
PrepPipe: Prototyping Compiler for Attainable
Visual Novel Development

Shengjie Xu
University of Toronto

Toronto, Canada
shengjie.xu@mail.utoronto.ca

Abstract—Visual novels are a low-cost storytelling genre in
gaming. They can be developed by small teams or individuals
within weeks or months. Despite their simplicity relative to other
game categories, challenges persist that trap amateurs and lead to
inefficiencies or even project failures. PrepPipe project seeks to
accelerate visual novel prototyping, shorten development time,
and reduce effort wasted due to planning errors. Our project
includes a prototyping compiler that transforms story scripts
and assets into game project files, supplemented by auxiliary tools
and asset templates. Key features of the compiler include rich-text
input handling, support for a user-guided incremental refinement
process, and leniency towards erroneous inputs. We aim to make
visual novel development more attainable and enjoyable for a
wider audience.

Index Terms—Visual Novel, Compiler

I. INTRODUCTION

Visual novels1 blend static graphics—typically anime-
style—with narrative text, sound, and music to create im-
mersive stories. The development barrier for visual novels is
relatively low compared to other gaming genres, which has
broadened the range of individuals who can engage in creat-
ing visual novels. However, visual novel development is not
without challenges, particularly for amateurs and newcomers
prone to planning errors. This could lead to wasted effort,
delayed completion, or budget overrun.

We propose the PrepPipe project to mitigate these issues,
facilitating rapid prototyping in visual novel development.
Central to this effort is a prototyping compiler that processes
stories in early iteration stages, generating project files for
engines like Ren’Py [2]. This approach allows developers
to produce functional game demos and collect asset usage
statistics “starting from day one”, facilitating better-informed
planning and decision-making. At the time of writing, this
project is a work-in-progress with a working prototype2.

To better support the usage scenario above, our compiler
and language contrast several key aspects with traditional
visual novel engines. Firstly, our language is designed to
align with how humans naturally write stories, accepting
inputs such as rich-text documents and effectively handling

1We use the definition of Visual Novels from [1] but also include Kinetic
Novels, which do not have branching storylines.

2Available: https://github.com/PrepPipe/preppipe-python

non-formal grammar. Secondly, rather than interpreting input
commands as imperative instructions, our compiler treats
them as flexible constraints. This approach enables significant
enhancements in the output, allowing users to incrementally
improve stories or projects and delegate less critical details to
the compiler. Thirdly, the compiler adopts a lenient approach
to error handling; it treats most issues (typos, missing assets,
etc) as warnings, minimizing disruptions during the creative
process and focusing on development continuity. In addition,
the compiler architecture supports analyses and transforms
as extensible and reusable compiler passes. These include
integrating asset usage statistics reporting and presentation
improvement heuristics into the pipeline.

II. BACKGROUND

A. Visual Novel Engines

Visual novels generally share the same program logic,
differing only in story and game assets. This has popularized
the use of specialized visual novel engines like Ren’Py [2]
for their development. These engines serve as domain-specific
languages (DSLs) and compiler-interpreters tailored to vi-
sual novels. By adhering to specific grammar and formatting
requirements for assets, developers can create visual novel
games using these engines without writing traditional game
programs. Listing 1 shows example scripts from selected free
and open-source engines.

However, the direct use of engine-specific languages for
writing visual novels is uncommon among developers. These
languages often incorporate traditional programming syntax,
which can disrupt creative writing. They usually feature fail-
stop semantics, where minor typos can halt the game at
runtime, forcing developers to resolve these issues to get
a working prototype. Additionally, the semantics of these
languages are engineered to define game behavior precisely,
demanding explicit commands to achieve the desired on-
screen presentation. Furthermore, these languages use half-
width punctuation for commands, whereas the full-width
punctuation used in Chinese, Japanese, and Korean (CJK)
is not supported, necessitating frequent switching of input
modes for CJK authors. Consequently, it is more common for
developers to draft their stories in a writer’s native style and
then programmatically convert them to engine scripts through
methods such as search-replace or custom scripting.979-8-3503-5067-8/24/$31.00 ©2024 IEEE

define e = Character("Eileen") # Declare character
label start: # The game starts here.

scene bg room # background: "bg room.png/jpg"
show eileen happy # This shows a character sprite.
e "Hello World!" # say statement
return # This ends the game.

