ECE1371 Advanced Analog Circuits

Lecture 1
Introduction to Delta-Sigma ADCs

Trevor Caldwell
trevor.caldwell@awaveip.com




Course Goals

 Deepen understanding of CMOS analog circuit
design through a top-down study of a modern
analog system — a delta-sigma ADC

* Develop circuit insight through brief peeks at
some nifty little circuits of the day

The circuit world is filled with many little gems that
every competent designer ought to know
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 Format:

Meet Tuesdays 10:00-12:00 (no class Feb 18)

Twelve 2-hr Lectures + Exam + Project Presentations
* Grading:

30% Homework (5%, 7.5%, 7.5%, 10%)

40% Project

30% Exam
 References

Pavan, Schreier & Temes, “Understanding AY ...”
Chan Carusone, Johns & Martin, “Analog IC ...”
Razavi, “Design of Analog CMOS ICs”




Lecture Plan

Date Lecture (Wednesday 2-4pm) Reference Homework
2020-01-07 | 1 MOD1 & MOD2 PST2,3,A 1: Matlab MOD1&2
2020-01-14 | 2 MODN + AX Toolbox PST4,B

2: AY Toolbox
2020-01-21 | 3 SC Circuits R12,CCJM 14
2020-01-28 | 4 Comparator & Flash ADC CCJM 10

3: Comparator
2020-02-04 ( 5 Example Design 1 PST 7, CCJM 14
2020-02-11 6 Example Design 2 CCJM 18

4: SC MOD2

2020-02-18 Reading Week / ISSCC
2020-02-25 Amplifier Design 1
2020-03-03 Amplifier Design 2
2020-03-10( 9 Noise in SC Circuits
2020-03-17 | 10 Nyquist-Rate ADCs CCJM 15, 17 Project
2020-03-24 | 11 Mismatch & MM-Shaping PST 6
2020-03-31 | 12 Continuous-Time AX PST 8
2020-04-07 Exam
2020-04-21 Project Presentation (Project Report Due at start of class)
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What you will learn...

MOD1: 1st-order AX modulator
Structure and theory of operation

Inherent linearity of binary modulators

Inherent anti-aliasing of continuous-time
modulators

MOD2: 2"d-order A modulator

Good FFT practice
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Background

* The Signal-to-Quantization Noise Ratio (SQNR)
of an ideal n-bit ADC with a full-scale sine-wave
input is (6.02n + 1.76) dB

“6 dB =1 bit”

« The PSD at the output of a linear system is the
product of the input’s PSD and the squared
magnitude of the system’s frequency response

ie. X lHz) =¥ S,,(f) = |H(ei?™)|2. S, (f)

« The power in any frequency band is the integral
of the PSD over that band



What is AX?

« Simplified AX ADC structure

\/ Loop Coarse |
N Filter ADC H
/ I :
/ I
1

Analog In \ DAC

Digital Out
(to digital
filter)

* Key features: course quantization, filtering,

feedback and oversampling

Quantization is often quite course (as low as 1 bit), but
the effective resolution can be as high as 22 bits
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What is Oversampling?

 Oversampling is sampling faster than required
by the Nyquist criterion

For a lowpass signal containing energy in the
frequency range (0, f;), the minimum sample rate
required for perfect reconstruction is fg = 2f;

« Oversampling Ratio OSR = f/2fp

 For aregular ADC, OSR ~ 2-3
Larger than 1 to make the anti-alias filter (AAF) feasible

* For a AX ADC, OSR ~ 8 to 200

To get adequate quantization noise suppression
Signals between f; and ~f; are removed digitally



Oversampling Simplifies AAF
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How The AY ADC Works

« Course quantization = lots of quantization error
So how can a AZ ADC achieve 22-bit resolution?

