Lecture 10 Nyquist-Rate ADCs

Trevor Caldwell trevor.caldwell@awaveip.com

Lecture Plan

Date	Lecture (Wednesday 2-4pm)		Reference	Homework
2020-01-07	1	MOD1 & MOD2	PST 2, 3, A	1: Matlab MOD1&2
2020-01-14	2	$\mathbf{MODN} + \Delta \Sigma \mathbf{Toolbox}$	PST 4, B	2 : ΔΣ Toolbox
2020-01-21	3	SC Circuits	R 12, CCJM 14	
2020-01-28	4	Comparator & Flash ADC	CCJM 10	3: Comparator
2020-02-04	5	Example Design 1	PST 7, CCJM 14	
2020-02-11	6	Example Design 2	CCJM 18	
2020-02-18	Reading Week / ISSCC			4: 5C WOD2
2020-02-25	7	Amplifier Design 1		
2020-03-03	8	Amplifier Design 2		
2020-03-10	9	Noise in SC Circuits		
2020-03-17	10	Nyquist-Rate ADCs	CCJM 15, 17	Project
2020-03-24	11	Mismatch & MM-Shaping	PST 6	
2020-03-31	12	Continuous-Time $\Delta\Sigma$	PST 8	
2020-04-07	Exam			
2020-04-21	Project Presentation (Project Report Due at start of class)			

Circuit of the Day: Preamp CM Range

• How do we improve the CM range of a preamp?

What you will learn...

- ADC performance limitations
- Nyquist-Rate ADCs

Discuss 5 architectures Look at SAR and Pipeline ADCs in more detail

Figure of Merit (FOM)

Fundamental trade-offs in ADCs Bandwidth, Resolution and Power

ADC Performance

 Performance Limitations in ADCs SQNR, SNR and SNDR Offset and Gain Error Integral Nonlinearity (INL) Error Differential Nonlinearity (DNL) Error Sampling Time Uncertainty (Jitter)

SQNR, SNR and SNDR

SQNR: Signal to Quantization Noise Ratio
 For single-tone sinusoid with input V_P, LSB size V_{LSB}

$$SQNR = 10 \log_{10} \left(\frac{V_P^2/2}{V_{LSB}^2/12} \right)$$

• SNR: Signal to Noise Ratio

Typically includes thermal and quantization noise

$$SNR = 10 \log_{10} \left(\frac{V_P^2/2}{\frac{V_{LSB}^2}{12} + \overline{V_T^2}} \right)$$

SNDR: Signal to Noise and Distortion Ratio

Typically includes all noise sources: thermal, quantization, distortion, etc.

Offset and Gain Errors

Look at transition points of input analog voltage
 V_{0...01} is transition from 0 to 1 in output code

INL and DNL Errors

 Remove Offset and Gain errors before finding INL and DNL error

INL Error

Deviation from straight line Accumulation of DNL Error

DNL Error

Transition values should be 1 LSB apart Error is deviation from 1 LSB Differentiate INL Error

Sampling Time Uncertainty

$$V_{IN} = V_P \sin(\omega_{IN} t)$$

• Error occurs with uncertainty in sampling time Worst case at maximum slope of signal

$$\frac{\Delta V}{\Delta t} = V_{P}\omega_{IN}\cos(\omega_{IN}t)$$

Jitter error due to variation in sampling time

$$SNR_{jitter} = 20\log_{10}\left(\frac{1}{\sigma(\Delta t)\omega_{IN}}\right)$$

Comparison: Nyquist vs $\Delta \Sigma$ **ADCs**

- Larger bandwidth in Nyquist-rate ADCs
 Oversampling costs bandwidth, increases accuracy
 Nyquist ADC uses entire output spectrum
- Noise in ΔΣ primarily important in signal band Larger out-of-band shaped noise gets filtered All noise in a Nyquist-rate ADC is important
- Nyquist ADC has (typically) no memory
 ΔΣ ADCs have memory; output is a function of many inputs

Nyquist ADCs

- Several architectures to choose from:
 - 1) Flash
 - 2) Dual Slope
 - 3) Successive Approximation
 - 4) Cyclic
 - 5) Pipeline
- Architectures differ in speed, resolution, latency, power efficiency

Each architecture has a different way of converging on the most accurate digital representation

Comparator

- Basic building block of an A/D converter
 Acts as a 1-bit A/D converter
- Output amplifies difference between V_{IN} & V_{REF}
 With a large gain, output is 'digital' at either the positive or negative supply rail

