Lecture 7 Amplifier Design 1

Trevor Caldwell trevor.caldwell@awaveip.com

Lecture Plan

Date	Lecture (Wednesday 2-4pm)		Reference	Homework		
2020-01-07	1	MOD1 & MOD2	PST 2, 3, A	1: Matlab MOD1&2		
2020-01-14	2	$\mathbf{MOD}N + \Delta \Sigma \mathbf{Toolbox}$	PST 4, B	2: ΔΣ Toolbox		
2020-01-21	3	SC Circuits	R 12, CCJM 14			
2020-01-28	4	Comparator & Flash ADC	CCJM 10	3: Comparator		
2020-02-04	5	Example Design 1	PST 7, CCJM 14			
2020-02-11	6	Example Design 2	CCJM 18	4. SC MOD2		
2020-02-18		Reading Week / ISSC	4: 5C WOD2			
2020-02-25	7	Amplifier Design 1				
2020-03-03	8	Amplifier Design 2				
2020-03-10	9	Noise in SC Circuits				
2020-03-17	10	Nyquist-Rate ADCs	CCJM 15, 17	Project		
2020-03-24	11	Mismatch & MM-Shaping	PST 6			
2020-03-31	12	Continuous-Time $\Delta\Sigma$	PST 8			
2020-04-07		Exam				
2020-04-21	Project Presentation (Project Report Due at start of class)					

Circuit of the Day: Cascode Current Mirror

- How do we bias cascode transistors to optimize signal swing?
- Standard cascode current mirror wastes too much swing

$$\begin{split} V_X &= V_{EFF} + V_T \\ V_Y &= 2V_{EFF} + 2V_T \\ \text{Minimum } V_Z \text{ is } 2V_{EFF} + V_T, \\ \text{which is } V_T \text{ larger than} \\ \text{necessary} \end{split}$$

What you will learn...

Choice of V_{EFF}

Several trade-offs with Noise, Bandwidth, Power,...

- Amplifier Topology
- Amplifier Settling

Dominant Pole, Zero and Non-Dominant Pole

Gain-Boosting

Stability, Pole-Zero Doublet

Delaying vs. Non-Delaying stages

Choice of Effective Voltage

• Effective Voltage $V_{EFF} = V_{GS} - V_T$

$$\mathbf{V}_{\text{EFF}} = \frac{2\mathbf{I}_{\text{D}}}{\mathbf{g}_{\text{m}}} = \sqrt{\frac{2\mathbf{I}_{\text{D}}}{\mu_{n}\mathbf{C}_{\text{ox}}\mathbf{W}_{\text{L}}}}$$

Assumes square-law model

In weak-inversion, this relationship will not hold

 What are the trade-offs when choosing an appropriate effective voltage?

NoisePowerBandwidthMatchingLinearitySwing

Thermal Noise and V_{EFF}

Noise Current and Noise Voltage

$$\overline{I_n^2} = 4 \, k T \gamma \, g_m \qquad \overline{V_n^2} = \frac{4 \, k T \gamma}{g_m}$$

Ex. Common Source with transistor load

CS transistor has input referred noise voltage proportional to V_{EFF}

$$\overline{V_n^2} = V_{EFF,1} \frac{4 \, k T \gamma}{2 I_D}$$

Current source has input referred noise voltage inversely proportional to $\rm V_{\rm EFF}$

$$\overline{V_n^2} = \frac{4 \, k \, T \gamma}{2 \, I_D} \frac{V_{EFF,1}^2}{V_{EFF,2}}$$

Thermal Noise and V_{EFF}

• Total Noise

$$\overline{V_n^2} = \frac{4 \, k T \gamma}{2 \, I_D} \, V_{EFF,1} \left(1 + \frac{V_{EFF,1}}{V_{EFF,2}} \right)$$

Use small V_{EFF} for input transistor, large V_{EFF} for load (current source) transistor

Bandwidth and V_{EFF}

 Bandwidth dependent on transistor unity gain frequency f_T

$$f_{\tau} = \frac{\boldsymbol{g}_m}{2\pi(\boldsymbol{C}_{GS} + \boldsymbol{C}_{GD})}$$

