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Course Goals
• Deepen understanding of CMOS analog circuit 

design through a top-down study of a modern 
analog system – a delta-sigma ADC

• Develop circuit insight through brief peeks at 
some nifty little circuits of the day

The circuit world is filled with many little gems that 
every competent designer ought to know
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Logistics
• Format:

Meet Tuesdays 10:00-12:00 (no class Feb 18)
Twelve 2-hr Lectures + Exam + Project Presentations

• Grading:
30% Homework (5%, 7.5%, 7.5%, 10%)
40% Project
30% Exam

• References
Pavan, Schreier & Temes, “Understanding  …”
Chan Carusone, Johns & Martin, “Analog IC …”
Razavi, “Design of Analog CMOS ICs”
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Lecture Plan
Date Lecture (Wednesday 2-4pm) Reference Homework

2020-01-07 1 MOD1 & MOD2 PST 2, 3, A 1: Matlab MOD1&2
2020-01-14 2 MODN +  Toolbox PST 4, B

2:  Toolbox
2020-01-21 3 SC Circuits R 12, CCJM 14
2020-01-28 4 Comparator & Flash ADC CCJM 10

3: Comparator
2020-02-04 5 Example Design 1 PST 7, CCJM 14
2020-02-11 6 Example Design 2 CCJM 18

4: SC MOD2
2020-02-18 Reading Week / ISSCC
2020-02-25 7 Amplifier Design 1

Project

2020-03-03 8 Amplifier Design 2
2020-03-10 9 Noise in SC Circuits
2020-03-17 10 Nyquist-Rate ADCs CCJM 15, 17
2020-03-24 11 Mismatch & MM-Shaping PST 6
2020-03-31 12 Continuous-Time  PST 8
2020-04-07 Exam
2020-04-21 Project Presentation (Project Report Due at start of class)
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What you will learn…
• MOD1: 1st-order  modulator

Structure and theory of operation
• Inherent linearity of binary modulators
• Inherent anti-aliasing of continuous-time 

modulators
• MOD2: 2nd-order  modulator
• Good FFT practice
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Background
• The Signal-to-Quantization Noise Ratio (SQNR) 

of an ideal n-bit ADC with a full-scale sine-wave 
input is (6.02n + 1.76) dB

“6 dB = 1 bit”
• The PSD at the output of a linear system is the 

product of the input’s PSD and the squared 
magnitude of the system’s frequency response

• The power in any frequency band is the integral 
of the PSD over that band
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What is ?
• Simplified  ADC structure

• Key features: course quantization, filtering, 
feedback and oversampling

Quantization is often quite course (as low as 1 bit), but 
the effective resolution can be as high as 22 bits

+
Loop 
Filter
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DOUT
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What is Oversampling?
• Oversampling is sampling faster than required 

by the Nyquist criterion
For a lowpass signal containing energy in the 
frequency range (0, fB), the minimum sample rate 
required for perfect reconstruction is fS = 2fB

• Oversampling Ratio 𝑺 𝑩

• For a regular ADC, OSR ~ 2-3
Larger than 1 to make the anti-alias filter (AAF) feasible

• For a  ADC, OSR ~ 8 to 200
To get adequate quantization noise suppression
Signals between fB and ~fS are removed digitally
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Oversampling Simplifies AAF
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How The  ADC Works
• Course quantization  lots of quantization error 

So how can a  ADC achieve 22-bit resolution?
• A  ADC spectrally separates the quantization 

error from the signal through noise-shaping
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A  DAC System

• Mathematically similar to an ADC system
Except that now the modulator is digital and drives a 
low-resolution DAC, and the out-of-band noise is 
handled by an analog reconstruction filter
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Why Do It The  Way?
• Simplified Anti-Alias Filter in ADC

Since the input is oversampled, only very high 
frequencies alias to the passband
Simple RC filter is usually sufficient
If a continuous-time loop filter is used, the anti-alias 
filter can often be eliminated altogether
DAC: Simplified Reconstruction Filter

 Inherent Linearity
Simple structures can yield very high SNR

 Robust Implementation
 tolerates sizable component errors
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MOD1: 1st-Order  Modulator
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MOD1 Analysis
• Exact analysis is intractable for all but the 

simplest inputs, so treat the quantizer as an 
additive noise source:
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The Noise Transfer Function (NTF)
• In general, V(z) = STF(z)ꞏU(z) + NTF(z)ꞏE(z) 
• For MOD1, NTF(z) = 1 – z-1

 The quantization noise has spectral shape!

