Lecture 6 Example Design 2

Trevor Caldwell trevor.caldwell@awaveip.com

Lecture Plan

Date	Lecture (Wednesday 2-4pm)		Reference	Homework
2020-01-07	1	MOD1 & MOD2	PST 2, 3, A	1: Matlab MOD1&2
2020-01-14	2	$\mathbf{MOD}N + \Delta \Sigma \mathbf{Toolbox}$	PST 4, B	2 : ΔΣ Toolbox
2020-01-21	3	SC Circuits	R 12, CCJM 14	
2020-01-28	4	Comparator & Flash ADC	CCJM 10	3: Comparator
2020-02-04	5	Example Design 1	PST 7, CCJM 14	
2020-02-11	6	Example Design 2	CCJM 18	
2020-02-18	Reading Week / ISSCC			4. SC WODZ
2020-02-25	7	Amplifier Design 1		
2020-03-03	8	Amplifier Design 2		
2020-03-10	9	Noise in SC Circuits		
2020-03-17	10	Nyquist-Rate ADCs	CCJM 15, 17	Project
2020-03-24	11	Mismatch & MM-Shaping	PST 6	
2020-03-31	12	Continuous-Time $\Delta\Sigma$	PST 8	
2020-04-07	Exam			
2020-04-21	Project Presentation (Project Report Due at start of class)			

Circuit of the Day: Non-Overlap Clock Gen

 Our switched-capacitor circuits require two nonoverlapping clocks. How do we generate them?

What you will learn...

- Transistor-level implementation of MOD2 Op-amp, SC CMFB, comparator, clock generator
- MOD2 variants
- Variable quantizer gain

Review: MOD2

Standard Block Diagram

$$\frac{U}{z-1} \rightarrow \boxed{\frac{1}{z-1}} \rightarrow \boxed{\frac{1}{z-1}} \rightarrow \boxed{\frac{V}{Q}} \rightarrow \underbrace{V}_{NTF(z)} = (1-z^{-1})^2$$

Scaled Block Diagram

Review: Schematic

 1st-stage capacitor sizes set for SNR = 100 dB @ OSR = 500 and -3 dBFS input

 V_{ref} = +/- 1V and the full-scale input range is +/- 1V

2nd-stage capacitor sizes set by minimum allowable capacitance

Review: Simulated Spectrum

Review: Implementation Summary

- Choose a viable SC topology and manually verify timing
- 2) Do dynamic-range scaling

You now have a set of capacitor ratios Verify operation: loop filter, timing, swing, spectrum

- 3) Determine absolute capacitor sizes Verify noise
- → 4) Determine op-amp specs and construct a transistor-level schematic

Verify everything

5) Layout, fab, debug, document ...

Effect of Finite Op Amp Gain

Linear Theory

Suppose the amplifier has finite DC gain A

Define $\mu = 1/A$

To determine the effect on the integrator pole, look at the SC integrator with zero input

Effect of Finite Op Amp Gain

- A fraction of q_2 leaks away each clock cycle $q_2(n+1) = (1-\varepsilon)q_2(n)$ where $\varepsilon = \mu C_1/C_2$
- The integrator is lossy with a pole at $z = 1 \varepsilon$

$$\frac{V_{out}(z)}{V_{in}(z)} = \frac{C_1/C_2}{z - (1 - \varepsilon)}$$

• Error ε becomes significant once it approaches $\varepsilon \approx \pi/OSR$

Op Amp Gain Requirement

 According to linear theory, finite op amp gain should not degrade the noise significantly as long as

 $A > (C_1/C_2)(OSR/\pi)$

- For our implementation of MOD2, where $C_1/C_2 = 1/3$ and OSR = 500, this leads to A > 50 = 34dB
- As OSR decreases, gain requirement goes down This does not account for non-linearities that decrease with higher DC gain

Op Amp Transconductance

Settling Time

Model the op amp as a simple g_m

• This is a single time constant circuit with $au = C_{eff}/(eta g_m)$

Settling Requirements

- If g_m is linear, incomplete settling has the same effect as a coefficient error and thus g_m can be very low
- In practice, the g_m is not linear and we need to ensure nearly complete settling
- As a worst case scenario, let's require transients to settle to 1 part in 10⁵

This should be more than enough for -100dBc distortion

Settling Requirements

• If linear settling is allocated 1/4 of a clock period

$$e^{-\frac{T/4}{\tau}} = 10^{-5} \rightarrow \tau = \frac{T}{4\ln 10^5} = 20 \text{ns}$$
$$g_m = \frac{C_{eff}}{\beta\tau} = \frac{C_{eff}}{\beta} 4f_s \ln 10^5$$

• For INT1 of our MOD2

$$C_{eff} = \left(\frac{4p \cdot 1.33p}{4p + 1.33p} + 30f\right) = 1.0pF$$

• For $\beta = 3/4$, $f_s = 1$ MHz $\rightarrow g_m = 61 \mu$ A/V

Slewing

• The maximum charge transferred through C1 is

$$u_{p,max} = 0.5 V C1$$

 $q_{max} = C_1 \cdot 1V = 1.33 pC$
 $v_{refn} = -0.5 V$

• If we require the slew current to be enough to transfer q_{max} in 1/4 of a clock period, then

$$I_{slew} = \frac{q_{max}}{T/4} \approx 5 \mu A$$

Op-Amp Design

 Folded-cascode op-amp with switched-capacitor common-mode feedback

Op-Amp Design: Bias Current

Slew constraint dictates I > 5uA

Op-Amp Design: g_m

- Square-law MOSFET model: $g_m = 2I_D / \Delta V$
- $I_D = 5\mu A, g_m \ge 60\mu A/V \rightarrow \Delta V \le 167 mV$ Usually $\Delta V \approx 100 - 200 mV$, so we should be able to get high enough g_m

