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Lecture Plan
Date Lecture (Wednesday 2-4pm) Reference Homework

2020-01-07 1 MOD1 & MOD2 PST 2, 3, A 1: Matlab MOD1&2
2020-01-14 2 MODN +  Toolbox PST 4, B

2:  Toolbox
2020-01-21 3 SC Circuits R 12, CCJM 14
2020-01-28 4 Comparator & Flash ADC CCJM 10

3: Comparator
2020-02-04 5 Example Design 1 PST 7, CCJM 14
2020-02-11 6 Example Design 2 CCJM 18

4: SC MOD2
2020-02-18 Reading Week / ISSCC
2020-02-25 7 Amplifier Design 1

Project

2020-03-03 8 Amplifier Design 2
2020-03-10 9 Noise in SC Circuits
2020-03-17 10 Nyquist-Rate ADCs CCJM 15, 17
2020-03-24 11 Mismatch & MM-Shaping PST 6
2020-03-31 12 Continuous-Time  PST 8
2020-04-07 Exam
2020-04-21 Project Presentation (Project Report Due at start of class)
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Circuit of the Day: Constant-GM Biasing
• How do we bias transistors so that the 

transconductance does not depend on:
Temperature
Process
Supply Voltage

• Make it dependent on a bias resistor RB
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g
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What you will learn…
• How to analyze noise in switched-capacitor 

circuits

• Significance of switch noise vs. OTA noise
Power efficient solution
Impact of OTA architecture

• Design example for  modulator
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Review
• Previous analysis of kT/C noise                

(ignoring OTA/opamp noise)
Phase 1: kT/C1 noise (on each side)
Phase 2: kT/C1 added to previous noise (on each side)
Total Noise (input referred): 2kT/C1
Differentially: 4kT/C1
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Review
• SNR (differential)

Total noise power: 4kT/C1
Signal power: (2V)2/2
SNR: V2C1/2kT

• SNR (single-ended)
Total noise power: 2kT/C1 (sampling capacitor C1)
Signal power: V2/2 (signal from -V to V)
SNR: V2C1/4kT
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Noise in an Integrator
• Two noise sources VC1 and VOUT

VC1: Represents input-referred sampled noise on input 
switching transistors + OTA
VOUT: Represents output-referred (non-sampled) noise 
from OTA
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Thermal Noise in OTAs
• Single-Ended Example

Noise current from each transistor is
Assume 

2 4n mI kT g
2 / 3 

VIN+

VOUT

VB1

M2M1

M4M3

M5

VIN-In1

In5

In3 In4

In2
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Thermal Noise in OTAs
• Single-Ended Example

Thermal noise in single-ended OTA
Assuming paths match, tail current source M5 does not 
contribute noise to output
PSD of noise voltage in M1 (and M2):

PSD of noise voltage in M3 (and M4):

Total input referred noise from M1 - M4

Noise multiplier nM depends on architecture

𝟖
𝟑
𝒌𝑻
𝒈𝒎𝟏

𝟖
𝟑
𝒌𝑻𝒈𝒎𝟑
𝒈𝒎𝟏𝟐

𝑺𝒏,𝒆𝒒 ൌ
𝟏𝟔
𝟑

𝒌𝑻
𝒈𝒎𝟏

𝟏 ൅
𝒈𝒎𝟑
𝒈𝒎𝟏

ൌ
𝟏𝟔
𝟑

𝒌𝑻
𝒈𝒎𝟏

𝒏𝑴



ECE137110

OTA with capacitive feedback
• Analyze output noise in single-stage OTA

Use capacitive feedback in the amplification / 
integration phase of a switched-capacitor circuit
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OTA with capacitive feedback
• Transfer function of closed loop OTA

where the DC Gain and 1st-pole frequency are

Load capacitance CO depends on the type of OTA – for 
a single-stage, it is CL+C1C2/(C1+C2), while for a two-
stage, it is the compensation capacitor CC
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OTA with capacitive feedback
• Integrate total noise at output

Minimum output noise for =1 is

Not a function of gm1 since bandwidth is proportional to 
gm1 while PSD is inversely proportional to gm1

𝑽𝑶𝑼𝑻𝟐 ൌ න 𝑺𝒏,𝒆𝒒ሺ𝒇ሻ 𝑯ሺ𝒋𝟐𝝅𝒇ሻ 𝟐𝒅𝒇
ஶ

𝟎

𝟒𝒌𝑻
𝟑𝑪𝑶

𝒏𝑴

ൌ
𝟏𝟔
𝟑

𝒌𝑻
𝒈𝒎𝟏

𝒏𝑴
𝝎𝒐
𝟒 𝑮𝟐

ൌ
𝟒𝒌𝑻
𝟑𝜷𝑪𝑶

𝒏𝑴



ECE137113

OTA with capacitive feedback
• Graphically…

Noise is effectively filtered by equivalent brick wall 
response with cut-off frequency fo/2 (or o/4 or 1/4)
Total noise at VOUT is the integral of the noise within the 
brick wall filter (area is simply fo/2 x G2)
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Sampled Thermal Noise
• What happens to noise once it gets sampled?

