of synthesizing the shortest linear feedback shift register capable of generating a prescribed finite
sequences of digits. Since the outputs of LFSRs are completely linear, they lead to fairly easy cryptanal-
ysis. Given an output sequence of al stage LFSR, a minimal size LFSR can be easily constructed using
Massey algorithm [16].

3. Machine learning and introduction to C4.5

Machine Learning objectives to develop algorithms that can learn from the observations (data), adapt
its behavior and continuously improve upon that as human intelligence does. Inductive machine learning
is the study of learning by examples so that accurate predictions can be made for future examples.

The Minimum Description Length (MDL) Principle [24] is a relatively recent method for inductive
inference that provides a generic solution to the model selection problem. MDL is based on the following

S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator 543

insight: any regularity in the data can be used to compress the data, i.e. to describe it using fewer symbols
than the number of symbols needed to describe the data literally. The more regularities there are, the
more the data can be compressed. Equating ‘learning’ with ‘finding regularity’, we can therefore say
that the more we are able to compress the data, the more we have learned about the data. The MDL
is widely used for model selection in various machine learning problems. In practice, MDL works
well on inference of decision trees. Among efforts that have been put into development of tree based
classification techniques in recent years, Quinlan and Rivest [17] proposed a method of inferring decision
trees using MDL.

Inductive paradigm in machine learning have many inductive algorithms like CART [8], ID3 [19],
C4.5 [18] and SLIQ [26]. We have chosen C4.5 algorithm as inductive technique for classification and
later for next bit prediction of Linear Feedback Shift Register (LFSR) and LFSR-based PRBGs. C4.5
is a successor of ID3 with some improvement and added capabilities as described in [18]. The main
difference of C4.5 with respect to ID3 are its handling of data with missing values, capability of using
continuous attribute values, minimizing error during pruning and forming rules sets (if then else rules)
from the constructed decision trees.

C4.5 induces classification rules from a training set to form a decision tree. The decision tree is defined
as a tree in which each node is an attribute, each arc from this node is a possible value for that attribute,
and each leaf is the expected value for the category of the pattern obtained following the entire path from
the root of the tree to that leaf. The general idea to construct a decision tree is to decide at each node
which of the non-used attributes is most informative for the classification of all the patterns represented
by the path from the root to that node. Applying this idea, recursively, for every node generates the
decision tree. C4.5 uses the concept of gain ratio [20] to make a tree of classificatory decisions with
respect to a previously chosen target classification. The information gain can be described as the effective
decrease in entropy (usually measured in terms of ‘bits’) resulting from making a choice as to which
attribute to use and at what level. The gain ratio is an information-based measure that takes into account
different numbers (and different probabilities) of test outcomes. LetC denote the number of classes and
p (D, j) the proportion of cases inD that belong to thej th class. The residual uncertainty about the
class to which a case inD belongs can be expressed as

Info (D) = −
C∑

j=1

p (D, j) × log2 (p (D, j))

and the corresponding information gained by a testT with k outcomes as

Gain (D,T) = Info(D) −
k∑

i=1

|Di|
|D| × Info (Di)

The information gained by a test is strongly affected by the number of outcomes and is maximal when
there is one case in each subsetDi. On the other hand, the potential information obtained by partitioning
a set of cases is based on knowing the subsetD i into which a case falls; thissplit information

Split (D,T) = −
k∑

i=1

|Di|
|D| × log2

(|Di|
|D|

)

tends to increase with the number of outcomes of a test. The gain ratio criterion assesses the desirability
of a test as the ratio of its information gain to its split information. The gain ratio of every possible test
is determined and, among those with at least average gain, the split with maximum gain ratio is selected.

544 S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator

In some situations, every possible test splitsD into subsets that have the same class distribution. All
tests then have zero gain, and C4.5 uses this as an additional stopping criterion.

The recursive partitioning strategy above results in trees that are consistent with the training data, if this
is possible. In practical applications data are often noisy – attribute values are incorrectly recorded and
cases are misclassified. Noise leads to overly complex trees that attempt to account for these anomalies.
Most systemsprune the initial tree, identifying sub-trees that contribute little to predictive accuracy and
replacing each by a leaf.