• The total noise power increases, but the noise 
power at low frequencies is reduced
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In-band Quantization Noise Power
• Assume the error is white with power 𝜎௘ଶ

i.e. 𝑺𝒆𝒆ሺ𝝎ሻ ൌ 𝜎௘ଶ/𝜋
• The in-band quatization noise power is

• Since 𝑶𝑺𝑹 ൌ 𝝅
𝝎𝑩

, 𝑰𝑸𝑵𝑷 ൌ 𝝅𝟐𝝈𝒆𝟐

𝟑
𝑶𝑺𝑹ି𝟑

• For MOD1, an octave increase in OSR increases 
SQNR by 9 dB

1.5-bit/octave SQNR-OSR trade-off

𝑰𝑸𝑵𝑷 ൌ න 𝑯 𝒆𝒋𝝎 𝟐𝝎𝑩

𝟎
𝑺𝒆𝒆 𝝎 𝒅𝝎 ≅

𝝈𝒆𝟐

𝝅
න 𝝎𝟐
𝝎𝑩

𝟎
𝒅𝝎



ECE137117

A Simulation of MOD1 (Time)
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A Simulation of MOD1 (Freq)
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CT Implementation of MOD1
• Ri/Rf sets the full-scale; C is arbitrary

Ri, Rf are typically sized based on noise
Also observe that an input at fS is rejected by the 
integrator – inherent anti-aliasing
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MOD1-CT Waveforms

• With u=0, v alternates between +1 and -1
• With u>0, y drifts upwards; v contains 

consecutive +1s to counteract this drift
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MOD1-CT STF

• 𝑺𝑻𝑭 ൌ 𝟏ି𝒛ష𝟏

𝒔
, recall 𝒛 ൌ 𝒆𝒔
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MOD1-CT Frequency Responses
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Summary
•  works by spectrally separating the 

quantization noise from the signal
Requires oversampling 𝑶𝑺𝑹 ≡ 𝒇𝑺 𝟐𝒇𝑩⁄

• Noise-shaping is achieved by the use of filtering
and feedback

• A binary DAC is inherently linear, and thus a 
binary  modulator is too

• MOD1 has 𝑵𝑻𝑭 𝒛 ൌ 𝟏 െ 𝒛ି𝟏
Arbitrary accuracy for DC inputs
1.5 bit/octave SQNR-OSR trade-off

• MOD1-CT has inherent anti-aliasing
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MOD2: 2nd-Order  Modulator
• Replace the quantizer in MOD1 with another 

copy of MOD1 in a recursive fashion

V(z) = U(z) + (1-z-1)E1(z), E1(z) = (1-z-1)E(z)
 V(z) = U(z) + (1-z-1)2E(z)
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Simplified Block Diagrams
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NTF Comparison
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In-Band Quantization Noise Power