(a) Ren’Py (.rpy, DSL based on Python)

*start|Prologue ; game starts here.
@bg storage="BG14a" ; background
@fg pos="center" storage="fg01_02" ; character sprite
@dia ; show dialogue box
Hello World![w] ; say statement
@gotostart ask="false" ; ends the game

(b) KRKR/KAG (.ks, DSL based on TJS2)

monogatari.characters ({'e': {name: 'Eileen'}});
monogatari.script ({
'Start': [// start label
'show scene #f7f6f6', // background
'e Hello World!', // say statement
'end' // ends the game

],});

(c) Monogatari (.js, JSON object in Javascript)

Listing 1: Examples of Visual Novel Engine Scripts

B. Visual Novel Development Procedure

Developing a visual novel generally follows this procedure:
1) Pre-production: The story writer writes the story outline,

which determines the characters, scenes, general plots,
and, in turn, the asset requirements.

2) Production: The team writes the story text, produces all
the required assets in parallel, and integrates them into
a game project. Story text is converted to engine scripts
during integration. After all dependent assets are ready,
the developers adjust the presentation (“staging”).

3) Post-production: The team does final checks and pre-
pares for the game release.

Because of the lack of interactivity and the focus on
storytelling, visual novel development traditionally does not
involve playtesting; a team may not have a working demo until
staging or the post-production stage, which can be months
from the start of the project. Projects led by amateurs also
frequently exceed their planned timelines, increasing the risk
of contributors leaving due to personal commitments or loss
of interest, which can negate earlier efforts.

Another pitfall for inexperienced teams is asset planning.
An ambitious writer leading the project may write the bulk of
the story text before collecting asset requirements, leading to
wasted writing effort or budget overrun. The cost-effectiveness
of certain assets may be questionable, such as dedicating a
CG to an insignificant scene with just one or two sentences
of dialogue. We believe that quantitative asset usage estimates
can guide better planning on asset production and enhance
resource efficiency.

III. DESIGN OVERVIEW

PrepPipe project consists of (1) a rich-text-based language
for visual novel storywriting, (2) a compiler that generates

visual novel engine project files, and (3) auxiliary tools
(mainly a GUI) and art assets to support the compiler. We
designed the language to suit the natural writing style of narra-
tions and dialogues while enabling programmatic parsing and
compilation. We developed the PrepPipe compiler in Python,
facilitating easier plugin development and user customization.
Section III-A describes the language and how the design makes
it accessible to general users. Section III-B explains how the
compiler is designed for compiling the language and how to
use the compiler in the development workflow.

PrepPipe compiler is designed for the pre-production and
production stage before staging (i.e., adjusting the presenta-
tion), allowing the writer to create prototypes and get analysis
reports from the story text (and assets, optionally). The team
can then use these outputs to re-iterate and improve the story
and the assets. Near the end of the production stage, the team
can use the compiler to generate the initial project files and
start adjustment from there. We hope the availability of early
prototypes will reduce team members’ stress and interest loss,
making the development experience more enjoyable.

A. Language Design

We designed the language on rich-text input because we
observed that writers tend to write the initial story in rich-text
editors like MS Word. In this subsection, we highlight our
language design innovations. We explain how these innova-
tions stem from our design goals and the specific features of
rich-text editing environments.

Thi s i s a normal t e x t p a r a g r a p h .
[Command : v1 , a rg2 =v2] # command

(a) Paragraph

[ASM: backend = renpy]
$ v a l u e += 1

(b) Special Block

[DeclCharacter: Yuhan]
• Sprite:

– normal: normal.png
• Say:

– NameColor: #00FFFF

(c) List

[ExpandTable: cmdname=MyCommand]
param1 param2
Call1Arg1 Call1Arg2
Call2Arg1 Call2Arg2

(d) Table

Fig. 1: Structural Elements and Example Usage

Yuhan: "Sentence 1."
Yuhan: Sentence 2.
Yuhan "Sentence 3."
Yuhan (smile): "Sentence 4."
Yuhan: (smile) Sentence 5.
Yuhan: "Sentence 6", ignored, "continued."
"Yuhan" Sentence 7.
[Yuhan] Sentence 8.

Listing 2: Say Statement Formats (Non-exhaustive)

The PrepPipe language is line-oriented for error recovery
and consistency with existing engine scripts. Any structured
rich-text input is first read as a sequence of basic structural
elements, as shown in Figure 1. A paragraph consists of
text or embedded asset elements, and it does not contain
paragraph styles (e.g., align center or has background color).

If the paragraph does not start with ‘[’, it is a content
paragraph. The compiler will first try to parse the content
as a say statement (i.e., there is a sayer, a content string,
and optionally a character state modifier for sprite change).
Listing 2 lists a subset of say statement formats recognized
by the implementation. If the recognition fails, the paragraph
will be treated as a narration (plain text) or asset display.