Comparator

Not an open-loop amplifier

Cascaded low-gain stages are faster for a given power

Latched comparator

Architecture #1: Flash ADC

• Use 2^N-1 comparators to find the input level

Architecture #2: Dual-Slope ADC

 Only needs integrator, comparator and counter Integrate V_{IN} for fixed time T Subtract V_{REF} until V_{INT} reduces to zero D_{OUT} proportional to time required to reduce V_{INT} to zero

Architecture #2: Dual-Slope ADC

Example of integrator output curves

Slower but more accurate than flash

Architecture #3: SAR ADC

• Binary search algorithm

$$D_1=1$$
, $D_{2...n}=0$, check $V_{D/A}$ against V_{IN}
If $V_{IN} > V_{D/A}$, $D_1=1$
If $V_{IN} < V_{D/A}$, $D_1=0$
Now try $D_2=1$, carry on...

Architecture #4: Cyclic ADC

Binary search algorithm

Doubles the 'residue' every clock cycle Compares against the same reference every cycle

Architecture #4: Cyclic ADC

Multiplying DAC (M-DAC)

Multiplies DAC output with a gain of 2 Typically switched-capacitor circuits are used

Architecture #5: Pipeline ADC

'Unwrapped' Cyclic ADC

Stages are cascaded rather than re-used Allows higher speed/throughput Increases overall area of converter

1-bit per stage design

N stages for N-bit resolution

Motivation for SAR ADCs

 Traditionally used for high SNR lower speed applications (<1 MS/s)

Industrial sensors Power line measurements Audio Medical imaging

 Currently used for high-speed medium-res ADCs Up to 1GS/s, 6-10 bit resolution, time-interleaved Very power efficient Do not require high-gain/linearity amplifier Well suited to smaller process nodes

DAC-based SAR ADC

• How do we implement the binary search?

Unipolar Charge-Redistribution SAR

- 1. Charge all caps to V_{IN} (S_1, S_2 on; S_3 off) S_1, S_2 on; S_3 off
- 2. Switch caps to ground, $V_{D/A}=-V_{IN}$ D₁ - D₅,S₁,S₃ on; S₂ off
- 3. Switch S₁ to V_{REF}, start bit cycling (S₁ off) Switch D₁ to V_{REF}, if V_{D/A} negative then keep D₁ at V_{REF} Find V_{REF} weighting equivalent to V_{IN}

Unipolar Charge-Redistribution SAR

- Extra capacitor C required for exact divide by 2
- DAC capacitor array serves as Sample-and-Hold
- Switching sequence is parasitic insensitive Parasitic capacitors attenuate the signal on V_{D/A} Better to keep capacitor bottom plates on the V_{REF} side (not the comparator side)

Signed conversion with added -V_{REF} input

Third state for S₁: V_{IN} , V_{REF} , $-V_{REF}$ If $V_x < 0$ on step 2, proceed with V_{REF} If $V_x > 0$ on step 2, use $-V_{REF}$, opposite comparison

SAR Algorithm

- Algorithm finds largest DAC value less than V_{IN}
- Every single bit acquired must be accurate to the resolution of the system

DAC linearity Comparator Offset (for multi-bit) S/H offset and linearity

Comparator must respond to large changes
 Large overdrive to 0.5 LSB in a single bit cycle period

SAR Algorithm

Bandwidth limitation

For N-bit resolution, N bit cycles are required, reducing the effective sampling frequency by N

 Comparison nodes must be quiet before comparator triggers

Speed Estimate of SAR

- Two high speed paths
 - 1) Comparator Path: Comparator latching and resetting within clock period
 - 2) DAC Path: Comparator latching and DAC (RC switch network) resolving within period
- Comparator path

Discussed in Comparator lecture Requires fast regeneration time constant + strong reset

DAC Path (RC network)

Requires fast regeneration time constant in comparator Switches sized to reduce R in RC switch network (C sized for noise or matching)

Speed Estimate of SAR

• RC time constant of capacitor array + switches Assume switches are sized proportional to capacitors $\tau_{eq} = (R_{s1} + R_{s2} + R/2^N)2^NC$

For better than 0.5 LSB accuracy

$$e^{-T/ au_{eq}} < rac{1}{2^{N+1}}$$

Minimum value for the charging time T

 $T_{DAC} > 0.69(N+1)(R_{s1}+R_{s2}+R/2^N)2^NC$

Pipeline ADC

- Each stage quantizes the amplified quantization error signal from the previous stage
- Higher throughput, lower complexity

Digital Outputs

Add digital outputs of each stage with binary weighting

Assume some redundancy to correct offset errors Inter-stage gain < 2^{m-1}

- Example: 10-bit ADC
 - 8 stages with 1.5-bit per stage, 2-bit final stage $D_{1...8}=\{-1,0,1\}, D_9=\{-1.5,-0.5,0.5,1.5\}$ $D_{OUT}=D_12^8+D_22^7+D_32^6+D_42^5+D_52^4+D_62^3+D_72^2+D_82^1+D_92^0$