• For MOD2, 𝑯ሺ𝒆𝒋𝝎ሻ 𝟐 ൎ 𝝎𝟒

• As before, 𝑰𝑸𝑵𝑷 ൌ ׬ 𝑯 𝒆𝒋𝝎 𝟐𝝎𝑩
𝟎 𝑺𝒆𝒆 𝝎 𝒅𝝎 and 

𝑺𝒆𝒆 𝝎 ൌ 𝝈𝒆𝟐 𝝅⁄

• So now 𝑰𝑸𝑵𝑷 ൌ 𝝅𝟒𝝈𝒆𝟐

𝟓
𝑶𝑺𝑹ି𝟓

With binary quantization to +/- 1,  = 2 and thus        
𝝈𝒆𝟐 ൌ ∆𝟐 𝟏𝟐⁄ ൌ 𝟏/𝟑

• An octave increase in OSR increases MOD2’s 
SQNR by 15dB (2.5 bits)
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Simulation Example
• Input at 75% of Full Scale
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Simulated MOD2 PSD
• Input at 50% of Full Scale
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SQNR vs. Input Amplitude
• MOD1 & MOD2 @ OSR = 256
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SQNR vs. OSR
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Audio Demo: MOD1 vs. MOD2
• dsdemo4 in Matlab  Toolbox
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MOD1 and MOD2 Summary
•  ADCs rely on filtering and feedback to 

achieve high SNR despite coarse quantization
They also rely on digital signal processing
 ADCs need to be followed by a digital decimation 
filter and  DACs need to be preceded by a digital 
interpolation filter

• Oversampling eases analog filtering 
requirements

Anti-alias filter in an ADC; image filter in a DAC
• Binary quantization yields inherent linearity
• MOD2 is better than MOD1

15 dB/octave vs 9 dB/octave SQNR-OSR trade-off
Quantization noise more white
Higher-order modulators are even better
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Good FFT Practice
• Use coherent sampling

Have an integer number of cycles in the record
• Use windowing

A Hann window works well
𝒘 𝒏 ൌ ሺ𝟏 െ 𝒄𝒐𝒔 𝟐𝝅𝒏 𝑵⁄ ሻ/𝟐

• Use enough points
Recommend 𝑵 ൌ 𝟔𝟒 · 𝑶𝑺𝑹

• Scale (and smooth) the spectrum
A full-scale sine wave should yield a 0-dBFS peak

• State the noise bandwidth
For a Hann window, 𝑵𝑩𝑾 ൌ 𝟏.𝟓/𝑵
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Coherent vs Incoherent Sampling

• Coherent sampling: only one non-zero FFT bin
• Incoherent sampling: spectral leakage
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Windowing
•  data is usually not periodic

Just because the input repeats does not mean the 
output does too!

• Windowing is unavoidable
A finite-length data record is equal to an infinite record 
multiplied by a rectangular window 𝒘 𝒏 ൌ 𝟏,𝟎 ൑ 𝒏 ൏ 𝑵

• Multiplication in time is convolution in frequency
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Example Spectral Disaster
• Rectangular window, N=256
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Window Comparison (N=16)
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Window Properties
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Window Length, N
• Need to have enough in-band noise bins to

1. Make the number of signal bins a small fraction of the 
total number of in-band bins

<20% signal bins  >15 in-band bins  𝑵 ൐ 𝟑𝟎 · 𝑶𝑺𝑹
2. Make the SNR repeatable

𝑵 ൌ 𝟑𝟎 · 𝑶𝑺𝑹 yields std. dev. ~1.4 dB
𝑵 ൌ 𝟔𝟒 · 𝑶𝑺𝑹 yields std. dev. ~1.0 dB
𝑵 ൌ 𝟐𝟓𝟔 · 𝑶𝑺𝑹 yields std. dev. ~0.5 dB

• 𝑵 ൌ 𝟔𝟒 · 𝑶𝑺𝑹 is recommended
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FFT Scaling
• The FFT implemented in MATLAB is

𝑿𝑴 𝒌 ൅ 𝟏 ൌ ෍ 𝒙𝑴ሺ𝒏 ൅ 𝟏ሻ𝒆ି𝒋
𝟐𝝅𝒌𝒏
𝑵

𝑵ି𝟏

𝒏ୀ𝟎

• If 𝒙 𝒏 ൌ 𝑨 sinሺ𝟐𝝅𝒇𝒏 𝑵ሻ⁄ , then

𝑿ሺ𝒌ሻ ൌ ቐ
𝑨𝑵
𝟐 𝒌 ൌ 𝒇 𝐨𝐫 𝑵െ 𝒇

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 Need to divide FFT by ሺ𝑵 𝟐⁄ ሻ to get A

