Lecture 9 Noise in Switched-Capacitor Circuits

Trevor Caldwell trevor.caldwell@awaveip.com

Lecture Plan

Date	Lecture (Wednesday 2-4pm)		Reference	Homework		
2020-01-07	1	MOD1 & MOD2	PST 2, 3, A	1: Matlab MOD1&2		
2020-01-14	2	MOD <i>N</i> + ΔΣ Toolbox	PST 4, B	2: ΔΣ Toolbox		
2020-01-21	3	SC Circuits	R 12, CCJM 14			
2020-01-28	4	Comparator & Flash ADC	CCJM 10	3: Comparator		
2020-02-04	5	Example Design 1	PST 7, CCJM 14			
2020-02-11	6	Example Design 2	CCJM 18	4. SC MOD2		
2020-02-18		Reading Week / ISSC	4: 5C WOD2			
2020-02-25	7	Amplifier Design 1				
2020-03-03	8	Amplifier Design 2		Project		
2020-03-10	9	Noise in SC Circuits				
2020-03-17	10	Nyquist-Rate ADCs	CCJM 15, 17			
2020-03-24	11	Mismatch & MM-Shaping	PST 6			
2020-03-31	12	Continuous-Time $\Delta\Sigma$	PST 8			
2020-04-07		Exam				
2020-04-21	Project Presentation (Project Report Due at start of class)					

Circuit of the Day: Constant-G_M Biasing

- How do we bias transistors so that the transconductance does not depend on:
 - Temperature
 - Process
 - **Supply Voltage**
- Make it dependent on a bias resistor R_B

$${m g}_m \propto {m 1\over {m R}_{\scriptscriptstyle B}}$$

What you will learn...

- How to analyze noise in switched-capacitor circuits
- Significance of switch noise vs. OTA noise Power efficient solution

Impact of OTA architecture

• Design example for $\Delta\Sigma$ modulator

Review

 Previous analysis of kT/C noise (ignoring OTA/opamp noise)

> Phase 1: kT/C₁ noise (on each side) Phase 2: kT/C₁ added to previous noise (on each side) Total Noise (input referred): 2kT/C₁ Differentially: 4kT/C₁

Review

SNR (differential)

Total noise power: 4kT/C₁ Signal power: (2V)²/2 SNR: V²C₁/2kT

SNR (single-ended)

Total noise power: $2kT/C_1$ (sampling capacitor C_1) Signal power: V²/2 (signal from -V to V) SNR: V²C₁/4kT

• Two noise sources V_{C1} and V_{OUT}

V_{C1}: Represents input-referred sampled noise on input switching transistors + OTA

V_{OUT}: Represents output-referred (non-sampled) noise from OTA

Thermal Noise in OTAs

• Single-Ended Example

Noise current from each transistor is $\overline{I_n^2} = 4kT\gamma g_m$ Assume $\gamma = 2/3$

Thermal Noise in OTAs

Single-Ended Example

Thermal noise in single-ended OTA

Assuming paths match, tail current source M₅ does not contribute noise to output

PSD of noise voltage in M_1 (and M_2):

 $\frac{8}{3}\frac{kT}{g_{m1}}$

PSD of noise voltage in M₃ (and M₄): $\frac{8}{3} \frac{kTg_{m3}}{g_{m1}^2}$

Total input referred noise from M₁ - M₄

$$S_{n,eq} = \frac{16}{3} \frac{kT}{g_{m1}} \left(1 + \frac{g_{m3}}{g_{m1}} \right) = \frac{16}{3} \frac{kT}{g_{m1}} n_M$$

Noise multiplier n_M depends on architecture

• Analyze output noise in single-stage OTA Use capacitive feedback in the amplification / integration phase of a switched-capacitor circuit

Transfer function of closed loop OTA

$$H(s) = \frac{V_{OUT}}{V_{n,eq}} = \frac{G}{1 + s/\omega_o}$$

where the DC Gain and 1st-pole frequency are

$$\mathbf{G} \approx \frac{1}{\beta} = \mathbf{1} + \mathbf{C}_1 / \mathbf{C}_2 \qquad \qquad \boldsymbol{\omega}_o = \frac{\beta \mathbf{g}_{m1}}{\mathbf{C}_o}$$

