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Abstract

Traditionally initial cluster centers for K-Means clustering algorithm
are generated randomly which may lead K-Means to get trapped in local
minima. In this paper we present a method to generate K-prototype
points that are quite near to the desired cluster centers. The effectiveness
of the method has been evaluated experimentally on several numeric data

sets.
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1 Introduction

Clustering aims to find the natural grouping of the data.The objective of clus-
tering is to find convenient and valid organization of data into ’similar’ groups..
Clustering has a variety of applications in different fields like data mining and
knowledge discovery [1], data compression and vector quantization [2], finance
[3], and bio-informatics [4].

K-means clustering algorithm [5], is one of the most popular clustering algo-

rithm. A priori knowledge of number of clusters is a must for K-means clustering
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algorithm. K-means is defined over numeric data [6][7] since it computes the
mean of the clusters. K-means algorithm calculates cluster centers iteratively.
Let X={z1, %2,...,z,} be a m dimensional data set having n patterns contained
in a pattern space S. Therefore, we seek the K-regions (clusters) Si, So, ..., Sk
such that every z;,i=1,2,..., n, falls into one of these regions and no z; falls in
two regions. K-means algorithm is based on the minimization of cost function
defined as squared distance from all points in a cluster domain to the cluster

center, that is

min Z (z — 2;)?
z€S;(t)

tth

where S;(t) is the cluster domain for cluster center z; at the ¢** iteration. The

clustering procedure of K-means algorithm is illustrated as under :-
1. Randomly choose K-prototype points as the initial cluster centers

2. Distribute the pattern samples x among the chosen cluster domains ac-

cording to the following criteria :-
zeS;(t) if(z—2;(1)? < (z — 2i(t))?
for all i=1,2,...,K and i# j

3. Update the cluster centers as

Zzesj(t) z

Zj(t+1)= |N|
J

=1,2,....K

where |N;| is the number of data items in the j*" cluster. These adjusted
centers will minimize the sum of squared distances from all points in S;(t)

to the new cluster centers.
4. Repeat step 2 and 3 till the algorithm converges.

K-means does not guarantee unique clustering because we get different re-
sults with randomly chosen inital clusters [8]. Machine learning practioners find
it difficult to rely on the results obtained using randomly selected intial cluster
centers. The K-means algorithm gave better results only when the initial par-

titions was close to the final solution [9]. Several attempts have been reported



to generate K-prototype points that can be used as initial cluster centers. A
recursive method for initializing the means by running K clustering problems
is discussed by Duda, R.O., et al [7]. Bradley, P.S. et al [10] reported that the
values of initial means along any one of the m coordinate axes is determined
by selecting the K densest ”bins” along that coordinate. Bradley, P.S. et al
[11] proposes a procedure that refines the initial point to a point likely to be
close to the modes of the joint probability density of the data. Mitra, P. et
al [12] suggested a method to extract prototype points based on density based
multi-scale data condensation.

The paper is organized as follows. In section 2, we present the proposed
algorithm to generate K-prototype points. We discuss some experimental results

on real world numeric data sets in section 3. Section 4 presents the conclusion.

2 K-Prototype Generation

In K-Means clustering algorithms the procedure adopted for choosing initial
cluster centers is extremely important as it has a direct impact on the formation
of final clusters. Our proposed algorithm generates the K-prototype points that
are close to the desired cluster centers. As there are no universally accepted
method for selecting initial cluster center [13], we compare the results against
the standard method of randomly choosing initial starting points.

The proposed algorithm is based on normal distribution. We assume that each of
the attributes of the pattern space is normally distributed. For K-fixed clusters
we divide the normal curve into K partitions such that the area under these
partitions is equal. We then take the midpoints of the interval of each of these
partitions. This has been done to scrap the outliers and to keep the centers as
far as possible. The area corresponding to the mid-points can be defined in the
following way

Area from —oo to st mid-point (from left side) = 221 | s=1,2,... K

We now calculate the percentile [14] corresponding to these areas. We com-

pute the attribute values corresponding to these percentiles using mean and



standard deviation of the attribute. These attribute values will be treated as
one of the coordinate of the initial K-center. This process has to be adopted
for all the attributes to get the K-cluster centers coordinate. The starting point
will be a combination of these center coordinates.

