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Abstract

The K-modes clustering algorithm is well known for its
efficiency in clustering large categorical datasets. The
K-modes algorithm requires random selection of initial
cluster centers (modes) as seed, which leads to the prob-
lem that the clustering results are often dependent on
the choice of initial cluster centers and non-repeatable
cluster structures may be obtained. In this paper, we
propose an algorithm to compute fixed initial cluster
centers for the K-modes clustering algorithm that ex-
ploits a multiple clustering approach that determines
cluster structures from the attribute values of given at-
tributes in a data. The algorithm is based on the exper-
imental observations that some of the data objects do
not change cluster membership irrespective of the choice
of initial cluster centers and individual attributes may
provide some information about the cluster structures.
Most of the time, attributes with few attribute values
play significant role in deciding cluster membership of
individual data object. The proposed algorithm gives
fixed initial cluster center (ensuring repeatable cluster-
ing results), their computation is independent of the or-
der of presentation of the data and has log-linear worst
case time complexity with respect to the data objects.
We tested the proposed algorithm on various categorical
datasets and compared it against random initialization
and two other available methods and show that it per-
forms better than the existing methods.

1 Introduction

Clustering aims at grouping multi-attribute data into
homogenous clusters (groups). Clustering is an active
research topic in pattern recognition, data mining,
statistics and machine learning with diverse application
such as in image analysis [19], medical applications [21]
and web documentation [2].

The K-means [1] based partitional clustering meth-
ods are used for processing large numeric datasets
for its simplicity and efficiency. Data mining appli-
cations require handling and exploration of heteroge-
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neous data that contains numerical, categorical or both
types of attributes together. K-means clustering al-
gorithm fails to handle datasets with categorical at-
tributes because it minimizes the cost function by calcu-
lating means. The traditional way to treat categorical
attributes as numeric does not always produce mean-
ingful results because generally categorical domains are
not ordered. Several approaches have been reported
for clustering categorical datasets that are based on
K-means paradigm. Ralambondrainy [22] present an
approach by using K-means algorithm to cluster cate-
gorical data by converting multiple category attributes
into binary attributes (using 0 and 1 to represent either
a category absent or present) and treat the binary at-
tributes as numeric in the K-means algorithm. Gower
and Diday [7] use a similarity coefficient and other dis-
similarity measures to process data with categorical at-
tributes. CLARA (Clustering LARge Application) [15]
is a combination of a sampling procedure and the clus-
tering program Partitioning Around Medoids (PAM).
Guha et al. [8] present a robust hierarchical cluster-
ing algorithm, ROCK, that uses links to measure the
similarity/proximity between a pair of data points with
categorical attributes that are used to merge clusters.
However this algorithm has worst case quadratic time
complexity.

Huang [12] presents the K-modes clustering algo-
rithm by introducing a new dissimilarity measure to
cluster categorical data. The algorithm replaces means
of clusters with modes, and use a frequency based
method to update modes in the clustering process to
minimize the cost function. The algorithm is shown to
achieve convergance with linear time complexity with
respect to the number of data objects. Huang [13] also
pointed out that in general, the K-modes algorithm is
faster than the K-means algorithm because it needs less
iterations to converge.

In principle, K-modes clustering algorithm func-
tions similar to K-means clustering algorithm except for
the cost function it minimizes, and hence suffers from
the same drawbacks. Likewise K-means, the K-modes
clustering algorithm assumes that the number of clus-
ters, K, is known in advance. Fixed number of K clus-



ters can make it difficult to predict the actual number
of clusters in the data that may mislead the interpre-
tations of the results. It also fall into problems when
clusters are of differing sizes, density and non-globular
shapes. K-means does not guarantee unique clustering
due to random choice of initial cluster centers that may
yield different groupings for different runs [14]. Simi-
larly, K-modes algorithm is also very sensitive to the
choice of initial centers, an improper choice may yield
highly undesirable cluster structures. Random initial-
ization is widely used as a seed for K-modes algorithm
due to its simplicity, however, this may lead to undesir-
able and/or non-repeatable clustering results. Machine
learning practioners find it difficult to rely on the results
thus obtained and several re-runs of K-modes algorithm
may be required to arrive at a meaningful conclusion.