Load capacitance C_0 depends on the type of OTA – for a single-stage, it is $C_L+C_1C_2/(C_1+C_2)$, while for a twostage, it is the compensation capacitor C_c

Integrate total noise at output

$$\overline{V_{OUT}^2} = \int_0^\infty S_{n,eq}(f) |H(j2\pi f)|^2 df$$
$$= \frac{16}{3} \frac{kT}{g_{m1}} n_M \frac{\omega_o}{4} G^2$$
$$= \frac{4kT}{3\beta C_0} n_M$$
Minimum output noise for β =1 is $\frac{4kT}{3C_0} n_M$

Not a function of g_{m1} since bandwidth is proportional to g_{m1} while PSD is inversely proportional to g_{m1}

• Graphically...

Noise is effectively filtered by equivalent brick wall response with cut-off frequency $\pi f_o/2$ (or $\omega_o/4$ or $1/4\tau$) Total noise at V_{OUT} is the integral of the noise within the brick wall filter (area is simply $\pi f_o/2 \ge G^2$)

Sampled Thermal Noise

What happens to noise once it gets sampled?

Total noise power is the same

Noise is aliased – folded back from higher frequencies to lower frequencies

PSD of the noise increases significantly

Sampled Thermal Noise

Same total area, but PSD is larger from 0 to f_s/2

$$S_{Vo,S}(f) = \frac{\overline{V_{OUT}^2}}{f_S/2} = \frac{G^2 S_{n,eq}}{4\tau f_S/2} = \frac{4kT}{3\beta C_0} n_M \frac{1}{f_S/2}$$

Low frequency PSD $G^2 S_{n,eq}$ is increased by $\frac{\pi f_0/2}{f_S/2} = \frac{\pi f_0}{f_S}$

Sampled Thermal Noise

1/f₀ is the settling time of the system, while 1/2f_S is the settling period for a two-phase clock

$$e^{-\frac{1/2f_s}{\tau}} < 2^{-(N+1)}$$

 $\frac{\pi f_0}{f_s} > (N+1) \ln 2$

PSD is increased by at least $(N+1)\ln 2$

If N = 10 bits, PSD is increased by 7.6, or 8.8dB

 This is an inherent disadvantage of sampleddata systems (compared to continuous-time)
 But noise is reduced by oversampling ratio after digital

filtering

Using the parasitic-insensitive SC integrator

- Two phases to consider
 - 1) Sampling Phase

Includes noise from both ϕ_1 switches

2) Integrating Phase

Includes noise from both ϕ_2 switches and OTA

• Phase 1: Sampling

Noise PSD from two switches: $S_{Ron}(f) = 8kTR_{ON}$ Time constant of R-C filter: $\tau = 2R_{ON}C_1$ Noise voltage across C_1

$$\overline{V_{C1,sw1}^2} = \int_0^\infty S_{Ron}(f) \left|\frac{1}{1+s\tau}\right|^2 df$$

• Phase 1: Sampling

Integrated across entire spectrum, total noise power in C_1 is

$$\overline{V_{C1,sw1}^2} = \frac{8 \, kTR_{ON}}{4\tau} = \frac{kT}{C_1}$$

Independent of R_{ON} (PSD is proportional to R_{ON} , bandwidth is inversely proportional to R_{ON}) After sampling, charge is trapped in C_1

Two noise sources: switches and OTA
 Noise PSD from two switches: S_{Ron}(f) = 8kTR_{ON}

Noise PSD from OTA:
$$S_{vn,eq}(f) = \frac{16}{3} \frac{kT}{g_{m1}} n_M$$

Noise power across C₁ charges to $2\overline{V_{Ron}^2} + \overline{V_{n,eq}^2}$

• What is the time-constant?