We have chosen inductive paradigm approach of machine learning, because we generate a concept for
Class Label (CL) that is the “next bit either 0 or 1” and then generalize with set of training patterns.
Finally we arrive at a concept description that can predict the value of the class lebel for all the previously
observed patterns.

3.1. C4.5 package

We downloaded the C4.5 package Release 8 for Unix/Linux version [10]. This package consists of
four programs viz.C4.5, C4.5rules, Consult andConsultr. A brief description of each program is given
below

1. C4.5 Program –C4.5 is a program for inducing classification rules in the form of decision trees from
a set of given examples. All trees generated in the process are saved. After each tree is generated,
it is pruned in an attempt to simplify it. The “best” pruned tree is saved in machine-readable form
in a file. All trees produced, both pre-simplification and post-simplification, are evaluated on the
training data. If required, they can also be evaluated on unseen data.

2. C4.5rules – C4.5rules reads the decision tree or trees produced byC4.5 and generate a set of
classification rules from each tree and from all trees together. For each tree that it finds, the
program generates a set of pruned rules, and then sifts this set in an attempt to find the most useful
subset of them. If more than one tree was found, all subsets are then merged and the resulting
composite set of rules is then sifted. The final set of rules is saved in a machine-readable format
in a rules file. Each of the rule sets produced is then evaluated on the original training data and
(optionally) on the test data.

3. Consult – Consult reads a decision tree produced byC4.5 and uses this to classify items whose
description is provided by the user. When all the relevant attributes have been determined,consult
will give one or more classes that the item might belong to. The likelihood of a class may be
indicated by a probability, followed sometimes by a probability interval

4. Consultr: – Consultr reads a rule set produced byC4.5rules and uses this to classify items whose
description is provided by the user. When all relevant attributes have been determined,consultr
will give a class that the item might belong to. The likelihood of the class may be indicated by a
probability.

4. Classificatory Prediction

The next bit predictor as presented in [3], suggests that, an algorithm when, given all previous bits
generated from a pseudo-random generator (PRBG), can efficiently predict the next bit with higher than
chance probability. Suppose we have a pseudo-random sequence of bitsp 1, p2, . . . , pn generated by a
PRBG, then a next bit predictor should compute thepth

n+1 bit given the previous ones, with probability
greater than1/2 (chance probability) without knowing the particular set of parameters used by the PRBG.

S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator 545

We concentrate our efforts to find patterns and regularities in the pseudo-random sequences using the
machine learning technique. Here, the advantage lies in the fact that no a priori domain knowledge is
required to predict the next bit. We propose the technique of next bit prediction in two ways.

1. As a traditional classification problem to predict the future bits of the PRBG which we coined as
Classificatory Prediction problem. The idea is to adjudge the prediction accuracy of the known bits
to be predicted.

2. Once we gain confidence in prediction (through classification) and analyzing the PRBG then we
go for Next Bit Prediction, in which limited bits are needed to predict the unseen bits, which
subsequently paves the way for the future bits to be predicted. We first explain the methodology
adopted forClassificatory Prediction problem.

Methodology adopted: Classificatory Prediction Model:
Considern bits generated from a PRBG arep1, p2, . . . , pn. Choose a suitable block size,b, as a

training pattern (Pi) associated with a Class Label (CL → 0 or 1) such that

P1 = p1, p2, p3, . . . , pb CL → pb+1

P2 = p2, p3, p4, . . . , pb+1 CL → pb+2

...

Pn−b = pn−b, pn−b+1, . . . , pn−1 CL → pn

The n − b patterns fromP1 to Pn−b serves as the pattern space for the classification model we have
adopted. Out of thesen − b patterns, an appropriate number of patterns say (α) are used for learning
and the remaining patterns are used to predict the (n − b − α) bits of the pseudo-random sequence.

Here, we are not considering all previous bits at once, as presented in Fig. 1. This is a slight deviation
from the theoretical next bit predictor model. The learning process is dependent on a number of prefixed
block sizes of generated sequence so as to accommodate maximum possible regularities, patterns and
combinations.