There are several attempts to initialize cluster cen-
ters for K-modes algorithm, however, most of these
methods suffer from either one or more of the three
drawbacks: a) the initial cluster center computation
methods are non-linear in time complexity with respect
to the number of data objects b) the initial modes are
not fixed and possess some kind of randomness in the
computation steps and c) the methods are dependent on
the presentation of order of data objects (details are dis-
cussed in Section 2). In this paper, we present a multiple
clustering approach that infers cluster structure infor-
mation from the attributes using their attribute values
present in the data for computing initial cluster centers.
Our proposed algorithm performs mulitple partitional
clustering on different attributes of the data to gener-
ate fixed initial centers (modes), is independent of the
order of presentation of data and thus gives fixed clus-
tering results. The proposed algorithm has worst case
log-linear time complexity with respect to the number
of data objects.

The rest of the paper is organized as follows. In
Section 2 we review research work on cluster center
initialization for K-modes algorithm. Section 3 briefly
discusses the K-modes clustering algorithm. In Section
4 we present the proposed approach to compute initial
modes using multiple clustering that takes contributions
from different attribute values of individual attributes
to determine distinguishable clusters in the data. In
Section 5, we present the experimental analysis of the
proposed method on various categorical datasets to
compute initial cluster centers, compare it with other
methods and show improved and consistent clustering
results. Section 6 concludes the presentation with
pointers to future work.

2 Related Work

The K-modes algorithm [12] extends the K-means
paradigm to cluster categorical data and requires ran-
dom selection of initial center or modes. The random
initialization of cluster center may only work well when
one or more chosen initial centers are close to actual
centers present in the data. In the most trivial case, the
K-modes algorithm keeps no control over the choice of
initial centers and therefore repeatability of clustering
results is difficult to achieve. Moreover, inappropriate
choice of initial cluster centers can lead to undesirable
clustering results. Hence, it is desirable to start K-
modes clustering with fixed initial centers that resemble
the true representatives centers of the clusters. Below
we provide a short review of the research work done to
compute initial cluster centers for K-modes clustering
algorithm and discuss their associated problems.

Huang [13] propose two approaches for initializing
the clusters for K-modes algorithm. In the first method,
the first K distinct data objects are chosen as initial K-
modes, whereas the second method calculates the fre-
quencies of all categories for all attributes and assign
the most frequent categories equally to the initial K-
modes. The first method may only work if the top
K data objects come from disjoint K clusters, there-
fore it is dependent on order of presentation of data.
The second method is aimed at choosing diverse clus-
ter center that may improve clustering results, however
a uniform criteria for selecting K-initial centers is not
provided. Sun Yin et al. [23] present an experimen-
tal study on applying Bradley et al.’s iterative initial-
point refinement algorithm [3] to the K-modes cluster-
ing to improve the accuracy and repetitiveness of the
clustering results. Their experiments show that the K-
modes clustering algorithm using refined initial points
leads to higher precision results much more reliably than
the random selection method without refinement. This
method is dependent on the number of cases with refine-
ments and the accuracy value varies. Khan and Ahmad
[16] use Density-based Multiscale Data Condensation
[20] approach with Hamming distance to extract K ini-
tial points, however, their method has quadratic com-
plexity with respect to the number of data objects. He
[10] presents two farthest point heuristic for computing
initial cluster centers for K-modes algorithm. The first
heuristic is equivalent to random selection of initial clus-
ter centers and the second uses a deterministic method
based on a scoring function that sums the frequency
count of attribute values of all data objects. This heuris-
tic does not explain how to choose a point when several
data objects have same scores, and if it randomly break
ties, then fixed centers cannot be guaranteed. Wu et
al. [24] develop a density based method to compute



the K initial modes which has quadratic complexity.
To reduce its complexity to linear they randomly select
square root of the total points as a sub-sample of the
data, however, this step introduces randomness in the
final results and repeatability of clustering results may
not be achieved. Cao et al. [4] present an initialization
method that consider distance between objects and the
density of the objects. A major drawback of this method
is that it has quadratic complexity. Khan and Kant [18]
propose a method that is based on the idea of evidence
accumulation for combining the results of multiple clus-
terings [6] and only focus on those data objects that are
more less vulnerable to the choice of random selection
of modes and to choose the most diverse set of modes
among them. Their experiment suggest that the ini-
tial modes outperform the random choice, however the
method does not guarantee fixed choice of initial modes.