Total noise power is the same
Noise is aliased – folded back from higher frequencies 
to lower frequencies
PSD of the noise increases significantly
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Sampled Thermal Noise

• Same total area, but PSD is larger from 0 to fS/2 

Low frequency PSD 𝑮𝟐𝑺𝒏,𝒆𝒒 is increased by 𝝅𝒇𝑶 𝟐⁄
𝒇𝑺 𝟐⁄ ൌ

𝝅𝒇𝑶
𝒇𝑺
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Sampled Thermal Noise
• 1/f0 is the settling time of the system, while 1/2fS

is the settling period for a two-phase clock 

PSD is increased by at least
If N = 10 bits, PSD is increased by 7.6, or 8.8dB

• This is an inherent disadvantage of sampled-
data systems (compared to continuous-time)

But noise is reduced by oversampling ratio after digital 
filtering

( 1)ln2N 
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Noise in a SC Integrator
• Using the parasitic-insensitive SC integrator

• Two phases to consider
1) Sampling Phase

Includes noise from both 1 switches 
2) Integrating Phase

Includes noise from both 2 switches and OTA 
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Noise in a SC Integrator
• Phase 1: Sampling

Noise PSD from two switches:
Time constant of R-C filter:
Noise voltage across C1

12 ONR C 
( ) 8Ron ONS f kTR

𝑽𝑪𝟏,𝒔𝒘𝟏
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Noise in a SC Integrator
• Phase 1: Sampling

Integrated across entire spectrum, total noise power in 
C1 is 

Independent of RON (PSD is proportional to RON, 
bandwidth is inversely proportional to RON)
After sampling, charge is trapped in C1

2
1, 1
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kTR kTV
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Noise in a SC Integrator
• Phase 2: Integrating

• Two noise sources: switches and OTA
Noise PSD from two switches:

Noise PSD from OTA: 

Noise power across C1 charges to 

𝑺𝑹𝒐𝒏ሺ𝒇ሻ ൌ 𝟖𝒌𝑻𝑹𝑶𝑵
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Noise in a SC Integrator
• What is the time-constant?

Analysis shows that 

For large RL, assume that

Resulting time constant 
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Noise in a SC Integrator
• Total noise power with both switches and OTA 

on integrating phase

Introduced extra parameter 12 ON mx R g
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Noise in a SC Integrator
• Total noise power on C1 from both phases

Lowest possible noise achieved if  

In this case, 

What was assumed to be the total noise was actually 
the least possible noise!
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Noise Contributions
• Percentage noise contribution from switches 

and OTA (assume nM=1.5)
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Noise Contributions
• When RON >> 1/gm1 (x >> 1)…

Switch dominates both bandwidth and noise
Total noise power is minimized

• When RON << 1/gm1 (x << 1)…
OTA dominates both bandwidth and noise
Power-efficient solution

Minimize gm1 (and power) for a given settling 
time and noise

Minimized for x=0

𝒈𝒎𝟏 ൌ
𝒌𝑻

𝝉𝑽𝑪𝟏𝟐
𝟒
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Amplifier Noise
• How much larger can the noise get?

Depends on nM… (table excludes cascode noise)

Architecture Relative VEFF’s nM
Maximum  

Noise (x=0) +dB

Telescopic/
Diff.Pair VEFF,1=VEFF,n/2 1.5 3.kT/C1 1.76

Telescopic/
Diff.Pair VEFF,1=VEFF,n 2 3.67.kT/C1 2.63

Folded 
Cascode VEFF,1=VEFF,n/2 2.5 4.33.kT/C1 3.36

Folded 
Cascode VEFF,1=VEFF,n 4 6.33.kT/C1 5.01
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Separate Input Capacitors
• Using separate input caps increases noise

Each additional input capacitor adds to the total noise
Separate caps help reduce signal dependent 
disturbances in the DAC reference voltages
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Differential vs. Single-Ended
• Single-Ended Noise

• Differential Noise

• Relative Noise (for nf=1.5, x=0)
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Differential vs. Single-Ended
• All previous calculations assumed single-ended 

operation
For same settling time, gm1,2 is the same, resulting in 
the same total power [0dB]
Differential input signal is twice as large [gain 6dB]
Differential operation has twice as many caps and 
therefore twice as much capacitor noise (assume same 
size per side – C1 and C2) [lose ~1.2dB for nM=1.5, x=0… 
less for larger nM]

• Net Improvement: ~4.8dB
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Noise in an Integrator
• What is the total output-referred noise in an 

integrator?
Assume an integrator transfer function

𝑯 𝒛 ൌ
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Noise in an Integrator
• Total output-referred noise PSD

where

and

Since all noise sources are sampled, white PSDs

To find output-referred noise for a given OSR in a 
modulator:

