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Lecture Plan
Date Lecture (Wednesday 2-4pm) Reference Homework

2020-01-07 1 MOD1 & MOD2 PST 2, 3, A 1: Matlab MOD1&2
2020-01-14 2 MODN +  Toolbox PST 4, B

2:  Toolbox
2020-01-21 3 SC Circuits R 12, CCJM 14
2020-01-28 4 Comparator & Flash ADC CCJM 10

3: Comparator
2020-02-04 5 Example Design 1 PST 7, CCJM 14
2020-02-11 6 Example Design 2 CCJM 18

4: SC MOD2
2020-02-18 Reading Week / ISSCC
2020-02-25 7 Amplifier Design 1

Project

2020-03-03 8 Amplifier Design 2
2020-03-10 9 Noise in SC Circuits
2020-03-17 10 Nyquist-Rate ADCs CCJM 15, 17
2020-03-24 11 Mismatch & MM-Shaping PST 6
2020-03-31 12 Continuous-Time  PST 8
2020-04-07 Exam
2020-04-21 Project Presentation (Project Report Due at start of class)
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Circuit of the Day: Preamp Gain
• How do we increase the preamplifier gain?

VI+ VI−

VDD

I
VO- VO+
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What you will learn…
• Sources of Mismatch

• Some matching techniques
Common-centroid
Interdigitation

• Mismatch Shaping in 
Randomization, 1st and 2nd order schemes
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Need for Matching
• Poorly matched devices (transistors, capacitors, 

resistors) can lead to non-idealities
Amplifier Offset
Converter Non-linearity
Gain Error

• DAC mismatch in 
Mismatch in DAC                                                        
current sources or                                                               
capacitors causes INL                                                               
error in output

OUT
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Sources of Matching Error
• Systematic Mismatch

Introduced by circuit/layout designer
Can usually be avoided

• Random Mismatch
Variation in process parameters and lithography
Beyond the designers control – must take these into 
account during the design process

• Gradient Mismatch
First- or second-order fluctuations over longer lengths 
across the chip
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Systematic Mismatch
• Some good design techniques exist to help 

minimize these matching errors
Use multiples of small, unit sized devices (transistor 
stripes, resistor and capacitor arrays)
Use cascodes – increased output impedence (smaller 
current variations with changes in VDS)
Avoid asymmetric loading – especially for dynamic 
signals (match wire lengths, capacitances)
Don’t mix different types of devices if they are 
supposed to match (e.g., poly resistors and n+ 
resistors)
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Random Mismatch
• Due to random variations in…

Device length
Channel doping
Oxide thickness
Sheet resistance
Capacitance

• How are these errors reduced?
Increased device area
Increased Area/Perimeter ratio (square is best)
(more on this later…)
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Gradient Mismatch
• To avoid these errors, devices should have 

similar environment
Same size, orientation, location, supplies, temperature

• Minimize these errors with some layout 
techniques

Common-centroid – when devices are supposed to be 
matched, balance them so that their centroids are the 
same (eliminates 1st-order gradient errors)
Interdigitation – not strictly common-centroid, but 
reduces impact of gradient errors
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Capacitor Matching
• Example: Matching two capacitors C1 and C2

C1 is 3pF
C2 is 4pF
Want to maintain the 3:4 relative size with minimal 
errors

How do we layout these capacitors?
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Capacitor Matching Example
• Consider over-etching errors

Capacitance

Capacitance error (for small e)

Relative error

For a given area, relative capacitance error is minimized 
for x=y (square)

x

x-2 e

y

y-2
e

2 ( ) oxC e x y C    

2r
C x ye

C xy
  

   

oxC xyC



ECE137112

Capacitor Matching Example
• Option 1

Make C1 and C2 both square capacitors with capacitor 
C2 33% times bigger than C1
 minimizes relative capacitor error
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Capacitor Matching Example
• How do we preserve the 3:4 ratio with a given 

relative error for each?

Ratio will be 3:4 as long as

Keep the area to perimeter ratio the same for 
both capacitors
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Capacitor Matching Example
• Option 2

Make C2 33% larger than C1 but with the same area to 
perimeter ratio 
 matches relative capacitor error
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Capacitor Matching Example
• How do we match the boundary of each 

capacitor?
With irregularly shaped capacitors it is difficult to 
ensure that every capacitor ‘sees’ the same 
edges/materials

• Unit-sized capacitors with surrounding dummy 
capacitors

Smaller unit-sized capacitors can be realized to ensure 
that every capacitor ‘sees’ the same surrounding area
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Capacitor Matching Example
• Option 3

Divide into unit-sized 1pF capacitors
Use dummy capacitors around main C1 and C2

1 2
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Capacitor Matching Example
• Option 4

Common-centroid layout (with dummy caps)
Minimizes effects of 1st-order gradients