Analysis shows that $Z_{IN} = \frac{1/sC_2 + R_L}{1 + g_{m1}R_L}$ For large R_L, assume that $Z_{IN} \approx \frac{1}{g_{m1}}$

Resulting time constant $\tau = (2R_{ON} + 1/g_{m1})C_1$

 Total noise power with both switches and OTA on integrating phase

$$\overline{V_{C1,op}^2} = \frac{S_{vn,eq}(f)}{4\tau} \qquad \overline{V_{C1,sw2}^2} = \frac{S_{Ron}(f)}{4\tau}$$
$$= \frac{16kT}{3g_{m1}} \frac{n_M}{4(2R_{oN} + 1/g_{m1})C_1} \qquad = \frac{8kTR_{oN}}{4(2R_{oN} + 1/g_{m1})C_1}$$
$$= \frac{4kT}{C_1} \frac{n_M}{(1+x)} \qquad = \frac{kT}{C_1} \frac{x}{(1+x)}$$

Introduced extra parameter $x = 2R_{oN}g_{m1}$

Total noise power on C1 from both phases

$$\overline{V_{C1,diff}^2} = \overline{V_{C1,op}^2} + \overline{V_{C1,sw1}^2} + \overline{V_{C1,sw2}^2}$$
$$= \frac{4kT}{3C_1} \frac{n_M}{(1+x)} + \frac{kT}{C_1} \frac{x}{(1+x)} + \frac{kT}{C_1}$$
$$= \frac{kT}{C_1} \left(\frac{4n_M/3 + 1 + 2x}{1+x}\right)$$

Lowest possible noise achieved if $X \rightarrow \infty$

In this case,
$$\overline{V_{C1}^2} = \frac{2kT}{C_1}$$

What was assumed to be the total noise was actually the least possible noise!

Noise Contributions

 Percentage noise contribution from switches and OTA (assume n_M=1.5)

Noise Contributions

- When R_{ON} >> 1/g_{m1} (x >> 1)...
 Switch dominates both bandwidth and noise Total noise power is minimized
- When R_{ON} << 1/g_{m1} (x << 1)...

OTA dominates both bandwidth and noise Power-efficient solution

Minimize g_{m1} (and power) for a given settling time and noise

$$g_{m1} = \frac{kT}{\tau \overline{V_{C1}^2}} \left(\frac{4}{3}n_M + 1 + 2x\right)$$

Minimized for x=0

Amplifier Noise

How much larger can the noise get?
 Depends on n_M... (table excludes cascode noise)

Architecture	Relative V _{EFF} 's	n _M	Maximum Noise (x=0)	+dB
Telescopic/ Diff.Pair	V _{EFF,1} =V _{EFF,n} /2	1.5	3⋅kT/C ₁	1.76
Telescopic/ Diff.Pair	V _{EFF,1} =V _{EFF,n}	2	3.67 [.] kT/C ₁	2.63
Folded Cascode	V _{EFF,1} =V _{EFF,n} /2	2.5	4.33 [.] kT/C ₁	3.36
Folded Cascode	V _{EFF,1} =V _{EFF,n}	4	6.33 [.] kT/C ₁	5.01

Separate Input Capacitors

Using separate input caps increases noise

Each additional input capacitor adds to the total noise Separate caps help reduce signal dependent disturbances in the DAC reference voltages

Differential vs. Single-Ended

Single-Ended Noise

$$\overline{V_{C1,se}^2} = \frac{kT}{C_1} \left(\frac{4n_M/3 + 1 + 2x}{1 + x} \right)$$

Differential Noise

$$\overline{V_{C1,diff}^2} = \overline{V_{C1,op}^2} + \overline{V_{C1,sw1}^2} + \overline{V_{C1,sw2}^2}$$
$$= \frac{4kT}{3C_1} \frac{n_M}{(1+x)} + \frac{2kT}{C_1} \frac{x}{(1+x)} + \frac{2kT}{C_1}$$
$$= \frac{kT}{C_1} \left(\frac{4n_M/3 + 2 + 4x}{1+x}\right)$$

Relative Noise (for n_f=1.5, x=0)

$$\frac{\overline{V_{C1,diff}^2}}{\overline{V_{C1,se}^2}} = \frac{4n_M/3 + 2 + 4x}{4n_M/3 + 1 + 2x} = \frac{4}{3}$$

Differential vs. Single-Ended

- All previous calculations assumed single-ended operation
 - For same settling time, $g_{m1,2}$ is the same, resulting in the same total power [0dB]
 - Differential input signal is twice as large [gain 6dB]
 - Differential operation has twice as many caps and therefore twice as much capacitor noise (assume same size per side C_1 and C_2) [lose ~1.2dB for n_M =1.5, x=0... less for larger n_M]
- Net Improvement: ~4.8dB

What is the total output-referred noise in an integrator?