In the next section, we briefly describe the K-modes
clustering algorithm.

3 K-Modes Algorithm for Clustering
Categorical Data

Due to the limitation of the dissimilarity measure used
by traditional K-means algorithm, it cannot be used to
cluster categorical dataset. The K-modes clustering al-
gorithm is based on K-means paradigm, but removes the
numeric data limitation whilst preserving its efficiency.
The K-modes algorithm extends the K-means paradigm
to cluster categorical data by removing the barrier im-
posed by K-means through following modifications:

1. Using a simple matching dissimilarity measure or
the Hamming distance for categorical data objects

2. Replacing means of clusters by their modes (cluster
centers)

The simple matching dissimilarity measure can be
defined as following. Let X and Y be two categorical
data objects described by m categorical attributes. The
dissimilarity measure d (X,Y ) between X and Y can be
defined by the total mismatches of the corresponding at-
tribute categories of two objects. Smaller the number
of mismatches, more similar the two objects are. Math-
ematically, we can say

d (X,Y ) =

m∑
j=1

δ (xj , yj)(3.1)

where δ (x, = yj) =

{
0 (xj = yj)
1 (xj 6= yj)

d (X,Y ) gives equal importance to each category of
an attribute.

Let Z be a set of categorical data objects described
by categorical attributes, A1, A2, . . . Am. When the
above is used as the dissimilarity measure for categorical
data objects, the cost function becomes

C (Q) =

n∑
i=1

d (Zi, Qi)(3.2)

where Zi is the ith element and Qi is the nearest
cluster center of Zi. The K-modes algorithm minimizes
the cost function defined in Equation 3.2.

The K-modes assumes that the knowledge of num-
ber of natural grouping of data (i.e. K ) is available and
consists of the following steps: -

1. Create K clusters by randomly choosing data ob-
jects and select K initial cluster centers, one for
each of the cluster.

2. Allocate data objects to the cluster whose cluster
center is nearest to it according to equation 3.2.

3. Update the K clusters based on allocation of data
objects and compute K new modes of all clusters.

4. Repeat step 2 to 3 until no data object has changed
cluster membership or any other predefined crite-
rion is fulfilled.

4 Multiple Attribute Clustering Approach for
Computing Initial Cluster Centers

Khan and Ahmad [17] show that for partitional cluster-
ing algorithms, such as K-Means, some of the data ob-
jects are very similar to each other and that is why they
share same cluster membership irrespective to the choice
of initial cluster centers. Also, an individual attribute
may provide some information about initial cluster cen-
ter. He et al. [11] present a unified view on categorical
data clustering and cluster ensemble for the creation of
new clustering algorithms for categorical data. Their
intuition is that attributes present in a categorical data
contributes to the final cluster structure. They con-
sider the attribute values of an attribute as cluster la-
bels giving “best clustering” without considering other
attributes and created a cluster ensemble. We take mo-
tivation from these research works and propose a new
cluster initialization algorithm for categorical datasets
that perform multiple clustering on different attributes
and uses distinct attribute values as cluster labels as
a cue to find consistent cluster structure and an aid
in computing better initial centers. The proposed ap-
proach is based on the following experimental observa-
tions (assuming that the desired number of clusters, K,
are known):



1. Some of the data objects are very similar to each
other and that is why they have same cluster
membership irrespective of the choice of initial
cluster centers [17].

2. There may be some attributes in the dataset whose
number of attribute values are less than or equal to
K. Due to fewer attribute values per cluster, these
attributes shall have higher discriminatory power
and will play a significant role in deciding the initial
modes as well as the cluster structures. We call
them as Prominent Attributes (P) .