To use C4.5 package as a next bit predictor for classification problem, we supplyα patterns as training
data set, andn − b − α patterns as test data for the prediction ofn − b − α bits. Intuitively, the size
of the training data set should be sufficient to capture maximum regularities and extract generalized
conclusions that yield high degree of prediction. The algorithmic steps followed are presented below:

4.1. Algorithm: Classification Prediction (pi,n)

Input: pi – the pseudo-random number sequences generated by a generator.
n – the length of the pseudo-random sequence taken for study
Output: Classificatory prediction results on test data
begin

1. Select a suitable block size (b).
2. Generaten − b blocks (P1,P2, . . .,Pn−b) and associate every pattern with their class label (CL), as

described above.
3. Select ‘α’ number of patterns for training.
4. Select remainingn − b − α number of patterns as test data.

546 S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator

5. Run theC4.5 program to generate decision trees.
6. Run theC4.5rules program to generate the classification rules from the decision trees generated by

C4.5 program.
7. Choose the simplified classification rule set for analysis.

end

If prediction results are not satisfactory, then by tuning the parameters: the block size,b, number of
patterns for learning,α and the length of the pseudo random sequence,n, we may arrive at satisfactory
results.

In the succeeding sub-sections we show the use of our proposed methodology for classificatory
prediction of two different pseudo-random number generators:

1. Linear Feedback Shift Register (LFSR) and
2. Geffe Generator

5. Classificatory prediction of Linear Feedback Shift Register

The essential difference between Massey algorithm and the proposed next bit predictor model is that
the former algorithm uses the domain knowledge of the LFSR whereas the proposed model is free from
this limitation.

Recently, Hernandez et al. [15] reported a General Next Bit Predictor for predicting two families
of pseudo-random number generator namely truncated linear congruential generator (LCG) and linear
feedback shift register by converting the next bit predictor theoretical model into a classification problem
using C4.5 as inductive algorithm. They thoroughly examined the case of LCG. This type of solution
is particularly very significant from cryptanalysis point of view because it does not use any domain
knowledge of PRBG. Where as Massey algorithm need the complete domain knowledge. In the case of
LFSR they have studied one particular primitive polynomial

(
x15 + x1 + 1

)
. The claims made in their

research work are not comprehensive; hence the interpretation of their results cannot be generalized.
They did not comment about the optimal block size requirement to predict correctly. We analyze the
problem in a more comprehensive manner by considering various primitive polynomials ranging from
degree 10 to 41 to arrive at general conclusion. We looked into the problem of classificatory prediction
on three counts

1. Issue of block size: To check the minimum block size required for correct rule formation
2. Sequence length requirement: To check how many bits are needed to learn from the pattern space

such that the prediction is maximally correct
3. Determination of primitive polynomial: To arrive at classification rules for constructing the primitive

polynomial used in LFSR

5.1. Issue of block size

The primitive polynomials (listed in Table 1 – column 2) are taken for analysis. As discussed in
Section 4, we have generatedn − b patterns for each of these polynomials respectively. Heren is the
period of the LFSR of degreed i.e. n = 2d − 1 andb is the block size arbitrarily chosen, initially. We
carried out the experiment to check the minimum size of block required to learn correctly using C4.5
algorithm. Initially, we took 99% of the pattern space for training and the remaining 1% for testing

S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator 547

Table 1
Implication of Block Size over Classificatory Prediction Error

Degree of Primitive Block size Classificatory prediction Block size Classificatory prediction
polynomial (d) polynomial chosen b < d Error (%age) b� d Error (%age)

10 x10 + x3 + 1 9 36.4 10 0
11 x11 + x2 + 1 10 52.4 11 0
12 x12 + x6 + x4 + x + 1 11 56.1 12 0
13 x13 + x4 + x3 + x + 1 12 50.0 13 0
14 x14 + x5 + x3 + x + 1 13 56.1 14 0
15 x15 + x + 1 14 50.0 15 0
16 x16 + x5 + x3 + x2 + 1 15 51.5 16 0

17(a) x17 + x3 + 1 16 50.5 17 0
17(b) x17 + x5 + 1 16 54.4 17 0
17(c) x17 + x6 + 1 16 56.6 17 0