Assume an integrator transfer function

Total output-referred noise PSD

 $S_{INT}(f) = S_{C1}(f)|H(z)|^2 + S_{OUT}(f)$

where
$$\overline{V_{OUT}^2} = \frac{4kT}{3\beta C_0} n_M$$

and $\overline{V_{C1}^2} = \frac{kT}{C_1} \left(\frac{4n_M/3 + 1 + 2x}{1 + x}\right)$

Since all noise sources are sampled, white PSDs

$$S_x = \frac{\overline{V_x^2}}{f_S/2}$$

To find output-referred noise for a given OSR in a $\Delta\Sigma$ modulator: $F_{S/(2 \cdot OSR)}$ $\overline{V_{INT}^2} = \int S_{INT}(f) df$

- How do we find the total input-referred noise in a $\Delta\Sigma$ modulator?
 - **1)** Find all thermal noise sources
 - 2) Find PSDs of the thermal noise sources
 - 3) Find transfer functions from each noise source to the output
 - 4) Using the transfer functions, integrate all PSDs from DC to the signal band edge f_s/2·OSR
 - 5) Sum the noise powers to determine the total output thermal noise
 - 6) Input noise = output noise (assuming STF is ~1 in the signal band)

• Example

 $f_s = 100MHz$, T = 10ns, OSR = 32 SNR = 80dB (13-bit resolution) Input Signal Power = $0.25V^2$ (-6dB from $1V^2$) Noise Budget: 75% thermal noise Total input referred thermal noise:

$$\overline{V_{TH}^2} = 0.75 \cdot 10^{(-6-SNR)/10} \cdot 1V^2 = (43.4\mu V)^2$$

1) Find all thermal noise sources

$$\overline{V_{n3}^2} = \frac{2kT}{C_{f1}} \left(1 + \frac{C_{f2}}{C_{f1}} + \frac{C_{f3}}{C_{f1}} \right) = \frac{2kT}{C_{f1}} \left(1 + 2 + 1 \right)$$

2) Find PSDs of the thermal noise sources

For each of the mean square voltage sources,

$$\mathbf{S}_{\mathbf{x}} = \frac{\overline{V_{\mathbf{x}}^2}}{f_{\mathbf{S}} / 2}$$

3) Find transfer functions from each noise source to the output

Assume ideal integrators $H_{A}(z) = H_{B}(z) = \frac{z^{-1}}{1 - z^{-1}}$ STF(z) = 1 $NTF(z) = (1 - z^{-1})^{2} = \frac{1}{1 + 2H(z) + H(z)^{2}}$

3) Find transfer functions from each noise source to the output

From input of $H_A(z)$ to output...

$$NTF_{i1}(z) = \left(2H(z) + H(z)^{2}\right)NTF(z)$$
$$= \frac{2H(z) + H(z)^{2}}{1 + 2H(z) + H(z)^{2}} = 2z^{-1} - z^{-2}$$

From output of $H_A(z)$ to output...

$$NTF_{o1}(z) = (2 + H(z)) NTF(z)$$
$$= \frac{2 + H(z)}{1 + 2H(z) + H(z)^{2}} = (1 - z^{-1})(2 - z^{-1})$$

3) Find transfer functions from each noise source to the output

From input of $H_B(z)$ to output...

$$NTF_{i2}(z) = H(z)NTF(z)$$
$$= \frac{H(z)}{1+2H(z)+H(z)^{2}} = z^{-1}(1-z^{-1})$$

From output of $H_B(z)$ to output (equal to transfer function at input of summer to output)...

$$NTF_{o2}(z) = NTF(z) = (1 - z^{-1})^2$$

3) Find transfer functions from each noise source to the output

Most significant is NTF_{i1}

4) Using the transfer functions, integrate all PSDs from DC to the signal band edge f_s/2·OSR

Use MATLAB/Maple to solve the integrals...

$$\overline{V_{i1}^2} = \frac{\overline{V_{ni1}^2}}{f_s / 2} \int_{0}^{f_s / (2 \cdot OSR)} |NTF_{i1}(f)|^2 df$$
$$= \frac{\overline{V_{ni1}^2}}{f_s / 2} \left[\frac{5f_s}{2 \cdot OSR} - \frac{2f_s}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$

$$\overline{V_{01}^2} = \frac{\overline{V_{no1}^2}}{f_s/2} \int_0^{f_s/(2 \cdot OSR)} |NTF_{o1}(f)|^2 df$$
$$= \frac{\overline{V_{no1}^2}}{f_s/2} \left[\frac{7f_s}{OSR} + \frac{2f_s}{\pi} \sin\left(\frac{\pi}{OSR}\right) \cos\left(\frac{\pi}{OSR}\right) - \frac{9f_s}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$