Ideal Common-Mode Feedback

Can use this circuit to speed up the simulation

Latched Comparator

• Falling phase 1 initiates regenerative action S and R connected to a Set/Reset latch

Switch Resistance

Sampling Phase

- If R_{sw} is constant, it has only a filtering (linear) effect which is benign
- The on-resistance of MOS switches varies with V_{gs} (and hence V_{in})
- → Must make MOS switches large enough

Switch Resistance

Integration Phase

Differential Half-Circuit:

- R_{sw} increases the settling time by a factor of $1 + 2g_m R_{sw}$
- → Set $R_{sw} \leq \frac{1}{20g_m}$ to make the increase in τ small
- So in our MOD2, we want $R_{sw} \leq 0.7 \mathrm{k}\Omega$

Simulated Waveforms

Expanded Waveforms

Simulated Spectrum

Topological Variant: Feed-Forward

- Output of first integrator has no DC component Dynamic range requirements of this integrator are relaxed
- Although $|STF| \approx 1$ near $\omega = 0$, |STF| = 3 for $\omega = \pi$

Instability is more likely

Topological Variant: Input Feed-Forward

• No DC component in either integrator's output

Reduced dynamic range requirements in both integrators, especially for multi-bit modulators

Perfectly flat STF

No increased risk of instability

Timing is tricky

Topological Variant: Error Feedback

- Simple
- Very sensitive to gain errors Only suitable for digital implementations

Is MOD2 the only 2nd-order modulator?

 Except for filtering provided by the STF, any modulator with the same NTF as MOD2 has the same input-output behaviour as MOD2

SQNR curve is the same

Tonality of the quantization noise is unchanged

- Internal states, sensitivity, thermal noise, etc can differ from realization to realization
- A 2nd-order modulator is truly different only if it possesses a different 2nd-order NTF

A Better 2nd-Order NTF

NTF Comparison

SNR vs Amp Comparison

MOD2 Internal Waveforms

MOD2b Internal Waveforms

Gain of a Binary Quantizer

- The effective gain of a binary quantizer is not known a priori
- The gain (k) depends on the statistics of the quantizer's input

Halving the signal doubles the gain

Gain of the Quantizer in MOD2

• The effective gain of a binary quantizer can be computed from the simulation data using the following equation [PST Eq 2.14]

$$k = \frac{E[|y|]}{E[y^2]}$$
• $k \neq 1$ alters the NTF

$$NTF_k(z) = \frac{NTF_1(z)}{k + (1 - k)NTF_1(z)}$$

Revised PSD Prediction

Much more similar to theoretical PSD

Variable Quantizer Gain

- When the input is small (below -12 dBFS) the effective gain of MOD2's quantizer is k = 0.75
- MOD2's 'small-signal NTF' is thus

$$NTF(z) = \frac{(z-1)^2}{z^2 - 0.5z + 0.25}$$

- This NTF has 2.5 dB less quantization noise suppression than the $(1 z^{-1})^2$ NTF derived from the assumption that k = 1
- As the input signal increases, k decreases and the suppression of quantization noise degrades

SQNR increases less quickly than the signal power. Eventually the SQNR saturates and then decreases as the signal power reaches full-scale.

Circuit of the Day: Non-Overlap Clock Gen

Circuit of the Day: Non-Overlap Clock Gen

Non-overlap time set by NOR's t_{PLH}

Clocking Details, Early/Late Phases

- Charge injected via M1 is (non-linearly) signaldependent while charge injection from M2 is signal-independent
- Open M2 (early) then open M1 (late) so that charge injected from C_{gs1} cannot enter C1

Clocking Details, Bottom-plate sampling

- Parasitic capacitance on the right terminal of C1 degrades the op-amp feedback factor β
- C_p for the top plate is smaller, so use the top plate for the right terminal and the bottom plate for the left

Complementary Clock Alignment

- We need complementary clocks if transmission gates are used for the switches
- **Q.** How do we align them?
- A. Carefully size the inverters relative to their capacitive loads, or use a transmission gate to mimic an inverter delay:

Need to match delay of 3 INVs to 2 INVs

Professional Clock Generator

• To maximize the time available for settling, make the early and late phases start at the same time

Homework #4 (Due Feb 25*)

- Construct a differential switched-capacitor implementation of MOD2 using ideal elements (switches, capacitors, amplifiers, comparator) and verify it.
- Scale the circuit such that the full-scale differential input range is [-1,+1] V and the op amp swing is 0.5 V_{p,diff} at -6 dBFS. You may assume that -0.5 V and +0.5V references are available and that the input is available in differential form.
- Choose capacitor values such that the SNR with a -6 dBFS input will be 90 dB when OSR = 128. You may assume that the only source of noise is kT/C noise.

Homework #4 Deliverables

- **1.** Block diagram after dynamic-range scaling
- 2. Schematic with all cap values and clock phases clearly labelled
- 3. Open-loop impulse response plot (short transient sim)
- 4. Time-domain plots of input signal and integrator outputs for a -6 dBFS input (transient sim)
- 5. Spectrum of output data for a -6 dBFS input, with SNDR calculated
- 6. kT/C noise calculation (justify your choice of C)

What You Learned Today

- Transistor-level implementation of MOD2 Op-amp, SC CMFB, comparator, clock generator
- MOD2 variants
- Variable quantizer gain