1024 output levels: 10-bit converter

1-bit per stage x 8 stages + 2-bit final stage = 10 bits

Gain and Quantization

• Full Range: Output sensitive to A/D stage offsets

Offset saturates input to subsequent stage

• Redundancy: Smaller range, less offset sensitive

Fewer bits/stage, smaller gain to next stage

Error Sources

Sub-ADC error doesn't matter

DAC error and gain error cause discontinuity in transfer function

Signal dependent tones

Offset Errors

• Example: 3-bit ADC

1.5-bit stage followed by 2-bit final stage $D_1 = \{-1, 0, 1\}$ $D_2 = \{-1.5, -0.5, 0.5, 1.5\}$ $D_{OUT} = D_1 2^1 + D_2 2^0$

• With an offset error, the outputs are the same

Quantization error does not saturate the input to the subsequent stage

Offset Errors

Two Cases: No Offset; Offset present

Sample Output Spectrum

• What is the SQNR?

Rectangular Window, N=2048=2¹¹

Fundamental Trade-offs between BW, DR and P

DR-P Trade-Off

• To increase DR at the expense of P, put two ADCs in parallel and average:

 Reduces noise by a factor of √2 : DR ↑ 3 dB, but uses twice the power: P ↑ 3 dB

Assumes arithmetic requires no power, noise sources are uncorrelated and the source can drive two ADCs.

DR-P Trade-Off

Can increase DR by 3 dB by reducing T by a factor of 2:

• But this also costs twice the power (based on thermodynamics)

DR-P Trade-Off

• To reduce P at the expense of DR, "cut the ADC in half"

May not be practical if the ADC is already small, but if it can be done, $P \downarrow 3 dB \& DR \downarrow 3 dB$

• ∴ For an ADC of some BW

X dB in DR costs X dB in P, or DR (in dB) – 10log10(P) is a constant

What About BW?

Reducing BW by a factor of 2 increases DR by 3 dB but leaves P alone

Assumes the noise is white (distortion is not dominant) Assumes digital filtering takes no power

 Time-interleaving two ADCs doubles BW and doubles P, but leaves DR unchanged

Assumes that interleaving is perfect (can be calibrated with no extra power)

I/Q processing also doubles BW & P @ same DR

In these examples,

DR (in dB) + 10log10(BW/P) is a constant

Resulting FOM (Schreier FOM)

$$FOM = (DR)_{dB} + 10\log_{10}\frac{BW}{P}$$

- For a given FOM, factors of 2 in BW or P are equivalent to a 3 dB change in DR
- Should really include T, but since T is usually assumed to be 300K, omit it

Steyaert et al.

$$FOM = \frac{4kT \cdot DR \cdot 2BW}{P}$$

Oversampled vs. Nyquist Rate

- For switched-capacitor design, assume power is dominated by kT/C noise
- Assume power is dominated by first stage In ΔΣ ADCs, this is usually more accurate In Pipeline ADCs, more noise is from the later stages
- Which is more power efficient?

For the same resolution and speed, oversampled operates N times faster, capacitor is N times smaller

.:. Power is the same

It is the 'little things' that make a difference

(biasing, clocks, stage sizing, OTA gain, architecture)

Common FOM (Walden FOM)

$$FOM = \frac{P}{2BW \cdot 2^{ENOB}}$$

Units of Joules per Conversion Step
 P in J/s, BW in 1/s, 2^{ENOB} in conversion steps

Fundamentally incorrect: 1 extra bit costs 2x P, instead of 4x P

1 extra bit means noise is reduced by 6dB, which requires 4 parallel ADCs, not 2

Favours lower resolution ADCs

Common FOM (Walden FOM)

• Example: OTA dominated by thermal noise

SNR = Signal Power / Noise Power

Reduce noise power by 6 dB to get 1 more bit

Noise Power proportional to 1/C

To reduce noise power by 6 dB, or 4x, we need to increase C by 4

Keep V_{EFF} and BW (g_m/C) constant Increase I_D and W by 4 (like 4 OTAs in parallel) OTA power increased by 4

.:. 4x power required for 1 extra bit Inconsistent with 'Common FOM'

FOM vs. BW (1990-2015)

Circuit of the Day: Preamp CM Range

What You Learned Today

- ADC performance limitations
- Examples of Nyquist-rate ADCs

Basic operation of Pipeline and Successive Approximation ADCs

 Fundamental trade-offs between BW, DR and P and ADC FOMs