3. There may be few attributes whose number of
attribute values are greater than K. The many
atrribute values in these attributes will be spread
out per cluster, add little to determine proper
cluster structure and contribute less in deciding the
initial representative modes of the clusters.

The main idea of the proposed algorithm is to
partition the data, for every prominent attribute based
on its attribute values, and generate a cluster string
that contains the respective cluster allotment labels of
the full data. This process yields a number of cluster
strings that represent different partition views of the
data. As noted above, some data objects will not
be affected by choosing different cluster centers and
their cluster strings will remain same. The algorithm
assumes that the knowledge of natural clusters in the
data i.e. K is available and merges similar cluster
strings into K partitions. This step will group similar
cluster strings into K clusters. In the final step, the
cluster strings within each K clusters are replaced by
the corresponding data objects and modes of every K
cluster is computed that serves as the initial centers for
the K-modes algorithm. The algorithmic steps of the
proposed approach are presented below.

Algorithm: Compute Initial Modes. Let Z be a
categorical dataset with N data objects embedded in M
dimensional feature space.

1. Calculate the number of Prominent Attributes
(#P)

2. If #P > 0, then use these Prominent Attributes
for computing initial modes by calling getIni-
tialModes(Attributes P)

3. If #P = 0 i.e. there are no Prominent Attributes
in the data, or if #P = M i.e. all attributes are
Prominent Attributes, then use all attributes and
call getInitialModes(Attributes M)

Algorithm: getInitialModes(Attributes A)

1. For every i ∈ A, i=1,2. . .A, repeat step 2 to 4.
Let j denotes the number of attribute values of i th

attribute. Note that if A is P then j ≤ K, else if
A is M then j > K.

2. Divide the dataset into j clusters on the basis of
these j attribute values such that data objects
with different values (of this attribute i) fall into
different clusters.

3. Compute j M -dimensional modes, and partition
the data by performing K-modes clustering that
consumes them as initial modes.

4. Assign cluster label to every data object as Sti,
where t=1,2. . .N

5. Generate cluster string Gt corresponding to every
data object by storing the cluster labels from Sti.
Every data object will have A class labels.

6. Find distinct cluster strings from Gt, count their
frequency, and sort them in descending order.
Their count, K ′, is the number of distinguishable
clusters.

There arise three possibilities:

(a) K ′ > K – Merge similar distinct cluster string
of Gt into K clusters and compute initial
modes (details presented in Section 4.1)

(b) K ′ = K – Distinct cluster strings of Gt

matches the desired number of clusters in the
data. Glean the data objects corresponding
to these K cluster strings, which will serve
as initial modes for the K-modes clustering
algorithm.

(c) K ′ < K – An obscure case may arise where
the number of distinct cluster strings are less
than the chosen K (assumed to represent
the natural clusters in the data). This case
will only happen when the partitions created
based on the attribute values of A attributes
groups the data in the same clusters every
time. A possible scenario is when the attribute
values of all attributes follow almost same
distribution, which is normally not the case
in real data. This case also suggests that
probably the chosen K does not resemble with
the natural grouping and it should be changed
to a lesser value. The role of attributes with
attribute values greater than K has to be
investigated in this case. This particular case
is out of the scope of the present paper.



4.1 Merging Clusters As discussed in step 6 of al-
gorithm getInitialModes(Attributes A), there may arise
a case when K ′ > K, which means that the number of
distinguishable clusters obtained by the algorithm are
more than the desired number of clusters in the data.
Therefore, K ′ clusters must be merged to arrive at K
clusters. As these K ′ clusters represent distinguishable
clusters, a trivial approach could be to sort them in or-
der of cluster string frequency and pick the top K cluster
strings. A problem with this method is that it cannot
be ensured that the top K most frequent cluster strings
are representative of K clusters. If more than one clus-
ter string comes from same cluster then the K-modes
algorithm will fall apart and will give undesirable clus-
tering results. This observational fact is also verified
experimentally and holds to be true.