𝑺𝑰𝑵𝑻ሺ𝒇ሻ ൌ 𝑺𝑪𝟏ሺ𝒇ሻ 𝑯ሺ𝒛ሻ 𝟐 ൅ 𝑺𝑶𝑼𝑻ሺ𝒇ሻ

𝑽𝑶𝑼𝑻𝟐 ൌ
𝟒𝒌𝑻
𝟑𝜷𝑪𝑶

𝒏𝑴

𝑽𝑪𝟏𝟐 ൌ
𝒌𝑻
𝑪𝟏

𝟒𝒏𝑴/𝟑 ൅ 𝟏 ൅ 𝟐𝒙
𝟏 ൅ 𝒙

𝑺𝒙 ൌ
𝑽𝒙𝟐

𝒇𝑺/𝟐

𝑽𝑰𝑵𝑻𝟐 ൌ න 𝑺𝑰𝑵𝑻ሺ𝒇ሻ𝒅𝒇
𝒇𝑺/ሺ𝟐⋅𝑶𝑺𝑹ሻ

𝟎
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Noise in a  Modulator
• How do we find the total input-referred noise in a 
 modulator?

1) Find all thermal noise sources
2) Find PSDs of the thermal noise sources
3) Find transfer functions from each noise source to 

the output
4) Using the transfer functions, integrate all PSDs from 

DC to the signal band edge fS/2ꞏOSR
5) Sum the noise powers to determine the total output 

thermal noise
6) Input noise = output noise (assuming STF is ~1 in 

the signal band)
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Noise in a  Modulator
• Example

fS = 100MHz, T = 10ns, OSR = 32
SNR = 80dB (13-bit resolution)
Input Signal Power = 0.25V2 (-6dB from 1V2)
Noise Budget: 75% thermal noise
Total input referred thermal noise: 

𝑽𝑻𝑯𝟐 ൌ 𝟎.𝟕𝟓 · 𝟏𝟎 ି𝟔ି𝑺𝑵𝑹 𝟏𝟎⁄ · 𝟏𝑽𝟐 ൌ ሺ𝟒𝟑.𝟒𝝁𝑽ሻ𝟐
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Noise in a  Modulator
1) Find all thermal noise sources
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Noise in a  Modulator
2) Find PSDs of the thermal noise sources

For each of the mean square voltage sources,

3) Find transfer functions from each noise source 
to the output
Assume ideal integrators
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Noise in a  Modulator
3) Find transfer functions from each noise source 

to the output
From input of HA(z) to output…

From output of HA(z) to output…
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Noise in a  Modulator
3) Find transfer functions from each noise source 

to the output
From input of HB(z) to output…

From output of HB(z) to output (equal to transfer 
function at input of summer to output)…

2

1 1
2

( ) ( ) ( )
( ) (1 )
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Noise in a  Modulator
3) Find transfer functions from each noise source 

to the output
Most significant is NTFi1
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Noise in a  Modulator
4) Using the transfer functions, integrate all PSDs 

from DC to the signal band edge fS/2ꞏOSR
Use MATLAB/Maple to solve the integrals…
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Noise in a  Modulator
4) Using the transfer functions, integrate all PSDs 

from DC to the signal band edge fS/2ꞏOSR

(Some simplifications can be made for large OSR)
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Noise in a  Modulator
5) Sum the noise powers to determine the total 

output thermal noise
Assume xA = xB = 0.1 and nM,A = nM,B = 1.5

With an OSR of 32, first term is most significant 
(assume A = B = 1/3)
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Noise in a  Modulator
6) Input noise = output noise (assuming STF is ~1 

in the signal band)

 C1A = 200fF

Assuming other capacitors are smaller than C1A, then 
subsequent terms are insignificant and the 
approximation is valid

If lower oversampling ratios are used, other terms may 
become more significant in the calculation

2 2 2

1
9.1 10 (43.4 )TH

A

kTV V
C

  



ECE137143

Noise in a Pipeline ADC
• Similar procedure to  modulator, except 

transfer functions are much easier to compute

• Differences…
Input refer all noise sources
Gain from each stage to the input is a scalar
Noise from later stages will be more significant since 
typical stage gains are as low as 2
Sample-and-Hold adds extra noise which is input 
referred with a gain of 1
Entire noise power is added since the signal band is 
from 0 to fS/2 (OSR=1)
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Noise in a Pipeline ADC
• Example

If each stage has a gain G1, G2, … GN

S/H stage noise will add directly to Vni1
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Circuit of the Day: Constant-GM Biasing
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Further Reading
• Appendix C of Understanding Delta-Sigma Data 

Converters, Schreier and Temes (1st edition)
• Schreier et al., Design-Oriented Estimation of Thermal 

Noise in Switched-Capacitor Circuits, TCAS-I, Nov. 2005