Note: f is an integer in ሺ𝟎,𝑵 𝟐⁄ ሻ. 𝑿ሺ𝒌ሻ ≡ 𝑿𝑴ሺ𝒌 ൅ 𝟏ሻ,           
𝒙ሺ𝒏ሻ ≡ 𝒙𝑴ሺ𝒏 ൅ 𝟏ሻ since Matlab indexes from 1 rather than 0.
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How To Do Smoothing
1. Average multiple FFTs

Implemented by MATLAB’s psd() function
2. Take one big FFT and “filter” the spectrum

Implemented by the  Toolbox’s logsmooth()
function
logsmooth() averages an exponentially-increasing 
number of bins in order to reduce the density of 
points in the high-frequency regime and make a nice 
log-frequency plot
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Raw and Smoothed Spectra
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Simulation vs Theory (MOD2)
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What Went Wrong?
• We normalized the spectrum so that a full-scale 

sine wave (which has a power of 0.5) comes out 
at 0 dB (hence the ‘dBFS’ units)

We do the same for the error signal, use 𝑺𝒆𝒆 𝒇 ൌ 𝟒 𝟑⁄
But this makes the discrepancy 3 dB worse

• We tried to plot a power spectral density
together with something that we want to 
interpret as a power spectrum 

• Sine-wave components are located in individual 
FFT bins, but broadband signals like noise have 
their power spread over all FFT bins

The ‘noise floor’ depends on the length of the FFT
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Spectrum of a Sine Wave + Noise
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Observations
• The power of the sine wave is given by the 

height of its spectral peak
• The power of the noise is spread over all bins

The greater the number of bins, the less power there is 
in any one bin

• Doubling N reduces the power per bin by a 
factor of 2 (i.e. 3 dB)

But the total integrated noise power does not change
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How Do We Handle Noise?
• An FFT is like a filter bank
• The longer the FFT, the narrower the bandwidth 

of each filter and thus the lower the power at 
each output

• We need to know the noise bandwidth (NBW) of 
the filters in order to convert the power in each 
bin (filter output) to a power density

• For a filter with frequency response H(f), 
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FFT Noise Bandwidth
• Alternatively, for 𝒉 𝟏 as the L1-norm and 𝒉 𝟐

as the L2-norm

• Parseval’s theorem

• If 𝒉ሺ𝒏ሻ ൒ 𝟎

න 𝑯ሺ𝒇ሻ 𝟐𝒅𝒇 ൌ෍ 𝒉ሺ𝒏ሻ 𝟐

𝑯 𝟎 ൌ෍ 𝒉ሺ𝒏ሻ

𝑵𝑩𝑾 ൌ
׬ 𝑯ሺ𝒇ሻ 𝟐𝒅𝒇
𝑯 𝟎 𝟐 ൌ

𝒉 𝟐
𝟐

𝒉 𝟏
𝟐 ,𝒇𝟎 ൌ 𝟎
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Better Spectral Plot
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Homework #1 (Due Jan 14*) 
A. Create a Matlab function that computes MOD1’s 

output sequence given a vector of input 
samples and exercise your function in the 
following ways:

1. Verify that 𝒗ഥ ൎ 𝒖 for a few random DC inputs in [-1,1]
2. Plot the output spectrum with a half-scale sine-wave 

input. Use good FFT practice. Include the theoretical 
quantization noise curve and list the theoretical and 
simulated SQNR for OSR = 128.

B. Repeat with MOD2
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MOD2 Expanded
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Example Matlab Code
function [v] = simulateMOD2(u)

x1 = 0;
x2 = 0;
for i = 1:length(u)

v(i) = quantize(x2);
x1 = x1 + u(i) – v(i);
x2 = x2 + x1 – v(i);

end
return

function v = quantize(y)
if y>=0

v = 1;
else

v = -1;
end

return
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What You Learned Today
• MOD1: 1st-order  modulator

Structure and theory of operation
• Inherent linearity of binary modulators
• Inherent anti-aliasing of continuous-time 

modulators
• MOD2: 2nd-order  modulator
• Good FFT practice