A AY ADC spectrally separates the quantization
error from the signal through noise-shaping

Tiﬂ_, t -:-ll. J”L>

digital

analog
output

input

desired

signal N ist-rat
| l&p yquist-rate
m%%easllsred |§ ! no?sp BP‘CM Data

. fo f./2 s




A AZ DAC System
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 Mathematically similar to an ADC system

Except that now the modulator is digital and drives a
low-resolution DAC, and the out-of-band noise is
handled by an analog reconstruction filter




Why Do It The AZ Way?

 Simplified Anti-Alias Filter in ADC

Since the input is oversampled, only very high
frequencies alias to the passband

Simple RC filter is usually sufficient

If a continuous-time loop filter is used, the anti-alias
filter can often be eliminated altogether

DAC: Simplified Reconstruction Filter

© Inherent Linearity

Simple structures can yield very high SNR
© Robust Implementation

AY tolerates sizable component errors
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MOD1: 1st-Order AYX Modulator

EAY TAniL Quantizer
AT AT / (1 b|t)
- ' ‘| -y

Feedback

Since two points define a Ilne
a binary DAC is inherently linear.




MOD1 Analysis

« Exact analysis is intractable for all but the
simplest inputs, so treat the quantizer as an
additive noise source:

V(z) = Y(z) + E(2) Y é v

Y@) = (U@ -zV@) 1=y
=(1-z) V(z) = U(z) - zV(2) + (1-z1)E(2)

V(z) = U(z) + (1-z)E(2)




The Noise Transfer Function (NTF)

* In general, V(z) = STF(z)-U(z) + NTF(z)-E(2)
« For MOD1, NTF(z) =1 — z

- The quantization noise has spectral shape!

Poles & zeros:

a
N

0 04 02 03 04 05
Normalized Frequency (f/f)

 The total noise power increases, but the noise
power at low frequencies is reduced



In-band Quantization Noise Power

Assume the error is white with power ¢?
i.e. S.o(w) =c2/m
The in-band quatization noise power is

wp ] 2 0.2 wp
IQNP = f |H(/®)|” See(w)dw = ?ej w? dw
0 0

w2 o’

3

For MOD1, an octave increase in OSR increases
SQNR by 9 dB

1.5-bit/octave SQNR-OSR trade-off

OSR3

Since OSR = —, IQNP =
wp
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A Simulation of MOD1 (Freq)

______________ “ FuII-scaIe test tone
. Y SQNR 55 dB@OSR- 123 """ """"" :
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...........................
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10~° 1072 107"
Normalized Frequency




CT Implementation of MOD1

* Ri/R; sets the full-scale; C is arbitrary

R;, R are typically sized based on noise

Also observe that an input at fg is rejected by the
integrator — inherent anti-aliasing

+ + _Latched
1+ Com t
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MOD1-CT Waveforms

T 10 15 20
Time Time

 With u=0, v alternates between +1 and -1

« With u>0, y drifts upwards; v contains
consecutive +1s to counteract this drift



MOD1-CT STF

_—1
« STF =1 f ,recall z = e’
s-plane “’(t)
P <« Zeros @ s = 2kni
(),
() V\Pole-zero cancellation
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MOD1-CT Frequency Responses
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 AY works by spectrally separating the
quantization noise from the signal

Requires oversampling OSR = f¢/2fp

Noise-shaping is achieved by the use of filtering
and feedback

A binary DAC is inherently linear, and thus a
binary AX modulator is too

MOD1 has NTF(z) =1 —z1
Arbitrary accuracy for DC inputs
1.5 bit/octave SQNR-OSR trade-off

MOD1-CT has inherent anti-aliasing



MOD2: 2nd-Order AY Modulator

 Replace the quantizer in MOD1 with another
copy of MOD1 in a recursive fashion
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V(2) = U(z) + (1-2")E4(2), E4(2) = (1-2")E(2)
-2 V(z) = U(z) + (1-z")?E(2)