1 2
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Capacitor Matching Example
• Option 5

Smaller unit-sized capacitors (with dummy caps)
Centroids can be closer together or identical

1 2

0.5pF 0.5pF 0.5pF 0.5pF 0.5pF 0.5pF

0.5pF 0.5pF 0.5pF 0.5pF 0.5pF 0.5pF

0.5pF 0.5pF 0.5pF 0.5pF 0.5pF 0.5pF

0.5pF 0.5pF 0.5pF 0.5pF 0.5pF 0.5pF

0.5pF 0.5pF 0.5pF 0.5pF 0.5pF 0.5pF

0.5pF 0.5pF 0.5pF 0.5pF 0.5pF 0.5pF
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Interdigitation
• Simple way to reduce 1st-order gradient effects

Easiest when MOS devices have same source node
Useful for current mirrors and differential pairs
As the number of fingers increases, this approaches a 
common-centroid layout

1

2

1

2
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Reducing Random Mismatch
• Even with interdigitation or common-centroid, 

random mismatch will exist in a differential pair
Mismatch is proportional to area of transistor
Standard deviation of error is

AVT decreases almost linearly                                        
with each process generation                                
(proportional to oxide thickness)

• Drain current variation
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Reducing Random Mismatch
• Pelgrom Plots

JSSC 89: Matching Properties of MOS Transistors
Slope of line is mismatch constant AVT

𝝈∆𝑽𝑻 ൌ
𝑨𝑽𝑻
𝑾𝑳

[Yuan, 2011]



ECE137122

What happens to mismatch when…?
• …the device current is decreased by 4x?

Error current gmVT reduces by 2, current reduces by 4
Alternatively, VEFF reduces by 2
 random mismatch error _increase / decrease_?

• …more unit devices are used, but overall area is 
maintained?

Smaller unit sizes allow use of common-centroid array 
structures
Area is the same
 random mismatch error _increase / decrease_?
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What happens to mismatch when…?
• …W is increased by 4, ID kept constant?

More area is used and VEFF is reduced
VEFF decreases by 2, but VT decreases by 2
 random mismatch error _increase / decrease_?

• …W and L are increased by 2, ID kept constant?
VEFF constant, but VT decreases by 2
 random mismatch error _increase / decrease_?

• …L is increased by 4, ID kept constant?
VEFF increases by 2 and VT decreases by 2
 random mismatch error _increase / decrease_?
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Multi-bit Quantization
Overcome stability-induced restrictions on NTF

Larger no-overload range
Dramatic improvements in SQNR

Smaller step-size
Less slewing, CT less sensitive to jitter

Noise is ‘whiter’
Spurious tones can be avoided, dithering not required, 
design theory is much easier

 Increased complexity of flash ADC and DAC
More comparators, more DAC switches, larger layout

 Loses inherent linearity property of binary DACs
DAC levels are not evenly spaced and are non-linear
DAC errors are not noise shaped like ADC errors
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Multi-bit 
• Binary quantization imposes severe constraints 

on the NTF
Example: OSR = 16, a 5th-order binary modulator
Binary quantizer only achieves SNR = 60dB
With a 3-bit quantizer, SNR = 108dB is possible
With a 4-bit quantizer, SNR = 120dB is possible

Compare SQNR for 1-bit and 3-bit  modulators
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SQNR Limits for 1-bit Modulators
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SQNR Limits for 3-bit Modulators
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DAC Mismatch
• 3rd-order, 3-bit quantizer, OSR=50

DAC cell mismatch  = 1%
SNDR = 50dB (ideally 107dB)

10-4 10-3 10-2 10-1-120

-100

-80

-60

-40

-20

0

Normalized Frequency

dB
FS

/N
BW

NBW=2.3e-005 
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DAC Mismatch
• Random DAC mismatches in multi-bit 

modulators are inevitable
DAC non-linearity causes harmonics that can limit the 
linearity of the whole modulator since they are 
introduced at the input

• These errors can be overcome with digital 
techniques

Digital correction and calibration
Mismatch shaping
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Digital Correction
• Lookup table contains the equivalent of each 

DAC level
In practice, the look-up table only needs to store the 
differences between the actual and ideal DAC levels
Look-up table calibrated so that VOUT = VDAC
 DAC errors are shaped by the loop
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Foreground Calibration
• Acquisition and storage of digital versions of 

DAC output signal (N-bit DAC, M-bit converter)
Each of the 2N DAC codes is held for 2M clock periods
With a 1-bit  ADC, each DAC level is converted to its 
M-bit digital representation and stored in the RAM

For background calibration, see Silva, CICC ’02

D
ata In
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Mismatch Shaping
• Ensures that element mismatch error results in 

shaped ‘noise’
• Operates without knowledge of the actual 

mismatch errors
Even if the DAC errors drift, the output error will still be 
shaped