Keeping this issue in mind, we propose to use
the hierarchical clustering method [9] to merge K ′

distinct cluster strings into K clusters. Hierarchical
clustering has the disadvantage of having quadratic time
complexity with respect to the number of data objects.
In general, K ′ cluster strings will be less than N.
However, to avoid extreme case such as when K ′ ≈ N ,
we only choose the most frequent N0.5 distinct cluster
strings of Gt. This will make the hierarchical algorithm
log-linear with the number of data objects (K ′ or N0.5

distinct cluster strings here). The infrequent cluster
strings can be considered as outliers or boundary cases
and their exclusion does not affect the computation of
initial modes. In the best case, when K ′ � N0.5,
the time complexity effect of log-linear hierarchical
clustering will be minimal. The hierarchical clusterer
merges K ′ (N0.5 in worst case) distinct cluster strings
of Gt by labelling them in the range of 1 . . .K. For
every cluster label k = 1 . . .K, group the data objects
corresponding to the cluster string with label k and
compute the group modes. This process generates K M -
dimensional modes that are to be used as initial modes
for K-modes clustering algorithm.

4.2 Choice of Attributes. The proposed algorithm
starts with the assumption that there exists prominent
attributes in the data that can help in obtaining dis-
tinguishable cluster structures that can be merged to
obtain initial cluster centers. In the absence of any
prominent attributes (or if all attributes are prominent),
Vanilla Approach, all the attributes are selected to find
initial modes. Since attributes other can prominent at-
tributes contain attribute values more than K, a pos-
sible repercussion is the increased number of distinct
cluster strings Gt due to the availability of more clus-
ter allotment labels. This implies an overall reduction
in the individual count of distinct cluster strings and

many small clusters may arise side-by-side. Since the
hierarchical clusterer imposes a limit of

√
N on the top

cluster strings to be merged, few distinguishable cluster
could lay outside the bound during merging. This may
lead to some loss of information and affects the quality
of the computed initial cluster centers. The best case
occurs when the number of distinct cluster strings is less
than or equal to

√
N .

4.3 Evaluating Time Complexity The above pro-
posed algorithm to compute initial cluster centers has
two parts, namely, getInitialModes(Attributes A) and
merging of clusters. In the first part, the K-modes al-
gorithm is run P times (in the worst case M times).
As the K-modes algorithm is linear with respect to
the size of the dataset [12], the worst case time com-
plexity will be M.O(rKMN), where r is the number
of iterations needed for convergence and � N. In the
second part of the algorithm, the hierarchical cluster-
ing is used. The worst case complexity of the hier-
archical clustering is O(N2logN). As the proposed
approach chooses distinct cluster strings that are less
than or equal to N0.5, the worst case complexity be-
comes O(NlogN). Combining both the parts, the worst
case time complexity of the proposed approach becomes
(M.O(rKMN) + O(NlogN)), which is log-linear with
respect to the size of the dataset.

5 Experimental Analysis

5.1 Datasets. To evaluate the performance of the
proposed initialization method, we use several pure
categorical datasets from the UCI Machine Learning
Repository [5]. All the datasets have multiple attributes
and varied number of classes, and some of the dataset
contain missing values. A short description for each
dataset is given below.

Soybean Small. The soybean disease dataset con-
sists of 47 cases of soybean disease each character-
ized by 35 multi-valued categorical variables. These
cases are drawn from four populations, each one of
them representing one of the following soybean dis-
eases: D1-Diaporthe stem canker, D2-Charcoat rot, D3-
Rhizoctonia root rot and D4-Phytophthorat rot. Ide-
ally, a clustering algorithm should partition these given
cases into four groups (clusters) corresponding to the
diseases. The clustering results on soybean data are
shown in Table 2.

Breast Cancer Data. This data has 699 instances
with 9 attributes. Each data object is labeled as benign
(458 or 65.5%) or malignant (241 or 34.5%). There are
9 instances in Attribute 6 and 9 that contain a missing



(i.e. unavailable) attribute value. The clustering results
of breast cancer data are shown in Table 3.

Zoo Data. It has 101 instances described by 17 at-
tributes and distributed into 7 categories. All of the
characteristics attributes are Boolean except for the
character attribute corresponds to the number of legs
that lies in the set 0, 2, 4, 5, 6, 8. The clustering results
of zoo data are shown in Table 4.