For generating this combination, first we assign the class label of every pat-
tern using the distance between the it" attribute value of the patterns and

ith

coordinate of the center using partitioning around the moving centers [15].
Now we perform the K-means clustering procedure to get the final clusters cor-
responding to this exercise. Repeat the above procedure for all the attributes.
We have m (number of attributes) classes associated with every pattern. We
call it as a pattern string. These classes of pattern string may or may not be
same. For n patterns we will have n such pattern strings, where i*" entry of the
jt* pattern string corresponds to the class of the j** pattern when the initial
centers were based on it attribute. We select the K most frequent pattern

strings out of these n pattern strings. The i*" value of the pattern string will

be replaced by the initial point as computed above.

2.1 Proposed Algorithm

Input:

D - The set of n data elements described with attributes A;,A4,, ..., A,, , where
m= no. of attributes and all attributes are numeric

K - predefined number of clusters

Output:

Initial centers of clusters C;-,- ,i=1,2,... K and j=1,2,...,m

begin
1. For each attrbute A; repeat step 2 to 7

2. Compute mean (u;) and standard deviation (o;)

3. Compute percentile z,, corresponding to area from —oco to z, = 221 |

where s=1,2,... K



4. Compute attribute value corresponding to these percentiles using means

and standard deviation of the attribute as
Ts =2 %05 + [ = Csj
where Cy; is associated with s class value

5. Create initial partitions using Euclidean distance between z,; and A;h
attribute of all patterns (The assigned class label is treated as the class of

the pattern)
6. Execute K-means on complete data set
7. Store the class labels as S;; where t=1,2,...,n

8. Generate pattern string, P, corresponding to every pattern by storing the
class labels. every pattern string will have m class labels. The j* value

of pattern string P,=S;;
9. Choose the K most frequent P,’s. Break ties randomly

10. Replace the j¢" value of string P/ {k'=12,... K}, with Cy; where r=Integer

value of j** value of string P,/

11. This combination of Cy; for P ,{k'=1,2,... K}, will be the initial cluster
center éij

end

3 Results and Discussion

Inorder to demonstrate the effectiveness of the proposed algorithm for comput-
ing K-prototype points, we tested its performance on some real world data sets
(fossil data, iris data, wine recognition data, british town data and satimage
data)

Since different attributes are measured on different scales, when Euclidean dis-

tance formula is used directly, the effect of some attributes might be completely



dwarfed by others that have larger scales of measurement. Consequently it is

usual to normalize all attribute values to lie between 0 and 1 [16], by calculating

V; — MiAN v;

a; = ;
max v; — min v;

where v; is the actual value of attribute 4, and the maximum and minimum are
taken over all attributes in the data set.
To measure the degree of closeness between the generated K-prototype and the

desired K-cluster centers we calculated Closeness Index as

1 & & Sy — Oy
Closeness Index = T ZZ ‘ Jsi 7 ] ‘

s=1 j=1
where f; is the j" attribute value of the desired s** cluster center and Cj; is

the j** attribute value of the initial s** cluster center

1. Fossil Data :- This data set is taken from Chernoff [17]. It consists of 87
nummulitidae speciments from the Eocene yellow limestone formation of
north western Jamaica. Each specimen is characterized by six measure-
ments. There are three cluster groups as identified by Chernoff, which

contains 40, 34 and 13 patterns each.

2. Iris Data :- This data set [17] has three classes that represents three dif-
ferent, varieties of Iris flowers namely Iris setosa, Iris versicolor and Iris
virginica. Fifty samples were obtained from each of three classes, thus a
total of 150 samples is available. Every sample is described by a set of

four attributes viz sepal length, sepal width, petal length and petal width.