18 x18 + x5 + x2 + x + 1 17 33.9 18 0
19 x19 + x5 + x2 + x + 1 18 55.0 19 0
20 x20 + x3 + 1 19 55.0 20 0
21 x21 + x2 + 1 20 52.4 21 0
22 x22 + x + 1 21 49.0 22 0
23 x23 + x5 + 1 22 51.8 23 0
24 x24 + x4 + x3 + +1 23 46.6 24 0
25 x25 + x3 + 1 24 52.8 25 0
26 x26 + x6 + x2 + x + 1 25 52.2 26 0
27 x27 + x5 + x2 + x1 + 1 26 50.3 27 0
28 x28 + x3 + 1 27 50.8 28 0
29 x29 + x2 + 1 28 50.1 29 0
30 x30 + x6 + x4 + x + 1 29 48.1 30 0
31 x31 + x6 + 1 30 49.3 31 0
36 x36 + x11 + 1 35 49.3 36 0
39 x39 + x4 + 1 38 50.8 39 0
41 x41 + x3 + 1 40 54.1 40 0

the classificatory prediction accuracy. It has been found experimentally that for a LFSR of degreed,
the minimum block size required isd. Hernandez et al. claimed in [15], the larger the block size, the
better the prediction. They presented a value of block length equal to10 ∗ log (n) to distinguish an
unpredictable source from a predictable one. We agree to the first claim, but they did not justify this
numerical value. Experimentally we found a lower bound for the block size for maximum prediction.
The results are summarized in Table 1.

It can be seen from Table 1 (column 3)that if the block size for a primitive polynomial is less than its
degree then the Classificatory Prediction Error (CPE) is nearly equivalent to chance probability. Hence
from this point onwards it is established thatfor a primitive polynomial of degree d, the minimum block
size will be d for accurate classificatory prediction. If we increase the block size further, there will be
no significant change in the formation of decision trees and rules as generated by C4.5 algorithm.

5.2. Sequence length requirement

The next important point to consider is how many bits are required to learn from the pseudo-random
output of LFSR to get correct prediction. To check these results we performed a comprehensive analysis
for every primitive polynomial from degree 10 to 30 and then randomly up to 41 degree. We fix the
block size as equal tod. We generated 100 different pseudorandom sequences corresponding to every
primitive polynomial by varying its initial settings. We take only the upper bounds results into account.

548 S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator

Table 2
Minimum bits required and Bit Prediction Ratio (BPR)

Degree of primitive Correct Classificatory Prediction requirement
polynomial(d) Training patterns,x Minimum bits needed BPR

10 70 80 8.00
11 61 72 6.54
12 571 583 47.58
13 899 912 69.15
14 1473 1487 106.21
15 81 96 6.40
16 2558 2574 160.87

17(a) 159 176 10.35
17(b) 319 336 19.76
17(c) 319 336 19.76
18 2010 2028 112.66
19 2648 2667 140.36
20 29 49 2.45
21 374 395 18.80
22 2749 2771 125.95
23 874 897 39.00
24 20989 21013 875.54
25 7996 8021 320.84
26 48987 49013 1885.11
27 90975 91002 3370.44
28 2499 2527 90.25
29 2749 2778 95.79
30 64980 65010 2167
31 2749 2780 89.67
36 11995 12031 334.19
39 21741 21780 558.46
41 3998 4039 98.51

Hernandez et al. [15] claimed that experimentally they found that training patterns needed to predict
accurately is close to 1% of period of generator. Their analysis is based on a particular LFSR of degree
15; hence limitations exist in their claim.

We define an indexBit Prediction Ratio (BPR), to estimate the ratio between minimum bits required
(x + b− 1), wherex is the number of training patterns, for correct classificatory prediction to the degree
of the corresponding LFSR. Mathematically,

BPR =
x + b − 1

d

Experimentally, we found thatBPR for each of the primitive polynomial varies from 2.45 to 3370.44.
This variation in the values ofBPR is due to the number of taps in LFSR’s. It has been observed that,the
higher the number of taps the more the number of bits required for correct classificatory prediction. We
can also infer thatx+b-1 bits are required to predict the next n-x-b+1 bitscorrectly. Table 2 summarizes
this result.

