Lecture 4 Comparator & Flash ADC Design

Trevor Caldwell trevor.caldwell@awaveip.com

Lecture Plan

Date	Lecture (Wednesday 2-4pm)		Reference	Homework
2020-01-07	1	MOD1 & MOD2	PST 2, 3, A	1: Matlab MOD1&2
2020-01-14	2	$\mathbf{MOD}N + \Delta \Sigma \mathbf{Toolbox}$	PST 4, B	2: ΔΣ Toolbox
2020-01-21	3	SC Circuits	R 12, CCJM 14	
2020-01-28	4	Comparator & Flash ADC	CCJM 10	3: Comparator
2020-02-04	5	Example Design 1	PST 7, CCJM 14	
2020-02-11	6	Example Design 2	CCJM 18	
2020-02-18	Reading Week / ISSCC			4. SC WODZ
2020-02-25	7	Amplifier Design 1		
2020-03-03	8	Amplifier Design 2		
2020-03-10	9	Noise in SC Circuits		
2020-03-17	10	Nyquist-Rate ADCs	CCJM 15, 17	Project
2020-03-24	11	Mismatch & MM-Shaping	PST 6	
2020-03-31	12	Continuous-Time $\Delta\Sigma$	PST 8	
2020-04-07	Exam			
2020-04-21	Project Presentation (Project Report Due at start of class)			

Circuit of the Day: Linear Transconductor

• Useful in many circuits

- 1. Gm-C filter
- **2.** LNA
- 3. Mixer
- **4.** Continuous-Time $\Delta \Sigma$ ADC

What you will learn...

- Example Comparator Circuit
- Regeneration Time Constant τ
- Metastability, Probability of Error
- Offset, Auto-zeroing
- Flash ADC

Comparator

- Basic building block of an A/D converter
 Acts as a 1-bit A/D converter
- Output amplifies difference between V_{IN} & V_{REF}
 With a large gain, output is 'digital' at either the positive or negative supply rail

Comparator

Not an open-loop amplifier

Amplifier (A_1) typically high gain, low 3dB frequency Cascaded low-gain stages (A_2) faster for a given power

Comparator

Latched comparator

Track when CK high, precharge output low Latch when CK low

Comparator: Track and Latch

Set/Reset Latch:

Inverter thresholds are chosen so that the inverters respond only after R/S have resolved.

Falling CK phase initiates regenerative action
 S and R connected to a Set/Reset latch

Comparator: Track and Latch

CK is High: 'Reset' or 'Track' Mode

- Active part of the comparator is reset Grayed-out devices are off
- R and S are low \rightarrow the SR latch is in hold mode

Comparator: Track and Latch

CK goes Low: 'Latch' Mode

Example Waveforms

• Quick design in 65nm with VDD=1V

Better Design

Responses for Various V_{in}

Delay vs V_{in}

ECE1371

Latch Mode Dynamics

• For V_{in} near the trip point, an inverter is essentially just a transconductor:

So near balance the comparator looks like this:

Small-Signal Analysis

- Differential component grows exponentially
- CM component decays exponentially

Metastability

- Metastability is fundamentally unavoidable
- Assuming the universe is continuous and deterministic, a comparator can be unresolved for any length of time

Probability of Error

 $P_E = P\{\text{not resolved by time } t\}$ $= P\{V_{in} < e^{-(t-t_0)/\tau}\}$

- Take $t_0 = 100$ ps and $\tau = 20$ ps
- Then for t = 500ps (1 GHz clock with a half-cycle between the comparator's clock and the clock of the subsequent latch),

$$P_E = P\{|V_{in}| < 2 \text{ nV}\}$$

• Assuming V_{in} is uniformly distributed in [-0.5, +0.5] V, $P_E = 2 \times 10^{-9}$

Metastability occurs twice a second!