Simplified Block Diagrams

NTF(z) = (1-z1)2
STF(z) = z 1

|4

NTF(z) = (1-2z1)2
STF(z2) = z2
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NTF Comparison

INTF(ei27f)| (dB)

~100 S R S N I R

1073 1072 107"
Normalized Frequency
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In-Band Quantization Noise Power

. For MOD2, |H(e/®)|” ~ w*

+ As before, IQNP = [**|H(e/*)|" S,o(w)dw and
See(w) = O'E/Tt

4 2

So now IQNP = 5"6 OSR™>

With binary quantization to +/- 1, A = 2 and thus
62 =A7A*/12=1/3

[

An octave increase in OSR increases MOD2’s
SQNR by 15dB (2.5 bits)



Simulation Example

* Input at 75% of Full Scale

0 50 100 150 200
Sample number




Simulated MOD2 PSD

* Input at 50% of Full Scale
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SQNR vs. Input Amplitude

- MOD1 & MOD2 @ OSR = 256

120 ! ! ! ! ! ! !
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SQNR vs. OSR
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Audio Demo: MOD1 vs. MOD2

e dsdemo4 in Matlab AX Toolbox
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MOD1 and MOD2 Summary

 AY ADCs rely on filtering and feedback to
achieve high SNR despite coarse quantization

They also rely on digital signal processing

AY ADCs need to be followed by a digital decimation
filter and AX DACs need to be preceded by a digital
interpolation filter

 Oversampling eases analog filtering
requirements

Anti-alias filter in an ADC; image filter in a DAC
 Binary quantization yields inherent linearity

e MOD2 is better than MOD1

15 dB/octave vs 9 dB/octave SQNR-OSR trade-off
Quantization noise more white
Higher-order modulators are even better




Good FFT Practice

 Use coherent sampling
Have an integer number of cycles in the record

e Use windowing 1

A Hann window works well
w(n) = (1 —-cos(2nn/N))/2

 Use enough points
Recommend N = 64 - OSR

Scale (and smooth) the spectrum
A full-scale sine wave should yield a 0-dBFS peak

State the noise bandwidth
For a Hann window, NBW = 1.5/N
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Coherent vs Incoherent Sampling

100

........................................................................................................................

~300L i i i i i i i i ]
0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency

 Coherent sampling: only one non-zero FFT bin
* Incoherent sampling: spectral leakage



 AX data Is usually not periodic

Just because the input repeats does not mean the
output does too!

« Windowing is unavoidable

A finite-length data record is equal to an infinite record
multiplied by a rectangular window w(n) =1,0<n <N

* Multiplication in time is convolution in frequency

Frequency response of a 32-point rectangular window:
0 T T T T T T T T T T T T T T T
-10 ‘ . . . . . , : . . . . . . .
=20
-30
—40
-50
-60
-70
-80
-90
-100

0

dB
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Example Spectral Disaster

 Rectangular window, N=256
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Window Properties

Window Rectangular| Hannt Hann?
2
w(n, 2nn|(1_ cos 2"
n-01..N-1 1 1-cos— i N
(w(n) = 0 otherwise) 2
Number of non-zero
FFT bins 1 3 3
Iwl2 = 3T w(n)? N 3NI8 35N/128
W) = Sw(n) N NI2 3N/
| wii3
NBW = 1/N 1.5/N 35/18N
W(0)?2

T. MATLAB’s “hann” function causes spectral leakage of tones located
in FFT bins unless you add the optional argument “periodic.”




Window Length, N

 Need to have enough in-band noise bins to

1. Make the number of signal bins a small fraction of the
total number of in-band bins

<20% signal bins - >15 in-band bins > N > 30 OSR
2. Make the SNR repeatable

N = 30 - OSR yields std. dev. ~1.4 dB

N = 64 - OSR yields std. dev. ~1.0 dB

N = 256 - OSR yields std. dev. ~0.5 dB

e N=64-0SR is recommended




FFT Scaling

* The FFT implemented in MATLAB is

= _.2mkn
Xuk+1) = Z xy(n+1e N

n=0

e If x(n) = Asin(2nfn/N), then
AN
X (k)] ={T ke=forN—f

0 otherwise

= Need to divide FFT by (N/2) to get A

Note: f is an integer in (O,N/2). X(k) = Xy(k + 1),
x(n) = xy(n+ 1) since Matlab indexes from 1 rather than 0.