5.3. Determination of primitive polynomial

C4.5 makes classification decision on the basis of the decision trees and classification rules generated
from the learning data. We observe that the primitive polynomial can be determined from the pruned
trees but not the way Hernandez et al. [15] showed in his work. We observed experimentally that all the

S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator 549

classification rules lead to primitive polynomial construction in a different fashion. Suppose we consider
the primitive polynomial of degree 10, as presented in Table 3 (column 2), the simplified classification
rules generated after pruning are

If bit at position 1 is 0 and bit at position 8 is 1 then class label is 1
If bit at position 1 is 1 and bit at position 8 is 0 then class label is 1
If bit at position 1 is 1 and bit at position 8 is 1 then class label is 0
If bit at position 1 is 0 and bit at position 8 is 0 then class label is 0

C4.5rules program identifies bit 1 and 8 as significant attributes or bits. Here, we can observe that
class label = bit1 XOR bit8

Now consider bit 1 and bit 8 as the significant bits as pointed out by the classification rules. This rule
is generated for a 10-stage LFSR; therefore subtract these significant bits from 10. Alternatively we can
also say that subtract the significant bits from the chosen block lengthd, which is 10 in this case. Add 1
to them to get the desired primitive polynomial. The steps can be summarized as

(1, 8) – Significant bits from classification rules
(9, 2) – Subtract from 10
(10, 3) – Add 1

Hence,x10 + x3 + 1 is the required polynomial.
For anyn-stage LFSR the above rule can be generalized to obtain the required primitive polynomial

as:

(a1, a2, a3, a4, . . .) – Significant bits from classification rules
(n − a1, n − a2, n − a3, n − a4, . . .) – Subtract from chosen block length of LFSR
(n − a1 + 1, n − a2 + 1, n − a3 + 1, n − a4+1, . . .) – Add 1

Hence,xn−a1+1 +xn−a2+1 +xn−a3+1 +xn−a4+1 + . . .+1, is the required polynomial used in LFSR.
Therefore we conclude thatif significant attributes/bits are known then the exact primitive polynomial

can be constructed. The rule sets that we discovered for different polynomial are depicted in the form of
significant attributes in Table 3.

If we summarize the experimental results of Tables 1, 2 and 3 we can estimate the minimum number
of bits and the block size for correct classificatory prediction. Finally, the corresponding primitive
polynomial can also be constructed. And also from the graph (Fig. 3) we can draw some basic conclusions

– The graph shows the plot between the degree of primitive polynomials and their respectiveBPR
values (minimum bits required for correct classification). We tried to show two types of plots. First
plot (dark lines) is theBPR values on primitive polynomials with 2 tap points. The other plot (dotted
lines) shows theBPR values for those primitive polynomials that have more than 2 tap points.

– As the degree of primitive polynomial increases there is increase in the number of “minimum bits
required” and hence increase in BPR for correct classification. But this increase is significant in the
case, where number of taps is more than 2. So a larger primitive polynomial with more number of
taps needs more bits to be totally broken upon (inference from Fig. 3).

– For all experimentation with primitive polynomial of degree greater than 16, we have generated the
first 1, 00,000 bits of the respective generators, as it is difficult to store the whole period of larger
primitive polynomials. Also, the time it will consume to run C4.5 on different size of patterns to
approximate minimum bits requirement would be very high.

550 S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator

Table 3
Classification Rules generated for Primitive Polynomials of various degrees

Deg. of primitive Rules generated Deg. of primitive Rules generated
polynomial (d) polynomial (d)

10 1, 8 22 1,22
11 1, 10 23 1,19
12 1, 7, 9, 12 24 1,21,22,24
13 1, 10, 11, 13 25 1,23
14 1, 10, 12, 14 26 1,21,25,26
15 1, 15 27 1,23,26,27
16 1, 12, 14, 15 28 1,26

17(a) 1, 15 29 1,28
17(b) 1, 13 30 1,25,27,30
17(c) 1, 12 31 1,26

18 1,14,17,18 36 1,26
19 1,15,18,19 39 1,36
20 1,18 41 1,39
21 1,20

1

10

100

1000

10000

10 15 20 22 25 29 36 41

Degree of Primitive Polynomial

B
P

R

Taps = 2

Taps > 2

Fig. 3. Plot showing higher number of taps increases the minimum bit requirement for correct classification.