If C_{GS} dominates capacitance

$$f_{T} \approx \frac{1.5\,\mu_{n}}{2\pi\,L^{2}}\,V_{EFF}$$

Small L, large μ maximizes f_T For a given current, decreasing V_{EFF} increases W, increases C_{GS} , and slows down the transistor

f_T increases with V_{EFF}

Linearity and V_{EFF}

Look at distortion through a CS amplifier

Compare amplitude of fundamental and second-order distortion term

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{EFF} + V_{A} \cos(\omega t))^{2}$$

$$= I + \underbrace{\mu_{n} C_{ox} \frac{W}{L} V_{EFF} V_{A} \cos(\omega t)}_{V_{F}} + \underbrace{\frac{1}{4} \mu_{n} C_{ox} \frac{W}{L} V_{A}^{2} (1 + \cos(2\omega t))}_{V_{HD2}}$$

$$\Rightarrow \frac{V_{HD2}}{V_{F}} = \underbrace{\frac{V_{A}}{4 V_{EFF}}}_{V_{IN}} \bigvee_{V_{IN}} + \underbrace{\frac{1}{4} \mu_{D2} (1 + \cos(2\omega t))}_{V_{IN}}$$
Linearity increases with V_{EFF}

Power and V_{EFF}

Efficiency of a transistor is g_m/l_D

Transconductance for a given current – high efficiency results in lower power

Bipolar devices have $g_m = I_C/V_t$, while (square-law) MOS devices have $g_m = 2I_D/V_{EFF}$

V_{EFF} is inversely proportional to g_m/l_D

Increasing V_{EFF} reduces efficiency of the transistor Biasing in weak inversion increases efficiency

Matching and V_{EFF}

- With low V_{EFF}, transistor is in weak inversion What happens with mismatch in V_t?
- Use a current-mirror as an example with mismatched threshold voltages

Matching and V_{EFF}

In strong inversion with V_t mismatch there is a quadratic relationship

$$\frac{I_{OUT}}{I_{IN}} = \frac{(V_{GS} - V_{t,2})^2}{(V_{GS} - V_{t,1})^2}$$

1mV error in V_t is ~1% error in I_{OUT} (for V_{EFF}~200mV)

In weak inversion with V_t mismatch there is an exponential relationship

$$\frac{\boldsymbol{I}_{OUT}}{\boldsymbol{I}_{IN}} = \frac{\boldsymbol{e}^{\frac{\boldsymbol{V}_{GS} - \boldsymbol{V}_{t,1}}{n\boldsymbol{V}_{T}}}}{\frac{\boldsymbol{V}_{GS} - \boldsymbol{V}_{t,2}}{n\boldsymbol{V}_{T}}} = \boldsymbol{e}^{\frac{\boldsymbol{V}_{t,2} - \boldsymbol{V}_{t,1}}{n\boldsymbol{V}_{T}}}$$

1mV error in V_t is ~4% error in I_{OUT}

Swing and V_{EFF}

- Minimum V_{DS} of a transistor to keep it in saturation is V_{EFF}
 - Usually V_{DS} is V_{EFF} + 50mV or more to keep r_o high (keep the transistor in the saturation region) With limited supply voltages, the larger the V_{EFF} , the larger the V_{DS} across the transistor, less room for signal swing
- With large V_{EFF}...

Can't cascode – reduced OTA gain

Stage gain is smaller – input referred noise is larger (effectively the SNR at the stage output is less)

Speed-Efficiency Product

 What is the optimal V_{EFF} using a figure of merit defined as the product of f_T and g_m/l_D
 Optimal point at V_{EFF} = 130mV in 0.18µm

Summary of Trade-Offs

Benefits of larger V_{EFF}

Larger bandwidth

Higher linearity

Better device matching

Lower noise for current-source transistors

Benefits of smaller V_{EFF}

Better efficiency – lower power Larger signal swings Better noise performance for input transistors

Good starting point: $V_{EFF} \sim V_{DD}/10$

Amplifier Design - Topology

Topology	Gain	Output Swing	Speed	Power Dissipation	Noise
Telescopic	Medium	Medium	Highest	Low	Low
Folded- Cascode	Medium	Medium	High	Medium	Medium
Two-Stage	High	Highest	Low	Medium	Low
Gain- Boosted	High	Medium	Medium	High	Medium