If a paragraph starts with an opening square bracket ‘[’, it is
considered a command paragraph and it should contain one or
more commands enclosed by square brackets. All operations
other than narrations and dialogues are provided as commands,
including scene changes, characters entering/leaving the scene,
background music changes, etc. To support users of different
native languages, all strings used in the compiler (including
command and parameter names) have translations in supported
languages and are customizable from configuration files. In
addition, syntactic symbols like brackets and quotes support
both half-width and full-width versions.

Besides paragraphs, the remaining structural elements in
Figure 1 may be used as an additional parameter to the last
command in the preceding command paragraph. If a paragraph
contains a background color or has a center alignment, it
becomes a special block. It is used for inlined engine-specific
scripts (like inline assembly in traditional programming lan-
guages) or figure titles. Lists are used extensively for optional
parameters and extensible declarations. Tables are useful for
workflows using spreadsheets instead of texts. The language
ensures that non-content texts are visually distinct from story
content. When a reader inspects the content, unfamiliar com-
mand blocks can be skipped without affecting the story.

a) Incremental Refinement: PrepPipe Compiler treats in-
put commands as constraints instead of imperative instruc-
tions. This means that even in the absence of commands,
the compiler can automatically insert them, and it defaults
unspecified parameters to auto-determined values. This se-
mantics allows the compiler to automatically add placeholder
assets and perform basic staging using heuristics. During the
initial story writing, the author can focus on writing the
story without thinking about on-screen presentation details.
The compiler can add placeholder images to the screen at
computed locations and set their transition effects. After the
initial iterations, the author can incrementally add commands
or command parameters that adjust the presentation, and the
PrepPipe Compiler will observe the new constraints in the
new output. Because of the language design, the additional
commands or parameters can be in new paragraphs or list
elements, preserving the readability of existing content. This is
especially necessary in a rich-text editing environment because
the line width is finite and line wrap is mandatory. Long
commands exceeding line width have poor readability because
monospace fonts are not defaults, therefore whitespace be-
comes ineffective in formatting. We do not aim to fully support
staging from the input though, as it relies on engine-specific
features that vary significantly across different engines.

b) Lenient to Error: PrepPipe Compiler handles errors
gracefully, aligning with the objective for prototyping. It emits

most error messages as a special character named “PrepPipe
Error” describing the error in the game (i.e., saying “Error
XXX. Please YYY. (error-code)” as a game character). “Asset
not found” errors become a placeholder that replaces the
referenced asset. If a scene, character, or other entities are
not declared, the compiler creates an empty declaration and
proceeds. This allows the author to prioritize completing the
draft and making high-level decisions (e.g., about plot design)
without bothering to fix the errors in the specific writing.

c) Embedded Assets: Rich-text content can embed im-
ages, audio, or other multimedia assets. Our language supports
embedded assets in the content or as command parameters.
While they are rare in text scripts, we believe that supporting
embedded assets from inputs is necessary to explore the
usability of rich-text input fully.

B. Compiler Design

To support the compilation of the visual novel language, the
PrepPipe compiler uses the pipeline design shown in Figure 2.

a) Compiler Architecture: We follow the architecture of
modern compiler frameworks (LLVM [3] and MLIR [4]):
the compiler is decoupled into (1) frontend that implements
file reading and language semantics handling, (2) backend
that implements the engine-specific code generation, and (3)
middle-end that defines an abstraction interface between a
frontend and a backend, as well as implementing engine-
agnostic algorithms. At any abstraction interface, primarily
the middle-end, the data structure representing game or story
content is known as Intermediate Representation (IR). This
architecture enables flexible customization and seamless ex-
tension of new functionalities. For example, code generation
of a new visual novel engine can be integrated into the
pipeline by implementing another backend that reads the IR;
all the frontend logic can be reused without change. Analyses
like statistics collection and transforms like game/code im-
provement heuristics can be implemented in the middle-end
as compiler passes (which reads IR and optionally produces
transformed IR), and they work regardless of the combination
of frontends and backends. We also incorporated the idea from
MLIR [4] that a base IR provides common utilities for code
reuse and ease of debugging. This allows us to further divide
the pipeline and create abstraction interfaces, improving the
flexibility and speed of iterating the language design.

b) Pipeline Stages: To support multiple input file formats
and simplify parsing, the compiler defines a data structure
called InputModel to abstract away differences in input file
formats while preserving the structural elements in Figure 1.
In this way, supporting a new file format only involves writing
a new frontend component that exports the InputModel for
this file format. Then, a command detection pass operates
on the InputModel to replace command paragraphs with
parsed command data structures. Next, the visual novel lan-
guage frontend takes over and produces the abstract syntax tree
(AST). Each AST node may represent certain meaningful con-
structs in the language, for example, a parsed say statement, a
character/scene declaration, a command, or an asset reference.