4) Using the transfer functions, integrate all PSDs from DC to the signal band edge f_s/2·OSR

$$\overline{V_{i2}^2} = \frac{\overline{V_{ni2}^2}}{f_s / 2} \left[\frac{f_s}{OSR} - \frac{f_s}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$

$$\overline{V_{02}^2} = \frac{\overline{V_{n02}^2} + \overline{V_{n3}^2}}{f_s / 2} \left[\frac{3f_s}{OSR} + \frac{f_s}{\pi} \sin\left(\frac{\pi}{OSR}\right) \cos\left(\frac{\pi}{OSR}\right) - \frac{4f_s}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$

(Some simplifications can be made for large OSR)

5) Sum the noise powers to determine the total output thermal noise

Assume $x_A = x_B = 0.1$ and $n_{M,A} = n_{M,B} = 1.5$

$$\overline{V_{TH}^{2}} \approx \frac{2.9 \, kT}{C_{1A}} \frac{1}{OSR} + \frac{2 \, kT}{\beta_{A} C_{OA}} \frac{\pi^{2}}{3 OSR^{3}} + \frac{2.9 \, kT}{C_{1B}} \frac{\pi^{2}}{3 OSR^{3}} + \frac{4 \, \frac{\pi^{2}}{3 OSR^{3}}}{\frac{\pi^{4}}{\beta_{B} C_{OB}}} + \frac{2 \, kT}{\beta_{B} C_{OB}} \frac{\pi^{4}}{5 OSR^{5}} + \frac{8 \, kT}{C_{f1}} \frac{\pi^{4}}{5 OSR^{5}} + \frac{1}{2 \, N} \frac{\pi^{4}}{3 \, N} +$$

With an OSR of 32, first term is most significant (assume $\beta_A = \beta_B = 1/3$)

$$\overline{V_{TH}^2} \approx 9.1 \times 10^{-2} \frac{kT}{C_{1A}} + 6.0 \times 10^{-4} \frac{kT}{C_{OA}} + 2.9 \times 10^{-4} \frac{kT}{C_{1B}} + \dots$$

6) Input noise = output noise (assuming STF is ~1 in the signal band)

$$\overline{V_{TH}^2} \approx 9.1 \times 10^{-2} \frac{kT}{C_{1A}} = (43.4 \,\mu\text{V})^2$$
$$\Rightarrow C_{1A} = 200\text{fF}$$

Assuming other capacitors are smaller than C_{1A} , then subsequent terms are insignificant and the approximation is valid

If lower oversampling ratios are used, other terms may become more significant in the calculation

Noise in a Pipeline ADC

• Similar procedure to $\Delta\Sigma$ modulator, except transfer functions are much easier to compute

Differences...

Input refer all noise sources

Gain from each stage to the input is a scalar

Noise from later stages will be more significant since typical stage gains are as low as 2

Sample-and-Hold adds extra noise which is input referred with a gain of 1

Entire noise power is added since the signal band is from 0 to $f_s/2$ (OSR=1)

Noise in a Pipeline ADC

• Example

If each stage has a gain $G_1, G_2, \dots G_N$

$$\overline{N_i^2} = \overline{V_{ni1}^2} + \frac{\overline{V_{no1}^2} + \overline{V_{ni2}^2}}{G_1^2} + \frac{\overline{V_{no2}^2} + \overline{V_{ni3}^2}}{G_1^2 G_2^2} + \dots + \frac{\overline{V_{noN}^2}}{G_1^2 G_2^2 \dots G_N^2}$$

S/H stage noise will add directly to V_{ni1}

Circuit of the Day: Constant-G_M Biasing

Further Reading

- Appendix C of Understanding Delta-Sigma Data Converters, Schreier and Temes (1st edition)
- Schreier et al., *Design-Oriented Estimation of Thermal* Noise in Switched-Capacitor Circuits, TCAS-I, Nov. 2005