From Razavi Ch.9

Amplifier Errors

Two errors: Dynamic and Static

Static Errors

Limit the final settling accuracy of the amplifier Capacitor Mismatch (C_1/C_2 error)

Finite OTA gain

$$\frac{V_{o}}{V_{l}}(z) = \frac{C_{1}}{C_{2}} \left(\frac{\frac{1}{1 + (C_{2} + C_{1})/C_{2}A}}{z - \frac{1 + 1/A}{1 + (C_{2} + C_{1})/C_{2}A}} \right)$$

Amplifier Errors

 Dynamic Errors: Occurs in the integration phase when a 'step' is applied to the OTA

- Slewing
- **Finite bandwidth**
- Feedforward path
- **Non-dominant poles**

Static Amplifier Errors

 First look at frequency independent response Static error term 1/Aβ

$$\frac{V_0}{V_1} = -\frac{C_1}{C_2} \frac{1}{1+1/A\beta} \approx -\frac{C_1}{C_2} \left(1-\frac{1}{A\beta}\right)$$
$$\beta = \frac{C_2}{C_1+C_2+C_{IN}}$$

• Example: 0.1% error at output (Gain = 4)

$$C_{1} = 4pF, C_{2} = 1pF, C_{IN} = 1pF$$
$$\frac{V_{0}}{V_{1}} \approx -4\left(1 - \frac{6}{A}\right)$$

A > 6000 for 0.1% error

Dynamic Amplifier Errors

What is the transfer function of this circuit?

By inspection... Gain is $-C_1/C_2$ Zero when $V_X s C_2 = V_X G_m$ Pole at $\beta G_m/C_{L,eff}$ where $C_{L,eff} = C_2(1-\beta) + C_L$ $\frac{V_o}{V_l} = -\frac{C_1}{C_2} \frac{1-\frac{sC_2}{G_m}}{1+\frac{sC_{L,eff}}{\beta G_m}}$

Single-Pole Settling Error

Step response of 1st-order (unity-gain) system

Unit step
$$\frac{1}{s}$$
 through system $\frac{1}{1+s/\beta\omega_{unity}}$
Inverse Laplace transform of $\frac{1}{s(1+s/\beta\omega_{unity})}$

Step response is $1 - e^{-\beta \omega_{unity} t}$

Error is $e^{-\beta \omega_{unity}t}$

Settles to N-bit accuracy in
$$t > \frac{N \ln 2}{\beta \omega_{unity}}$$

Pole and Zero Settling Error

• Step response, 1st-order with feedforward zero

Unit step
$$\frac{1}{s}$$
 through system $\frac{1+s/\omega_z}{1+s/\beta\omega_{unity}}$
Inverse Laplace transform of $\frac{1+s/\omega_z}{s(1+s/\beta\omega_{unity})}$
Step response is $1-e^{-\beta\omega_{unity}t} + \frac{\beta\omega_{unity}}{\omega_z}e^{-\beta\omega_{unity}t}$
Error is $e^{-\beta\omega_{unity}t} - \frac{\beta\omega_{unity}}{\omega_z}e^{-\beta\omega_{unity}t}$
Settles to N-bit accuracy in $t > \frac{N\ln 2}{\beta\omega_{unity}} + \frac{\ln(1-\beta\omega_{unity}/\omega_z)}{\beta\omega_{unity}}$

Effect of Zero on Settling

Zero slows down settling time

Additional settling term

$$-\frac{\beta\omega_{\text{unity}}}{\omega_{z}}\mathbf{e}^{-\beta\omega_{\text{unity}}t}$$

Coefficient a function of feedback factor $\boldsymbol{\beta}$

$$-\frac{\beta \omega_{unity}}{\omega_z} = \frac{\beta G_m / C_{L,eff}}{G_m / C_2} = \frac{\beta C_2}{(1 - \beta)C_2 + C_L}$$

To reduce impact of feedforward zero...
 Smaller β (one of the few advantages of reducing β)
 Larger C_L

Effect of Zero on Settling

Example of settling behaviour

 $\beta = 1/2, C_L = C_2/2$

ECE1371

Dominant and non-dominant pole, 2nd-order sys.