InputModel
Rich-text elements
- Paragraphs
- Special Blocks
- Lists

AST

Language elements
- Declarations
- Say statements
- ...

VNModel
Abstract engine scripts
- Say instruction groups
- Image show/hide
- ...

Ren’Py AST
Ren’Py Specific

representation

Base IR (Common utilities: storage, printing, etc)

.docx

.odt

.md

.txt

Ren’Py
Project

Frontend Middle-End BackendAssets
Text

dumpStory text
and assets
in iteration

To custom tools

For prototyping

For planningAnalysis
report

To Ren’Py

Fig. 2: PrepPipe Compiler Pipeline Overview

The AST interface abstracts away differences in syntax for all
constructs with the same semantics: say statements in different
forms (e.g., Listing 2) are all emitted as say statement nodes,
and the same command specified in different human languages
or using user-specified keywords are represented with the same
AST node types. This unification allows subsequent pipeline
stages to handle different forms of say statements or com-
mands in the same way. Then, a visual novel code generator
visits the AST and emits VNModel, an IR representing the
script for an abstract visual novel engine. The code generator
implements the semantics of each AST node using imperative
commands from the abstract engine. For example, character
entry/exit becomes character sprite show/hide, and control flow
commands (e.g., menu commands that ask the player to choose
a branching path) become basic blocks (contiguous blocks
of instructions without branching in between) and termina-
tor instructions (branching instructions at the end of each
basic block). Say statements become say instruction groups
that contain child instructions for showing character names,
say content, side images, etc. After VNModel is generated,
the pipeline can execute analysis and transforms, including
asset usage statistics collection. We also implemented a pass
that breaks long says into shorter ones so writers can write
long monologue paragraphs without overflowing the resulting
game’s dialogue box. At the time of writing, for producing
the prototype, we have (1) a Ren’Py backend that supports
exporting Ren’Py project files and (2) a text dump pass in
the middle-end that exports IR information in plain text.
Developers using in-house engines can write custom scripts
that parse the text dump to integrate the compiler into their
workflows.

IV. DISCUSSION

A. Asset Templates

Usually, a visual novel project starts with no image assets
prepared in advance. Playing the output prototype without im-
age assets will be boring and meaningless, as only a dialogue
box is popping text with a black background. To generate
placeholder images that are both nice-looking and general,
we work with artists to draw pictures with reserved areas for
customization. For example, in a template background image,
there is a white screen on the wall where the user can attach
an image, a text fragment, or color blocks, and there is an
item (e.g., a carpet or a wall) that the user can recolor. Users

can customize the templates according to their needs (e.g.,
writing the scene name on the screen) to create non-trivial
game prototypes. We plan to add more user-customizable asset
templates in the future.

B. Usable Tooling

PrepPipe project originated from the observation that many
visual novel writers use rich-text editors like MS Word, often
without the programming skills to convert their stories into
engine scripts. They may also use a writing style that is
challenging to process programmatically. Before the advent
of Large Language Models (LLM), the developers needed to
replace the dialogue text with corresponding engine scripts
line by line, which is tedious and can take days or weeks.

We started the project by designing a rich-text-based syntax
that matches how storywriters write conversations in natural
languages. It later evolved into a compiler that assists visual
novel prototyping on top of the story-to-script conversion. We
hope this project can enhance the experience of visual novel
development, enabling more creators to engage in this genre.
Future extensions will maintain an emphasis on usability for
the general public.

C. Relationship to Related Work

Visual novel engines and the PrepPipe compiler can be
categorized as authoring tools for Interactive Digital Narratives
(IDNs) [5]. We believe that PrepPipe compiler is the first work
that can prototype visual novels from rich-text inputs. We plan
to implement more frontends/backends to interface with other
visual novel engines and IDN-related tools in the future.

REFERENCES

[1] J. Camingue, E. Carstensdottir, and E. F. Melcer, “What is a visual
novel?” Proc. ACM Hum.-Comput. Interact., vol. 5, no. CHI PLAY, oct
2021. [Online]. Available: https://doi.org/10.1145/3474712

[2] T. Rothame, “Ren’Py,” https://www.renpy.org/, accessed: Jun 9, 2024.
[3] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong

program analysis & transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86.

[4] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pien-
aar, R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:
Scaling compiler infrastructure for domain specific computation,” in
2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2021, pp. 2–14.

[5] C. Hargood and D. Green, The Authoring Tool Evaluation Problem.
Cham: Springer International Publishing, 2022, pp. 303–320. [Online].
Available: https://doi.org/10.1007/978-3-031-05214-9 19