Lung Cancer Data. This dataset contains 32 in-
stances described by 56 attributes distributed over 3
classes with missing values in attributes 5 and 39. The
clustering results for lung cancer data are shown in Ta-
ble 5.

Mushroom Data. Mushroom dataset consists of 8124
data objects described by 22 categorical attributes
distributed over 2 classes. The two classes are edible
(4208 objects) and poisonous (3916 objects). It has
missing values in attribute 11. The clustering results
for mushroom data are shown in Table 6.

5.2 Comparison and Performance Evaluation
Metric. We compared the proposed cluster initial cen-
ter against the random initialization method and the
methods described by Cao et al. [4] and Wu et al. [24].
For random initialization, we randomly group data ob-
jects into K clusters and compute their modes to be
used as initial centers. The reported results are an av-
erage of 50 such runs.

To evaluate the performance of clustering algo-
rithms and for fair comparison of results, we used the
performance metrics used by Wu et al [24] that are de-
rived from information retrieval. If a dataset contains
K classes for any given clustering method, let ai be the
number of data objects that are correctly assigned to
class Ci, let bi be the number of data objects that are
incorrectly assigned to class Ci, and let ci be the data
objects that are incorrectly rejected from class Ci, then
precision, recall and accuracy are defined as follows:

PR =

∑K
i=1

(
ai

ai+bi

)
K

(5.3)

RE =

∑K
i=1

(
ai

ai+ci

)
K

(5.4)

AC =

∑K
i=1 ai
N

(5.5)

Table 1: Effect of choosing different number of at-
tributes.

Dataset
Proposed Vanilla √

N
#P #CS #A #CS

Soybean 20 21 35 25 7
Zoo 16 7 17 100 11
Breast-Cancer 9 355 9 355 27
Lung-Cancer 54 32 56 32 6
Mushroom 5 16 22 683 91

5.3 Effect of Number of Attributes. To test the
intuition discussed in Section 4.2, we performed a
comparative analysis on the effect of number of selected
attributes on the number of distinct cluster strings. In
Table 1, #P is the number of prominent attributes, #A
is the total number of attributes in the data, #CS is
the number of distinct cluster string and

√
N is the

limit on the number of top cluster strings to be merged
using hierarchical clustering. The table shows that
choosing a Vanilla approach (all attributes) leads to
higher #CS, whereas with the proposed approach the
number of distinct cluster strings are much lesser. For
breast cancer data, all the attributes were prominent
therefore #P and #A are same and hence same #CS.
For lung cancer data #P ≈ #A therefore #CS are
same. Due to the limit of merging top

√
N cluster string

(and reasons described in Section 4.2), clustering results
using a Vanilla approach is worse than the proposed
approach and are not reported in the paper. It is to be
noted that the #CS using proposed approach for Zoo
and Mushroom data are within the bounds of

√
N limit.

5.4 Clustering Results. It can be seen from Table
2 to 6 that the proposed initialization method outper-
forms random cluster initialization for categorical data
in accuracy, precision and recall. Another advantage of
the proposed method is that it generates fixed cluster
centers, whereas the random initialization method does
not. Therefore, repeatable and better cluster structures
can be obtained using the proposed method. In com-
parison to the initialization methods of Cao et al. and
and Wu et al., the findings can be summarized as:

• in terms of accuracy, the proposed method outper-
forms or equals other methods in 4 cases and per-
form worse in one case.

• in terms of precision, the proposed method per-
forms well or equals other methods in 2 cases while
performs worse in 3 cases.

• in terms of recall, the proposed method outper-
forms or equals other methods in 4 cases whereas



it perform worse in 1 case.