– In Table 2, the values of “minimum bits required” and hence “BPR” should not be treated as discrete.
The values we have presented here are the average of 100 different experiments on each primitive
polynomial with random initial settings. An experiment with different random setting conducted
different number of times may yield slightly different values. But we observed that the overall
band ofBPR values will not be affected (i.e. insignificant standard deviation), since the output of
a primitive polynomial, even with random initial contents is cyclic in nature and therefore exhibit
similar statistical properties.

5.4. Classificatory prediction of Geffe Generator

Geffe Generator uses three LFSR’s combined in nonlinear manner. Two of the LFSR’s are inputs into
a multiplexer, and the third LFSR controls the output of the multiplexer. Ifg1, g2 andg3 are the outputs
of the three LFSR’s, the output of the Geffe Generator can be described by

s = (g1 ∧ g2) ⊕ ((¬g1) ∧ g3)

S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator 551

If the LFSRs have lengthn1, n2 andn3 respectively, then the linear complexity of the Geffe Generator
is (n1 + 1)n2 + n1n3. The period of the generator is the least common multiple (LCM) of the periods
of the three generators. This generator falls prey to correlation attack [6].

As explained in Section 5, a similar exercise was conducted to check the classificatory predictive
behavior of pseudo-random bits Generator by Geffe generator. We took various combinations of different
LFSR’s to carry out the experiment. We generated 100 different pseudo-random sequences from Geffe
Generator using different sets of LFSR’s and also with different initial settings to have more confidence
on the results thus obtained.

We generate various sequences of lengthn, equal toLCM of period of three LFSR’s. A suitable
block sizeb is chosen and subsequentlyPn−b patterns are generated to create the pattern space. To
check the minimum block size for correct classificatory prediction, we took 99% of the patterns for
training and remaining 1% for testing. It has been found experimentally that the block size,b, should be
greater than the product of the length of each of the LFSR’s for good classificatory prediction results.
The classification rules generated byC4.5rules for various block sizes vary in size and interpretation;
hence no general comment can be made about them. The rules generated are typically large and do not
depend on few bits as in the case of LFSR. Hence to physically interpret each of them they should be
tabulated extensively before taking any decision about the classificatory prediction. Presently, we are
experimenting to fix the lower bound on the number of training patterns required for correct classificatory
prediction of Geffe Generator.

6. Next bit prediction

Next bit prediction is one of the important activities of the cryptanalyst and information theorist. In
this direction the first celebrated paper is by Shannon “Prediction and entropy of printed English” [2].
This model is purely based on entropy and redundancy of the language. Inspired by Shannon work
several authors have given models for either predicting next bit or character for a particular generator
or general predictor models. Methods for inferring Linear Congruential Generator and its variants have
been studied in detail and can be seen in [4,9,11]. The current work of prediction by BlackBurn et
al. [28] and Gathen and Shparlinski [12] are also specific to particular generator like non-linear generator
and subset sum generator. General Next Bit Prediction models have also been quoted in literature by
Cover [30], Ziv [13,14] and Jacquet et al. [25]. All of these general models are probability based and
requires very large data set to fix the bound of learning. All of the above prediction models have been
put on mathematical foundation but have very little practical application. In contrast the present model
which we are proposing is based on inductive machine learning paradigm for which the theory is already
established. We have to only customize the existing classification algorithms as a prediction algorithm.

We presented the theoretical prediction model in section 1. In that model at any time, previousi-1
bits are needed to predict theith bit. We used this concept and presented slightly modified way to
predict bits as a classification problem (Section 4). Once appropriate numbers of patterns are given to
the C4.5 inductive algorithm, and it has generated decision trees and rules out of that, it can be used for
next bit prediction. In classificatory prediction we have to have full pseudo-random sequence in hand,
so that we can train few patterns and check the prediction accuracy of the remaining bits. In practical
scenario, the analyst may not have full pseudo-random sequence with him but he would like to know the
subsequent bits of the PRBG with available bits in hand. Keeping this motivation in mind we used the
C4.5 classification algorithm for next bit prediction. The algorithm is presented as under.

