# Lecture 1 Introduction to Delta-Sigma ADCs

#### Trevor Caldwell trevor.caldwell@awaveip.com

### **Course Goals**

- Deepen understanding of CMOS analog circuit design through a top-down study of a modern analog system – a delta-sigma ADC
- Develop circuit insight through brief peeks at some nifty little circuits of the day

The circuit world is filled with many little gems that every competent designer ought to know

# Logistics

#### • Format:

Meet Tuesdays 10:00-12:00 (no class Feb 18) Twelve 2-hr Lectures + Exam + Project Presentations

#### • Grading:

30% Homework (5%, 7.5%, 7.5%, 10%) 40% Project 30% Exam

#### References

Pavan, Schreier & Temes, "Understanding  $\Delta\Sigma$  ..." Chan Carusone, Johns & Martin, "Analog IC ..." Razavi, "Design of Analog CMOS ICs"

## **Lecture Plan**

| Date       | Lecture (Wednesday 2-4pm)                                   |                                                  | Reference      | Homework             |
|------------|-------------------------------------------------------------|--------------------------------------------------|----------------|----------------------|
| 2020-01-07 | 1                                                           | MOD1 & MOD2                                      | PST 2, 3, A    | 1: Matlab MOD1&2     |
| 2020-01-14 | 2                                                           | $\mathbf{MOD}N + \Delta \Sigma \mathbf{Toolbox}$ | PST 4, B       | <b>2:</b> ΔΣ Toolbox |
| 2020-01-21 | 3                                                           | SC Circuits                                      | R 12, CCJM 14  |                      |
| 2020-01-28 | 4                                                           | Comparator & Flash ADC                           | CCJM 10        | 3: Comparator        |
| 2020-02-04 | 5                                                           | Example Design 1                                 | PST 7, CCJM 14 |                      |
| 2020-02-11 | 6                                                           | Example Design 2                                 | CCJM 18        | 4: SC MOD2           |
| 2020-02-18 | Reading Week / ISSCC                                        |                                                  |                | 4: 5C WOD2           |
| 2020-02-25 | 7                                                           | Amplifier Design 1                               |                |                      |
| 2020-03-03 | 8                                                           | Amplifier Design 2                               |                |                      |
| 2020-03-10 | 9                                                           | Noise in SC Circuits                             |                |                      |
| 2020-03-17 | 10                                                          | Nyquist-Rate ADCs                                | CCJM 15, 17    | Project              |
| 2020-03-24 | 11                                                          | Mismatch & MM-Shaping                            | PST 6          |                      |
| 2020-03-31 | 12                                                          | Continuous-Time $\Delta\Sigma$                   | PST 8          |                      |
| 2020-04-07 |                                                             | Exam                                             |                |                      |
| 2020-04-21 | Project Presentation (Project Report Due at start of class) |                                                  |                |                      |

## What you will learn...

- MOD1: 1<sup>st</sup>-order ΔΣ modulator
   Structure and theory of operation
- Inherent linearity of binary modulators
- Inherent anti-aliasing of continuous-time modulators
- MOD2:  $2^{nd}$ -order  $\Delta \Sigma$  modulator
- Good FFT practice

# Background

 The Signal-to-Quantization Noise Ratio (SQNR) of an ideal *n*-bit ADC with a full-scale sine-wave input is (6.02*n* + 1.76) dB

"6 dB = 1 bit"

 The PSD at the output of a linear system is the product of the input's PSD and the squared magnitude of the system's frequency response

i.e. 
$$X \rightarrow H(z) \rightarrow S_{yy}(f) = |H(e^{j2\pi f})|^2 \cdot S_{xx}(f)$$

 The power in any frequency band is the integral of the PSD over that band

### What is $\Delta \Sigma$ ?

#### • Simplified $\Delta \Sigma$ ADC structure



 Key features: course quantization, filtering, feedback and oversampling

Quantization is often quite course (as low as 1 bit), but the effective resolution can be as high as 22 bits

## What is Oversampling?

 Oversampling is sampling faster than required by the Nyquist criterion

For a lowpass signal containing energy in the frequency range (0,  $f_B$ ), the minimum sample rate required for perfect reconstruction is  $f_S = 2f_B$ 

- Oversampling Ratio  $OSR \equiv f_S/2f_B$
- For a regular ADC, OSR ~ 2-3
   Larger than 1 to make the anti-alias filter (AAF) feasible
- For a  $\Delta\Sigma$  ADC, OSR ~ 8 to 200

To get adequate quantization noise suppression Signals between  $f_B$  and  $\sim f_S$  are removed digitally

## **Oversampling Simplifies AAF**



## How The $\Delta \Sigma$ ADC Works

- Course quantization  $\rightarrow$  lots of quantization error So how can a  $\Delta\Sigma$  ADC achieve 22-bit resolution?
- A ΔΣ ADC spectrally separates the quantization error from the signal through noise-shaping

![](_page_9_Figure_3.jpeg)

## A $\Delta\Sigma$ DAC System

![](_page_10_Figure_1.jpeg)

#### Mathematically similar to an ADC system

Except that now the modulator is digital and drives a low-resolution DAC, and the out-of-band noise is handled by an analog reconstruction filter

## Why Do It The $\Delta\Sigma$ Way?

#### Simplified Anti-Alias Filter in ADC

Since the input is oversampled, only very high frequencies alias to the passband Simple RC filter is usually sufficient If a continuous-time loop filter is used, the anti-alias filter can often be eliminated altogether DAC: Simplified Reconstruction Filter

#### Inherent Linearity

Simple structures can yield very high SNR

#### Const Implementation

 $\Delta\Sigma$  tolerates sizable component errors

### **MOD1:** 1<sup>st</sup>-Order $\Delta \Sigma$ Modulator

![](_page_12_Figure_1.jpeg)

## **MOD1** Analysis

 Exact analysis is intractable for all but the simplest inputs, so treat the quantizer as an additive noise source:

![](_page_13_Figure_2.jpeg)

## The Noise Transfer Function (NTF)

- In general, V(z) = STF(z)·U(z) + NTF(z)·E(z)
- For MOD1, NTF(z) =  $1 z^{-1}$

 $\rightarrow$  The quantization noise has spectral shape!

