Lecture 12 Continuous-Time $\Delta \Sigma$ **ADCs**

Trevor Caldwell trevor.caldwell@awaveip.com

Lecture Plan

Date	Lecture (Wednesday 2-4pm)		Reference	Homework		
2020-01-07	1	MOD1 & MOD2	PST 2, 3, A	1: Matlab MOD1&2		
2020-01-14	2	$\mathbf{MOD}N + \Delta \Sigma \mathbf{Toolbox}$	PST 4, B			
2020-01-21	3	SC Circuits	R 12, CCJM 14			
2020-01-28	4	Comparator & Flash ADC	CCJM 10	2. Compositor		
2020-02-04	5	Example Design 1	PST 7, CCJM 14	5: Comparator		
2020-02-11	6	Example Design 2	CCJM 18			
2020-02-18	Reading Week / ISSCC			4. 5C MOD2		
2020-02-25	7	Amplifier Design 1				
2020-03-03	8	Amplifier Design 2				
2020-03-10	9	Noise in SC Circuits		Project		
2020-03-17	10	Nyquist-Rate ADCs	CCJM 15, 17			
2020-03-24	11	Mismatch & MM-Shaping	PST 6			
2020-03-31	12	Continuous-Time $\Delta\Sigma$	PST 8			
2020-04-07		Exam				
2020-04-21	Project Presentation (Project Report Due at start of class)					

What you will learn...

- What is a Continuous-Time $\Delta \Sigma$ modulator
- Continuous-time circuits for ΔΣ ADCs
 Loop filter, amplifiers, DACs, Direct Feedback
- Benefits of Continuous-Time circuits
 - ... And a couple disadvantages

• General continuous-time $\Delta \Sigma$ ADC

Filters L_{0c} , L_{1c} are continuous-time Output is identical to discrete-time $\Delta\Sigma$ ADC as long as

$$y[n] = y_c(t)|_{t=nT_S}$$

Satisfied if impulse responses are equal at nT_s

$$\mathcal{Z}^{-1}\{L_1(z)\} = \mathcal{L}^{-1}\{L_{1c}(s)\}|_{t=nT_S} \xleftarrow{}_{\mathsf{DAC}(s)} \underset{\mathsf{DAC}(s)}{\mathsf{includes}}$$

Design L_{1c} (Loop Filter) like any negative feedback system

• Example: 4th-order Continuous-Time FB $\Delta\Sigma$ ADC

• Example: 4th-order Continuous-Time FB $\Delta\Sigma$ ADC

Circuit differences for CT $\Delta\Sigma$ ADC

Loop Filter

Resistor (or G_M) and capacitor passives instead of only capacitors

No switches (no aliasing at loop filter front-end)

Amplifiers can be designed more efficiently: feedforward amplifiers

• DACs

Typically current-mode instead of switched-capacitor Choice of Return-to-Zero or Non-Return-to-Zero pulses

Direct Feedback DAC

Additional DAC path to compensate for excess loop delay in CT loop filter

Loop Filters in CT $\Delta\Sigma$ ADCs

Gm-C Integrator

- Higher speed
- ⊗ G_M variation causes G_M/C coefficient variation
- **8** Reduced linearity

RC Integrator

- R and C variation can be easily tuned
- Feedback improves linearity of amplifier, DAC
- **8** Lower speed

Loop Filters in CT $\Delta\Sigma$ **ADCs**

Resonators

RC integrators: easily programmable LC tank: lower noise, higher Q, fewer degrees of freedom, no virtual ground node

Loop Filters in CT $\Delta\Sigma$ **ADCs**

• DT amplifier design (from Amp Design lecture)

Amplifier designed with 1st-order settling response, main concern is settling behavior (eg, no pole-zero doublets)

If amplifier settles to sufficient accuracy in ~T/2 seconds, NTF will be as expected

CT amplifier design

Amplifier can be conditionally stable, 1st-order settling not required

Amplifier gain within signal band must be sufficiently high for NTF noise suppression in-band

Can use feed-forward amplifiers

Efficient for continuous-time circuits

Lower unity-gain required for a given bandwidth Conditionally stable: phase < -180° at f < f_{unity} phase > -180° at f_{unity}

Nyquist stability criterion

If the loopgain transfer function $A\beta$ has no RHP poles, then it is closed-loop stable iff the Nyquist diagram has no encirclements of the -1 point

Efficient for continuous-time circuits

Cascaded gains rather than cascoded gains Appropriate for new technologies with smaller $g_m r_{out}$ High-speed (low OSR) CT modulators almost exclusively use them