Algorithm: Nextbit Prediction(pi, n)

552 S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator

Input: {pi} – the pseudo-random number sequence generated by the generator
n – the length of the pseudo-random sequence in hand
K – The number of bits to be predicted
Output: {Bi} - predicted bits
begin

1. Select a suitable block size (b)
2. Generaten − b blocks and associate every pattern with their class label, i.e. next bit (described in

Section 2.2)

P1 = p1, p2, p3, . . . , pb CL → pb+1

P2 = p2, p3, p4, . . . , pb+1 CL → pb+2

...

Pn−b = pn−b, pn−b+1, , . . . , pn−1 CL → pn

3. Start the C4.5 algorithm to learn from the pattern set and tabulate the results
4. Set counter,i=1;
5. Repeat step 6 tillK bits are predicted i.e. while (i� K)
6. To predictn + ith bit, Bi

(a) ChooseBi = pn+i−b, pn+i−b+1, . . . , pn+i−1 as a test pattern
(b) Run the C4.5 program to predict the class.
(c) StoreBi

(d) Increment counter,i + +

end

Repeat this exercise for different block sizes and observe theK – bits in a known environment for
validation of the true next bit predictor model.

The output of this algorithm isBi number of predicted bits of the PRBG. We used the above algorithm
to predict subsequent bits of different LFSR and Geffe Generator. As shown in Table 2, we fix the
block size and the minimum bits needed for prediction as the training set parameters. By fixing these
parameters, we could predict the remaining bits of each of the LFSR’s with 100% prediction accuracy.
In the case of Geffe Generator we predict few subsequent bits with better than chance probability.

7. Conclusions

In this paper we have improved upon the alternative approach of prediction of next bit of a pseudo-
random generator using machine learning technique as proposed by Hernandez et al. [15]. We also
proposed a model fornext bit prediction for PRBG. The utility of the presented approach of predicting
next bit for LFSR’s and Geffe Generators byClassificatory Prediction and trueNext Bit Prediction (with
few bits in hand) has its impact on finding the flaw with other crypto primitives. There exist techniques
to predict and cryptanalyze the above considered PRBG’s, but they are domain specific. The advantage
of our proposed approach is that it is domain independent and does not rely on the type of generator and
the parameters used by PRBG. In a more practical application scenario, most of the time a cryptanalyst
has little knowledge about the PRBG and he is inquisitive about the future bit sequences. In this case, he

S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator 553

can take a lead from the higher prediction accuracy of the proposed model for true next bit prediction.
By predicting better than chance probability the analyst would be left with reduced set of unknown bits
that can be subjected to a brute force attack in real time.

Acknowledgements

The authors are grateful to Dr. P K Saxena, Director SAG for keen interest and support to carry out
this work. We are also thankful to Dr. S.S. Bedi, Scientist ‘G’ whose comments and suggestion gave us
enough insight for analyzing the generators. The authors wish to thank the referees for their helpful and
constructive comments that led to a much better presentation of the classificatory prediction problem.

References

[1] B. Schneier,Applied Cryptography, (second edition), Protocols, Algorithms and Source Code in C, John Wiley & sons,
Inc, 1996.

[2] C.E. Shannon, Prediction and entropy of printed english,Bell System Technical Journal 30 (1951), 50–64.
[3] D.R. Stinson,Cryptography, Theory and Practice, CRC Press, 1995, 367–368.
[4] D.E. Knuth, Deciphering a linear congruential encryption,IEEE Trans Inf Theory 31 (1985), 49–52.
[5] D.E. Knuth, Semi numerical Algorithms, (third edition), Volume 2 of The Art of Computer Programming, Addison-

Wesley, Reading, MA, USA, 1997.
[6] E.L. Key, An analysis of the structure and complexity of nonlinear binary sequence generators,IEEE Transactions on

Information Theory, IT-22(6) (1976), 732–736.
[7] E.R. Berlekamp, Nonbinary BCH decoding, presented at the1967 International Sypmp. on Information Theory, San

Remo, Italy. Algebraic Coding Theory. New York: McGraw-Hill, chs. 7 and 10, 1968.
[8] F.J. Breiman, R. Olshen and C. Stone, Classification and Regression Trees, 1984.
[9] H. Krawczyk, How to predict congruential generators,J.Algorithms 13 (1992), 527–545.