3. Wine recognition data - This data set is taken from UCI repository website
[18]. This data set is the result of a chemical analysis of wines grown in
the same region in Italy but derived from three different cultivars. The
analysis determined the quantities of 13 constituents found in each of the
three types of wines. There were overall 178 instances. There are 59, 71
and 48 instances in class I, class IT and class III respectively. The classes

are separable.



Desired Centers | Generated Centers

5.0, 3.4, 1.4, 0.2 5.0, 3.4, 2.0, 0.4
5.9,2.7,4.2,1.3 5.8,3.0,3.7, 1.1
6.6, 2.9, 5.5, 2.0 6.6, 2.6, 5.5, 1.9

Table 1: Iris Data

4. British Town data :- This dat set [17] represents social-economic data
collected from 155 British towns originally described by 57 variables. Later
first four pricipal components from the correlation matrix of the original
data was calculated. These 50 samples were identified to form four clusters

groups having 10, 10, 16, 14 instances in each cluster.

5. Satimage Data:- The database [18] is a (tiny) sub-area of a scene, con-
sisting of 82 x 100 pixels. Each line of data corresponds to a 3x3 square
neighbourhood of pixels completely contained within the 82x100 sub-area.
Each line contains the pixel values in the four spectral bands (converted
to ASCII) of each of the 9 pixels in the 3x3 neighbourhood and a num-
ber indicating the classification label of the central pixel. There are 2000
patterns in the testing set having 6 decision classes with 36 numerics at-

tributes.

Table 1 suggests that for the Iris Data set the generated prototypes for 3
clusters are very close to the desired cluster centers. Same interpretation can
be drawn for results depicted in Table 2 for Wine data. Similar results were
obtained for other data sets, but due to lack of space we are not providing gen-

erated K-prototypes.

To generate random K-prototype points, we associate random class label
with every pattern and cluster centers are taken as random K-prototype points.
Then the Closeness Index was computed. This process was repeated 10 times
and the averaged value of Closeness Index is reported in Table 3. Low value

of Closeness Index reflects the closeness of generated prototype points to the



Desired Centers

Generated Centers

13.74, 2.01, 2.45, 17.0, 106
2.8, 2.98, 0.29, 1.89, 5.52
1.06, 3.15, 1115

13.81, 1.22, 2.64, 16.1, 113
2.9, 3.02, 0.23, 2.16, 5.05
0.95, 3.31, 1060

12.27, 1.93, 2.24, 20.2, 94
2.2, 2.08, 0.36, 1.63, 3.08
1.05, 2.78, 519

12.19, 2.33, 2.09, 19.4, 85
2.2, 2.02, 0.36, 1.59, 2.74
1.18, 2.61, 432

13.15, 3.33, 2.43, 21.4, 99
1.6, 0.78, 0.44, 1.15, 7.39

13.00, 3.45, 2.36, 22.8, 99
1.6, 1.03, 0.48, 1.02, 7.36

0.68, 1.68, 629 0.72, 1.90, 746
Table 2: Wine Data
Data set Closeness Index
Proposed Algo. Random
Fossil Data 0.2286 0.3597
Iris Data 0.1402 0.1991
Wine Data 0.0833 0.2441
British Town data | 0.9009 1.8507
Satimage Data 0.2730 0.2907

Table 3: Comparing Closeness Index of Data sets




desired cluster centers. Table 3 suggests that we get smaller values using the

proposed algorithm in comparison to randomly generated K-prototypes.

4 Conclusion

We have presented a new and efficient algorithm for computing generating K-
prototype points for K-means clustering algorithm. This procedure is based on
the assumption that attributes are normally distributed. For every attribute we
computed different points that are far apart under the constraint that boundries
of the normal curve are avoided and points are symmetric with respect to mean
of the distribution. We picked the best combinations of these points to get the
initial K-prototypes. Experimental results show that generated K-prototypes
points are very near to the desired cluster centers. These generated K-prototype
points can be used as initial cluster centers which may avoid K-means to get

trapped in one of the numerous local minima.
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