Not appropriate for discrete-time circuits

Slow pole-zero settling High-frequency noise aliases back in band

Fewest G_M stages: 2N-1 for Nth-order amplifier

Individual G_M stages

First-order complementary stages for high G_M efficiency Combination of differential + pseudo-differential pairs Capacitive coupling used when necessary

 $V_{B,4}$

 $V_{B,3}$

DACs in DT $\Delta\Sigma$ **ADCs**

• Typical switched-capacitor DAC for a Discrete-Time $\Delta\Sigma$ ADC

DACs in CT $\Delta\Sigma$ **ADCs**

DACs in CT $\Delta \Sigma$ ADCs

NMOS (or PMOS) vs Complementary DAC

DACs in CT $\Delta\Sigma$ **ADCs**

Benefits of complementary DAC

All current used as signal current Smaller g_m, smaller (3dB) noise current

$$\overline{I_n^2} = 4 \, k T \gamma \, g_m$$

Benefits of NMOS (or PMOS) DAC

Only NMOS (or PMOS) current sources are sized for matching, lower total area

$$\frac{\sigma_I}{I}\Big|_{VT} = \sigma_{VT} \frac{2}{V_{GS} - V_T} = \frac{A_{VT}}{\sqrt{WL}} \frac{2}{(V_{GS} - V_T)}$$

Fewer transistor in stack, more headroom for V_{EFF} in current sources (slightly lower noise)

DACs in CT $\Delta\Sigma$ **ADCs**

Return-to-Zero vs Non-Return-to-Zero

RZ: DAC pulse only lasts a fraction of the period T Improved linearity, reduced jitter tolerance

NRZ: DAC pulse lasts entire period T

Nonlinear due to mismatch in rise/fall time (even order), improved jitter tolerance

- Effect of Quantizer/DAC Delay
 - 1) Loop outputs zero until DAC pulse begins
 - 2) Loop responds as if input were a step
 - Loop follows trajectory of an nth-order linear system with zero input but nonzero initial conditions

→ Coefficients are adjusted so samples of pulse response match the desired impulse response except at the first point; The NTF will be wrong.

• To compensate for the Feedback Delay and fix the first sample, add a direct feedback DAC

Direct Feedback DAC corrects the first sample

• With enough DACs, one for each errant sample, any finite number of points can be repaired

In principle, the delay of the main feedback path can be anything, but the system becomes sensitive to coefficient errors

Direct Feedback Path

Full period for Flash/DAC path to resolve its output Allows time for shuffling algorithms

• Flash/DAC path can limit speed of a CT $\Delta\Sigma$ ADC

Use flash reference shuffling

Removes shuffling delay from critical flash/DAC path and adds it to the flash ADC block

CT vs DT $\Delta \Sigma$ **Modulators**

Advantages of continuous-time circuits

Ease of Integration
Anti-aliasing
Noise filtering
Amplifier current requirements (lower power)
Improved metastability
Bandpass ΔΣ ADC

Disadvantages of continuous-time circuits Accurate TF regardless of F_{CK} RC tuning Jitter

Integration with other circuits
 Easily interface with other CT circuitry
 No power-hungry high-resolution input buffer required

Continuous-Time

Discrete-Time

Inherent Anti-Aliasing

CT STF attenuates signals at multiples of F_s

- Anti-Aliasing with a feed-forward $\Delta\Sigma$ modulator
 - © Power-efficient with higher front-end gain
 - **8** Usually introduces out-of-band peaking in the STF

 Feed-forward and feedback STF comparison
 Out-of-band peaking in FF STF, less immune to blockers Reduced anti-aliasing in FF STF

Noise Aliasing

In CT $\Delta\Sigma$, sampling/aliasing occurs at the flash A/D input, some noise gets filtered before aliasing In DT $\Delta\Sigma$, noise aliases at all stages in modulator and never gets filtered

Maximum Amplifier Current

Continuous-time: Consistently low output current Discrete-time: Same total charge, 16x peak current (assuming 5τ settling in T/2)

• Bandpass $\Delta \Sigma$ ADCs

Same general structure as low pass CT $\Delta\Sigma$ ADC Use LC or Active-RC resonators to move NTF zeros to frequencies other than DC

• Bandpass $\Delta \Sigma$ ADCs

NTF becomes a bandpass transfer function

Anti-aliasing preserved; STF has nulls at multiples of center frequency

CT ADCs are faster than DT ADCs

DT switches are difficult in smaller technologies DT needs bootstrapping No switch settling required in CT ΔΣ ADCs