• Two requirements
1. Redundancy: There must be more than one way to 

create the same digital output (this is the case with 
thermometer coded outputs)

2. Oversampling: Spectrally, there must be somewhere 
to put the unwanted mismatch noise
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Mismatch Shaping
• Element Selection Logic chooses when to use 

each of the DAC elements
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Mismatch Shaping
• Endpoints of DAC create ideal output curve

Assumes no gain/offset error

• Average value of DAC                                       
codes lie on Ideal                                              
DAC Line

Errors are symmetric                                                         
about the characteristic                                                  
DAC line
Mismatch shaping                                                   
chooses DAC cells to                                                      
keep the error bounded

OUT Ideal
DAC Line
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Element Randomization
• Element selection logic randomly chooses DAC 

elements
For each thermometer-coded input K, the ESL randomly 
chooses K unit DAC elements
DAC error is no longer correlated with the input
Signal distortion is replaced by random noise spread 
throughout the entire spectrum
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Element Randomization
• SNDR = 62dB (improved from 50dB)

Distortion no longer present
Increased noise floor
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Element Usage Patterns

• Randomization: All DAC levels are used even 
when the input is almost constant

(Thermometer coded  no ESL is used)

Thermometer Randomization

Time Time

1

8

16

1

8

16
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Data-Weighted Averaging
• Data-directed element selection logic
• Conceptual system

• DAC error is noise-shaped (high-pass filtered)
But… DAC needs an infinite number of elements with 
the open-loop integrator

How can we implement this practically?



ECE137139

Element Rotation

• Use the elements in a circular fashion
At time n, use the next v(n) elements in the array
Loop back around when end of array is reached
DAC error is noise shaped by desired 1-z-1 filter

1
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n
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v i
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
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DWA / Element Rotation
• SNDR = 97dB (47dB improvement)

Noise floor is reduced since error is shaped
Distortion is reduced (less correlated with input) 
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Bidirectional DWA
• DWA can cause tone generation if the DAC input 

is not a busy random signal
Like MOD1, if DAC input is DC/slowly varying, tones are 
produced since DAC output can be periodic

• Bi-DWA
Element selection ping-pongs between two 
independent DWA algorithms, each rotating through 
DAC elements in opposite directions
Tends to reduce tonal behaviour, but also effectively 
decreases the mismatch-shaping OSR by a factor of 2
RMS mismatch noise increases by 9dB
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Bidirectional DWA
• SNDR = 92dB (5dB worse than DWA)

Distortion is reduced (less correlated with input)
Noise floor is higher, SNDR less

10-4 10-3 10-2 10-1-160
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Element Usage Patterns

• Bidirectional DWA: same as two DWA schemes 
operating independently and in reverse 
directions on opposing clocks

Bidirectional DWARotation / DWA

TimeTime

1

8

16

1

8

16
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Alternative Scheme: Swapping
• Each swapper tries to equalize the activity of its 

outputs [Adams, 1993]
Each element becomes a first-order noise-shaped 
sequence
Can be generalized to 2nd-order (Tree Structure)
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Vector-Based Mismatch Shaping
• Achieves higher-order noise spectral shaping

M digital noise-shaping loops for each unit element – an 
array of these loops make up the ESL
f(n) and r(n) are the same for all M loops
xi(n) controls the corresponding DAC element
H(z) determines the order of the noise shaping
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Vector-Based Mismatch Shaping
• How is the output of the DAC noise shaped?

Output of the DAC elements

Loop filter outputs

Resulting DAC element output is noise shaped by H 
where K is the intended DAC output

,
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Vector-Based Mismatch Shaping
• What are r(n) and f(n)?

r(n) and the digital comparators are not actually 
implemented – we need K outputs to be 1 so that w(n) is 
the correct value
The K largest pi(n) are quantized to xi(n) to minimize 
ei(n), which reduces the DAC error
f(n) is chosen to keep the data in the loop positive, but 
also as small as possible
 choose 

• What is H(z)?
H(z) is the NTF
For 1st-order, H(z) = 1 – z-1 (filter is z-1)
For 2nd-order, H(z) = (1 – z-1)2 (filter is 2z-1 – z-2)

 ( ) min ( )ii
f n t n 
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Vector-Based Mismatch Shaping
• Ideal SNDR: 107dB, No shaping: 50dB

1st-order shaping: 97dB
2nd-order shaping: 105dB
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Circuit of the Day: Preamp Gain
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What You Learned Today
• Mismatch sources

Systematic, Random, Gradient

• Matching techniques
Common-centroid and interdigitation

• Mismatch shaping schemes
Randomization, Element Rotation, BiDWA, Swapping
Vector-based