Table 2: Clustering results for Soybean data
Random Wu Cao Proposed

AC 0.8644 1 1 0.9574
PR 0.8999 1 1 0.9583
RE 0.8342 1 1 0.9705

Table 3: Clustering results for Breast Cancer data
Random Wu Cao Proposed

AC 0.8364 0.9113 0.9113 0.9127
PR 0.8699 0.9292 0.9292 0.9292
RE 0.7743 0.8773 0.8773 0.8783

Table 4: Clustering results for Zoo data
Random Wu Cao Proposed

AC 0.8356 0.8812 0.8812 0.891
PR 0.8072 0.8702 0.8702 0.7302
RE 0.6012 0.6714 0.6714 0.8001

Table 5: Clustering results for Lung Cancer data
Random Wu Cao Proposed

AC 0.5210 0.5 0.5 0.5
PR 0.5766 0.5584 0.5584 0.6444
RE 0.5123 0.5014 0.5014 0.5168

Table 6: Clustering results for Mushroom data
Random Wu Cao Proposed

AC 0.7231 0.8754 0.8754 0.8815
PR 0.7614 0.9019 0.9019 0.8975
RE 0.7174 0.8709 0.8709 0.8780

The above results are very encouraging due to the
fact that the worst case time complexity of the proposed
method is log-linear, whereas the method of Cao et
al. has quadratic complexity and the method of Wu
et al. induces random selection of data points. The
accuracy values of proposed method are mostly better
than or equal to other methods, which implies that the
proposed approach is able to find fixed initial centers
that are close to the actual centers of the data. The
only case where the proposed method perform worse
in all three performance metric is the soybean dataset.
We observe that on some datasets the proposed method
gives worse values for precision, which implies that

in those cases some data objects from non-classes are
getting clustered in given classes. The recall values
of proposed method are mostly better than the other
methods, which suggests that the proposed approach
tightly controls the data objects from given classes to
be not clustered to non-classes. Breast cancer data
has no prominent attribute in the data and uses all
the attributes and produces comparable results to other
methods. Lung cancer data, though smaller in size
has high dimension and the proposed method is able
to produce better precision and recall rates than other
methods. It is also observed that the proposed method
perform well on large dataset such as mushroom data
with more than 8000 data objects. In our experiment,
we did not get a scenario where the distinct cluster
strings are less than the desired number of clusters. The
proposed algorithm is also independent of the order of
presentation of data due to he way mode is computed
for different attributes.

6 Conclusions

The results attained by the K-modes algorithm for
clustering categorical data depends intrinsically on the
choice of random initial cluster center, that can cause
non-repeatable clustering results and produce improper
cluster structures. In this paper, we propose an algo-
rithm to compute initial cluster center for categorical
data by performing multiple clustering on attribute val-
ues of attributes present in the data. The present algo-
rithm is developed based on the experimental fact that
similar data objects form the core of the clusters and
are not affected by the selection of initial cluster cen-
ters, and that individual attribute also provide useful in-
formation in generating cluster structures, that eventu-
ally leads to computing initial centers. In the first pass,
the algorithm produces distinct distinguishable clusters,
that may be greater than, equal to or less than the de-
sired number of clusters ( K ). If it is greater than K then
hierarchical clustering is used to merge similar cluster
strings into K clusters, if it is equal to K then data
objects corresponding to cluster strings can be directly
used as initial cluster centers. An obscure possibility
arises when cluster strings are less than K, in which
case either the value of K is to be reduced, or assumed
that the current value of K is not true representative of
the desired number of clusters. However, in our exper-
iment we did not get such situation, largely because it
can happen in a rare occurence when all the attribute
values of different attributes cluster the data in the same
way. These initial cluster centers when used as seed to
K-modes clustering algorithm, improves the accuracy of
the traditional K-modes clustering algorithm that uses
random modes as starting point. Since there is a def-



inite choice of initial modes (zero standard deviation),
consistent and repetitive clustering results can be gen-
erated. The proposed method also does not depend on
the way data is ordered. The performance of the pro-
posed method is better than or equal to the other two
methods on all datasets except one case. The biggest
advantage of the proposed method is the worst case log-
linear time complexity of computation and fixed choice
of initial cluster centers, whereas both the other two
methods lack either one of them.

In scenarios when the desired number of clusters
are not available at hand, we would like to extend the
proposed multi-clustering approach for categorical data
for finding out the natural number of clusters present
in the data in addition to computing the initial cluster
centers for such case.
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