• CT amplifiers have higher bandwidths

Feed-forward amplifiers require lower unity-gain freqs, less peak current

• CT $\Delta\Sigma$ operations have a full period T

DT ADCs perform sample/integrate operations in T/2

• CT $\Delta\Sigma$ has lower metastability error

Metastability error can limit maximum frequency of ADC In CT, full period T is available in feedback (with direct feedback path)

Metastability

 Indecision in comparator causes late DAC pulse DAC signal is different from digital output D_{OUT} Introduces error at input of ΔΣ modulator Typically causes larger errors in DT ΔΣ over CT ΔΣ

Metastability in CT $\Delta\Sigma$

Continuous-Time Front-End

Error occurs when comparator metastability causes DAC pulse to arrive late

Metastability in CT $\Delta\Sigma$

Comparator delay t_d depends on V_{IN}

 τ_{regen} : latch regeneration time constant V_0 : voltage below which metastability introduces error T_{meta} : delay above which metastability introduces error t_0 : delay for an input of 1V (large signal delay)

Metastability in CT $\Delta\Sigma$

Signal to Metastability Noise Ratio (SMNR)

M-element flash has only one comparator near threshold with a metastability error

Oversampling advantage reduces metastability noise by OSR

$$SMNR = OSR \frac{M^2/2}{\sigma_{e_{meta}}^2}$$
$$\sigma_{e_{meta}}^2 = 2\left(\frac{2\tau_{regen}}{T}\right)^2 \cdot \frac{e^{-(T_{meta}-t_0)/\tau_{regen}}}{V_{LSB}}$$

Ex: OSR = 8,M = 16,V_{LSB} = 25mV, τ_{regen} = 10ps, t₀ = 100ps

For SMNR > 80dB, 1 / T < 2.7GHz

Metastability in DT $\Delta\Sigma$

Discrete-Time Front-End

Error occurs when comparator metastability gives amplifier less time to settle

Recent High-Speed CT and DT ADCs

Continuous-Time	Architecture	Bandwidth	SNR/DR	Power	F _s	CMOS
Dong et al. ISSCC16	1-2 MASH (LP)	465 MHz	69 dB	930 mW	8 GHz	28 nm
Wu et al. ISSCC16	4 th -order FF (LP)	160 MHz	72 dB	40 mW	2.9 GHz	16 nm
Shibata et al. JSSC12	6 th -order FB (BP/LP)	150 MHz	74 dB	750 mW	4 GHz	65 nm
Bolatkale et al. JSSC11	3 rd -order FF (LP)	125 MHz	70 dB	260 mW	4 GHz	45 nm
Caldwell et al. CICC13	4 th -order FB (LP)	100 MHz	60 dB	95 mW	1.5 GHz	65 nm
Ho et al. VLSI14	4 th -order FF (LP)	80 MHz	73 dB	23 mW	2.2 GHz	20 nm
Srinivasan et al. ISSCC12	3 rd -order FF (LP)	60 MHz	62 dB	20 mW	6 GHz	45 nm
Dong et al. ISSCC14	0-3 MASH (LP)	53 MHz	83 dB	235 mW	3.2 GHz	28 nm
Yoon et al. ISSCC15	3-1 MASH (LP)	50 MHz	85 dB	78 mW	1.8 GHz	28 nm

Discrete-Time	Architecture	Bandwidth	SNR/DR	Power	Fs	CMOS
Ali et al. ISSCC14	Pipeline	500 MHz	69 dB	1200 mW	1 GHz	65 nm
Chen et al. VLSI11	TI Pipeline (x2)	1500 MHz	61 dB	500 mW	3 GHz	40 nm
Wu et al. ISSCC16	TI Pipeline (x4)	500 MHz	56 dB	300 mW	4 GHz	16 nm

RC Tuning

CT $\Delta\Sigma$ transfer functions depend on RC time constants Tuning required to match RC with sampling frequency On-chip tuning is simple with modern technologies

Jitter in DT feedback DAC

DAC signal is mostly supplied at start of clocking period Error from jitter is small relative to total DAC signal

Jitter in CT feedback DAC

DAC signal is uniform throughout clocking period Error from jitter is larger relative to total DAC signal

 Return-to-Zero (RZ) vs Non-Return-to-Zero (NRZ) NRZ has less jitter than RZ DAC pulses Similarly, multi-bit DACs have less jitter than single-bit

Non-Return-to-Zero

What You Learned Today

- Continuous-Time $\Delta\Sigma$ modulator
- Compare DT and CT ΔΣ ADCs
 Differences in loop filter, amplifiers, DACs, DFB
- Advantages and disadvantages of CT circuits
 CT ΔΣ ADCs are faster than DT