(assumes
$$\omega_{p2} \gg \omega_{p1} = \omega_{unity}/A$$
)
Unit step $\frac{1}{s}$ through system $\frac{s^2}{\omega_{p2} \cdot \beta \omega_{unity}} + \frac{s}{\beta \omega_{unity}} + 1$
Step response is dependent on relative values of $\beta \omega_{unity}$

and ω_{p2}

3 Cases:

Overdamped, $\omega_{p2} > 4\beta\omega_{unity}$ Critically damped, $\omega_{p2} = 4\beta\omega_{unity}$ Underdamped, $\omega_{p2} < 4\beta\omega_{unity}$

 Closed loop response of the amplifier (ignoring zero, including 2nd pole)

• Overdamped, $\omega_{p2} > 4\beta\omega_{unity}$

2nd pole much larger than unity-gain frequency Similar to 1st-order settling as 2nd pole approaches infinity Step response is $1 - \frac{B}{B} e^{-At} - \frac{A}{A} e^{-Bt}$

$$A, B = \frac{\omega_{p2}}{2} \pm \frac{\sqrt{\omega_{p2}^{2} - 4\omega_{p2}\beta\omega_{unity}}}{2} \approx \omega_{p2}, \beta\omega_{unity}$$

• Critically damped, $\omega_{p2} = 4\beta\omega_{unity}$ No overshoot Step response is $1 - e^{-2\beta\omega_{unity}t} - 2\beta\omega_{unity}te^{-2\beta\omega_{unity}t}$

• Underdamped, $\omega_{p2} < 4\beta\omega_{unity}$ Minimum settling time depending on desired SNR Increasing overshoot as ω_{p2} decreases Step response is

• Example:

 $\beta \omega_{unity}/2\pi = 1$ GHz $\omega_{p2}/2\pi = 1$ GHz, 4GHz, 100GHz

 Critically damped system settles faster than single-pole system

 Underdamped system gives slightly better settling time depending on the desired SNR

For a two-pole system, phase margin can be used equivalently

$$PM = 90 - \frac{180}{\pi} \tan^{-1} \left(\frac{\omega_{p2}}{\beta \omega_{unity}} \right)$$

Critically damped: PM = 76 degrees Underdamped: PM < 76 degrees (45 degrees if $\omega_{p2} = \beta \omega_{unity}$) Overdamped: PM = 76 to 90 degrees

Increase output impedance of cascoded transistor

Impedance boosted by gain of amplifier A $V_{OUT}/V_{IN} = -g_m R_{OUT}$ $R_{OUT} \sim Ag_m r_o^2$

• Trade-offs

Does not require extra headroom

Amplifier requires some power, but does not have to be very fast

 Need to analyze gain-boosting loop to ensure that it is stable

Cascade of amplifier A and source follower from node Y to node X

Load capacitance at node Y

May need extra capacitance C_C to stabilize loop

 A_{ORIG} : Original amplifier response without gain-boosting A_{ADD} : Frequency response of feedback amplifier A A_{TOT} : Gain-boosted amplifier frequency response

Stability of gain-boosted amplifier

For 1st-order roll-off, the unity-gain frequency of the additional amplifier must be greater than the 3dB frequency of the original stage

05 02nd

W3dB WUGA

ώz

ωı

 2nd pole of feedback loop is equivalent to 2nd pole of main amplifier

Set unity-gain frequency of additional amplifier lower than 2nd pole of main amplifier

• Only 45 degree phase margin if $\omega_{UG,A} = \omega_{2nd}$ $\omega_{UG,A} \sim \omega_{2nd}/3$ for a phase margin of ~71 degrees $\omega_{UG,A} \sim \omega_{2nd}/4$ for a phase margin of 76 degrees

 $\omega_{\text{UG},\text{A}} < \omega_{\text{2nd}}$

Pole-zero doublet occurs at ω_{UG,A}

Must ensure that this time constant does not dominate the settling behaviour

 Set βω₅ (3dB frequency of closed loop amplifier response) below ω_{UG,A}

Ensures that time constant is dominated by 3dB frequency and not the pole-zero doublet

 $\beta \omega_5 < \omega_{\text{UG,A}}$

Final Constraint: $\beta \omega_5 < \omega_{UG,A} < \omega_{2nd}$

Pole-Zero Doublet

 $\begin{array}{l} Z_{CL}: \mbox{ Load Capacitance} \\ Z_{OUT}: \mbox{ gain-boosted output impedance } \sim (1+A) g_m r_o{}^2 \\ Z_{ORIG}: \mbox{ cascoded output impedance } \sim g_m r_o{}^2 \\ Z_{TOT}: \mbox{ Total Output Impedance} \end{array}$

Pole-Zero Doublet

• Why is this a problem?