How To Do Smoothing

1. Average multiple FFTs
Implemented by MATLAB'’s psd() function

2. Take one big FFT and “filter” the spectrum

Implemented by the AX Toolbox’s 1ogsmooth()
function

logsmooth() averages an exponentially-increasing
number of bins in order to reduce the density of
points in the high-frequency regime and make a nice
log-frequency plot
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Raw and Smoothed Spectra
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Simulation vs Theory (MODZ)
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What Went Wrong?

« We normalized the spectrum so that a full-scale
sine wave (which has a power of 0.5) comes out
at 0 dB (hence the ‘dBFS’ units)

We do the same for the error signal, use S..(f) = 4/3
But this makes the discrepancy 3 dB worse

 We tried to plot a power spectral density
together with something that we want to
interpret as a power spectrum

 Sine-wave components are located in individual
FFT bins, but broadband signals like noise have
their power spread over all FFT bins

The ‘noise floor’ depends on the length of the FFT




Spectrum of a Sine Wave + Noise

0dBFS__
Sine Wave

(“dBFS”)

...............................

S, ()

0 0.25 0.5
Normalized Frequency, f




 The power of the sine wave is given by the
height of its spectral peak

 The power of the noise is spread over all bins

The greater the number of bins, the less power there is
in any one bin

 Doubling N reduces the power per bin by a
factor of 2 (i.e. 3 dB)

But the total integrated noise power does not change
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How Do We Handle Noise?

e An FFT is like a filter bank

 The longer the FFT, the narrower the bandwidth
of each filter and thus the lower the power at
each output

 We need to know the noise bandwidth (NBW) of
the filters in order to convert the power in each
bin (filter output) to a power density

* For a filter with frequency response H(f),

J'|H(f)‘2df | NEBHW |H(F)|
NBW = a3 '
H(fo)Z f

fo




FFT Noise Bandwidth

« Alternatively, for ||h||; as the L1-norm and ||h||,
as the L2-norm

2
NBW — JIHOI df (Ilh||%>’f0 _o
IRIIE

|[H(0)|?
 Parseval’s theorem

ILGRIENNICS
e If h(n) = 0

H©O)| = ) |h(m)



Better Spectral Plot
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Homework #1 (Due Jan 14%)

A. Create a Matlab function that computes MOD1’s
output sequence given a vector of input
samples and exercise your function in the
following ways:

1. Verify that v = u for a few random DC inputs in [-1,1]

2. Plot the output spectrum with a half-scale sine-wave
input. Use good FFT practice. Include the theoretical
quantization noise curve and list the theoretical and
simulated SQNR for OSR = 128.

B. Repeat with MOD2



MOD2 Expanded

Difference Equations:
v(n) = Q(xy(n)
xX,(n+1) = x,(n)—v(n)+ u(n)
X,(n+1) = Xy(M)—v(N)+X,(n+1)



Example Matlab Code

function [v] = simulateMOD2(u)

x1 = 0;

x2 = 0;

for 1 = 1:length(u)
v(1) = quantize(x2);
x1 = x1 + u(r) — v(1);

X2 = x2 + x1 — v(1);
end
return

function v = guantize(y)

1T y>=0

v = 1;
else

v = -1;
end

return
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What You Learned Today

MOD1: 1st-order AX modulator
Structure and theory of operation

Inherent linearity of binary modulators

Inherent anti-aliasing of continuous-time
modulators

MOD2: 2"d-order A modulator

Good FFT practice
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