[10] http://www2.cs.uregina.ca/˜hamilton/courses/831/notes/ml/dtrees/c4.5/c4.5r8.tar.gz.
[11] J.B. Plumstead,Inferring a Sequence Generated by a Linear Congruence, 23rd Annual Sympos. On foundations of

computer science, 1982, 153–159.
[12] J.V.Z. Gathen and I.E. Shparlinski,Predicting Subset Sum Pseudorandom Generators, SAC, LNCS 3375, 2004, 241–251.
[13] J. Ziv, A universal prediction lemma and applications to universal data compression and prediction,IEEE Trans Inform

Theory 47 (2001), 528–532.
[14] J. Ziv, An efficient universal prediction algorithm for unknown sources with limited training data,IEEE Trans Inform

Theory 48(6) (2002), 1690–1693.
[15] J.C. Hernandez, J.M. Sierra, C. Mex-Perera, D. Borrajo, A. Ribagorda and P. Isasi,Using the General Next Bit Predictor

Like an Evaluation Criteria, Proceedings of NESSIE workshop, Leuven, Belgium, 2000.
[16] J.L. Massey, Shift Register synthesis and BCH Decoding,IEEE Transactions on Information Theory IT-15(1) (1969),

122–127.
[17] J.R. Quinlan and R. Rivest, Inferring decision trees using the minimum description length principle,Information and

Computation 80 (1989), 227–248.
[18] J.R. Quinlan,C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, CA, 1993.
[19] J.R. Quinlan,Induction of Decision Trees, Machine Learning Journal 1986.
[20] J.R. Quinlan, Improved use of continuous attributes,Journal of Artificial Intelligence Research 4 (1996), 77–90.
[21] J. Carbonell, ed.,Machine learning, Paradigms and Methods, PP 1-9, The MIT Press, 1992.
[22] K.C. Zeng, C.Y. Yang, D.Y. Wei and T.R.M. Rao, Pseudorandom Bit Generator in stream – cipher cryptology,IEEE

Computer, 8–16, Feb. 1991.
[23] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random bits,SIAM J Computing

13(4) (1984), 850–863.
[24] P. Grunwald, I.J. Myung and M.A. Pitt, eds,Advances in Minimum Description Length: Theory and Applications, MIT

Press, 2005.
[25] P. Jacquet, W. Szpankowski and I. Apostal, A universal predictor based on pattern matching,IEEE Trans. Inform. Theory

48 (2002), 1462–1472.
[26] R. Agrawal, A. Arning, T. Bollinger, M. Mehta, J. Shafer and R. Srikant,The Quest Data Mining System, Proc. Of 2nd

International Conference on Knowledge Discovery in Databases and Data mining, Portland, Oregon, August, 1996.

554 S. Kant and S.S. Khan / Analyzing a class of pseudo-random bit generator

[27] S.S. Khan, Classificatory Prediction and Primitive Polynomial Construction of Linear Feedback Shift Registers using
Decision Tree Approach, KBCS-2004, Fifth International Conference On Knowledge Based Computer Systems, 2004.

[28] S.R. Blackburn, D. Gomez-Perez, J. Gutierrez and I.E. Shaparlinski, Predicting nonlinear pseudorandom number gener-
ators, Math. Comp. (To appear).

[29] S.W. Golomb,Shift Register Sequences, San Francisco, Holden-Day, 1967, Reprinted by Aegean Park Press, 1982.
[30] T.M. Cover, Behavior of Sequential Predictors of Binary Sequence, in Proc. 4th Prague Conf. Information theory,

Statistical decision functions, Random processes, 1965, 263–272.