Metastability Summary

Metastability is unavoidable

All you can do is make τ small and give enough time for regeneration to make P_E small

• At best, metastability causes SNR degradation

At worst, it causes a system failure

 In Continuous-Time ΔΣ Lecture we will look at metastability further

Find SNR equation for a CT $\Delta\Sigma$ ADC

Offset

Sources of offset

Mismatch in the input differential pair Mismatch in the regenerating devices

Dynamic Offset

- Mismatched parasitic capacitance causes offset 20 mV/fF for this comparator
- We can fix this with better design

Improved Comparator

Reset when CK = 1, regenerates when CK = 0

 x & y don't step if biased properly Mismatch in overlap capacitance still a problem

Reducing Offset with a Preamp

V_{off,tot} = V_{off,amp} + V_{off,comp} /A

Comparator offset is reduced by preamp gain Amplifier offset dominates

- Control Amplifier also isolates driving stage from 'charge kickback'
- **8** Amplifier bandwidth limits speed

Auto-Zeroed SC Comparator

- During P1, the inverter/amplifier is biased at its threshold/offset voltage
- During P2, the difference between V_{in} and V_{ref} is amplified

Measuring Offset

 In ideal schematic, differential comparator has no offset

Monte Carlo simulations will show offsets in comparator due to mismatch

Additional offsets will be seen in extracted layout (should be small with good layout)

Traditional measurement

In a given MC trial, ramp the input across the threshold of the comparator, crossing point is the offset Requires ~50-100 transient trials, each one ~10 cycles

Measuring Offset

Alternative Method

In a single Monte Carlo trial, set a DC input voltage and run the transient for a single cycle

Repeat ~100 transient single cycle MC trials

Determine percentage of sims that output +1 or -1

Assuming normal distribution, offset can be determined

• Example: DC voltage = 1mV

84% output '+1',16% output '-1' \rightarrow Offset is 1mV Wolfram Alpha: -inverse erfc(2*0.84)*sqrt(2)

Measuring Noise

- Output is latched, a traditional AC noise sim is insufficient
- Simulate using Offset measurement technique

In a given transient noise simulation, set a DC input voltage and run the transient for a single cycle Repeat ~100 transient noise single-cycle simulations Determine percentage of sims that output +1 or -1 Assuming normal distribution, offset can be determined

[Razavi 2015]

Comparator with Preamp

Dual-Difference Comparator

 In any of our comparator circuits, make the following replacement

Where should Va- go?

StrongArm Latch

- No static current
- Can be used as a comparator

Note that input CM voltage defines the bias point during regeneration

StrongArm Latch

Well-defined initial state → less hysteresis
 [2014 Abidi] 'Understanding the Regenerative...'
 [2015 Razavi], 'The StrongARM Latch'

Yang's High-Speed Comparator

τ_{nom} = 6ps in 65nm CMOS
 Used in a CTΔΣ ADC clocked at 4 GHz [Shibata2012]

Flash ADC

Flash Bubbles

Averaging and Interpolation

Circuit of the Day: Linear Transconductors

Degenerated Differential Pair

V_{gs} varies nonlinearly with I_{out}
 g_m is nonlinear
 Increase I_{bias} to improve linearity

Linear Transconductors

Force Constant V_{gs}

- I_d constant $\rightarrow V_{gs}$ constant
- Linearity dependent on current-mirror linearity

Linear Transconductors

Add Op Amps

- Linearity limited only by op amp gain and BW
- High output resistance
- Output compliance depends on input swing

Linear Transconductors

• Mirror the Output Current

© Output compliance is $VDD - 2V_{dsat}$ © Top of differential pair at $VDD - V_{gs}$

Linear Transconductance

Fold the Output Current

- Increased headroom for differential pair
- Increased output resistance
- **8** Extra cascode in output branch

Homework #3 (Due Feb 11)

Read 'The StrongARM Latch' [Razavi 2015]

- 1. Design a version of this comparator including the subsequent RS latch
 - A. Make sure your schematic is complete and legible
- 2. State the power consumption at $F_{ck} = 100$ MHz, regeneration time constant (τ), t_0 , rms noise and the mean and standard deviation of the offset
 - A. Use nominal PTV
 - **B.** Summarize the specifications in a table
 - c. Include both hand calculations and simulation results

What You Learned Today

- Example Comparator Circuit
- Comparator metrics

Metastability and regeneration time constant Offset measurement Noise measurement

• Flash ADC