Doublet introduces a slower settling component in the step response

Step response (where ω_z and ω_p are the doublet pole and zero locations, $\sim \omega_{UG,A}$):

$$1 - \mathbf{e}^{-\beta\omega_{unity}t} + \frac{\omega_z - \omega_p}{\beta\omega_{unity}} \,\mathbf{e}^{-\omega_z t}$$

A higher-frequency doublet will always have an impact but will die away quickly

A lower-frequency doublet will not have as large an impact, but it will persist much longer

Delaying vs. Non-Delaying Stage

 Depending on the architecture and stage sizing, this can be a power concern

Large C_L reduces the power efficiency of an amplifier Larger amplifier results in a smaller feedback factor and reduced bandwidth

Delaying Stage

• Delaying

Following stage does not load the output Very little C_{L} on output of the amplifier

• Example:

1st stage 4x larger than 2nd stage ($C_3 = 0$ for delaying, $C_3 = C_1/4$ for non-delaying) Each stage has gain of 2 ($C_1/C_2 = 2$, $C_3/C_4 = 2$)

$$C_{L,eff} = \frac{C_2(C_1 + C_{IN})}{C_1 + C_2 + C_{IN}} + C_3 = \beta(C_1 + C_{IN}) + C_3$$
$$(\beta \omega_{unity})_{delay} = \frac{\beta g_m}{C_{L,eff}} = \frac{g_m}{C_1 + C_{IN}} \qquad P_{delay} \propto g_m$$

Non-Delaying Stage

Non-Delaying

Following stage loads the output

Applicable in pipeline ADCs, sometimes $\Delta\Sigma$ (usually following stages much smaller, depending on OSR) Opamp is wasted during the non-amplifying stage

(could power it down to save power)

• Example (continued):

$$(\beta \omega_{unity})_{non-delay} = \frac{\beta g_m}{C_{L,eff}} = \frac{g_m}{1.75C_1 + 1.5C_{IN}}$$

Increase g_m by 1.75 $\rightarrow C_{IN}$ increases by 1.75 (approximately the same bandwidth with 1.75x power) $P_{non-delay} \propto 1.75 g_m$ for $(\beta \omega_{unity})_{non-delay} \approx (\beta \omega_{unity})_{delay}$

Amplifier Stability

• Both phases are important

Different loading on sampling and amplification phase

Feedback factor is larger in sampling phase than amplification phase

Amplifier could potentially go unstable if it was originally sized for optimal phase margin in the amplification mode

 Non-Delaying stages are more susceptible to instability in sampling phase since a much smaller load capacitance is present

Amplifier Stability

• Example:

- $C_1 = 2pF, C_2 = 1pF, C_{IN} = 1pF$
- C_L = 0.5pF (load of subsequent stage)

Delaying Stage

Amplification: $\beta \omega_{unity} = g_m/3pF$

Sampling: $\beta = 1/2$, $C_{L,eff} = 1pF$, $\beta \omega_{unity} = g_m/2pF$ Phase Margin: 73 \rightarrow 65 (assume same ω_{p2})

Amplifier Stability

Non-Delaying Stage

Amplification: $\beta = 1/4$, $C_{L,eff} = 1.25pF$, $\beta \omega_{unity} = g_m/5pF$ Sampling: $\beta = 1/2$, $C_{L,eff} = 0.5pF$, $\beta \omega_{unity} = g_m/1pF$ Phase Margin: 73 \rightarrow 33 (assume same ω_{p2})

Circuit of the Day: Cascode Current Mirror

What You Learned Today

Choice of V_{EFF}

Trade-offs with various parameters

- Amplifier Topology
- Amplifier Step Response
- Gain-Boosting

Choice of Delaying/Non-Delaying Stages Impact on stability of sampling/integrating phases