![](_page_14_Figure_4.jpeg)

 The total noise power increases, but the noise power at low frequencies is reduced

## **In-band Quantization Noise Power**

- Assume the error is white with power  $\sigma_e^2$ i.e.  $S_{ee}(\omega) = \sigma_e^2/\pi$
- The in-band quatization noise power is

$$IQNP = \int_0^{\omega_B} \left| H(e^{j\omega}) \right|^2 S_{ee}(\omega) d\omega \cong \frac{\sigma_e^2}{\pi} \int_0^{\omega_B} \omega^2 d\omega$$

• Since  $OSR = \frac{\pi}{\omega_B}$ ,  $IQNP = \frac{\pi^2 \sigma_e^2}{3} OSR^{-3}$ 

 For MOD1, an octave increase in OSR increases SQNR by 9 dB

1.5-bit/octave SQNR-OSR trade-off

## A Simulation of MOD1 (Time)

![](_page_16_Figure_1.jpeg)

# A Simulation of MOD1 (Freq)

![](_page_17_Figure_1.jpeg)

## **CT Implementation of MOD1**

#### • R<sub>i</sub>/R<sub>f</sub> sets the full-scale; C is arbitrary

 $R_i$ ,  $R_f$  are typically sized based on noise Also observe that an input at  $f_s$  is rejected by the integrator – *inherent anti-aliasing* 

![](_page_18_Figure_3.jpeg)

# **MOD1-CT Waveforms**

![](_page_19_Figure_1.jpeg)

- With u=0, v alternates between +1 and -1
- With u>0, y drifts upwards; v contains consecutive +1s to counteract this drift

## **MOD1-CT STF**

![](_page_20_Figure_1.jpeg)

ECE1371

## **MOD1-CT Frequency Responses**

![](_page_21_Figure_1.jpeg)

## Summary

•  $\Delta\Sigma$  works by spectrally separating the quantization noise from the signal

Requires oversampling  $OSR \equiv f_S/2f_B$ 

- Noise-shaping is achieved by the use of *filtering* and *feedback*
- A binary DAC is *inherently linear*, and thus a binary  $\Delta\Sigma$  modulator is too
- MOD1 has  $NTF(z) = 1 z^{-1}$

Arbitrary accuracy for DC inputs 1.5 bit/octave SQNR-OSR trade-off

MOD1-CT has inherent anti-aliasing

### **MOD2: 2^{nd}-Order \Delta \Sigma Modulator**

 Replace the quantizer in MOD1 with another copy of MOD1 in a recursive fashion

![](_page_23_Figure_2.jpeg)

### **Simplified Block Diagrams**

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

ECE1371

# **NTF Comparison**

![](_page_25_Figure_1.jpeg)

### **In-Band Quantization Noise Power**

• For MOD2, 
$$\left|H(e^{j\omega})\right|^2 \approx \omega^4$$

- As before,  $IQNP = \int_0^{\omega_B} |H(e^{j\omega})|^2 S_{ee}(\omega) d\omega$  and  $S_{ee}(\omega) = \sigma_e^2/\pi$
- So now  $IQNP = \frac{\pi^4 \sigma_e^2}{5} OSR^{-5}$ With binary quantization to +/- 1,  $\Delta$  = 2 and thus  $\sigma_e^2 = \Delta^2/12 = 1/3$
- An octave increase in OSR increases MOD2's SQNR by 15dB (2.5 bits)

## **Simulation Example**

#### Input at 75% of Full Scale

![](_page_27_Figure_2.jpeg)

## Simulated MOD2 PSD

#### Input at 50% of Full Scale

![](_page_28_Figure_2.jpeg)

## **SQNR vs. Input Amplitude**

#### • MOD1 & MOD2 @ OSR = 256

![](_page_29_Figure_2.jpeg)

### SQNR vs. OSR

![](_page_30_Figure_1.jpeg)

ECE1371

### Audio Demo: MOD1 vs. MOD2

• dsdemo4 in Matlab  $\Delta\Sigma$  Toolbox

![](_page_31_Figure_2.jpeg)

# **MOD1 and MOD2 Summary**

•  $\Delta\Sigma$  ADCs rely on filtering and feedback to achieve high SNR despite coarse quantization

They also rely on digital signal processing  $\Delta\Sigma$  ADCs need to be followed by a digital decimation filter and  $\Delta\Sigma$  DACs need to be preceded by a digital interpolation filter

 Oversampling eases analog filtering requirements

Anti-alias filter in an ADC; image filter in a DAC

- Binary quantization yields inherent linearity
- MOD2 is better than MOD1

15 dB/octave vs 9 dB/octave SQNR-OSR trade-off Quantization noise more white Higher-order modulators are even better

## **Good FFT Practice**

Use coherent sampling

Have an integer number of cycles in the record

Use windowing

A Hann window works well  $w(n) = (1 - cos(2\pi n/N))/2$ 

![](_page_33_Figure_5.jpeg)

Use enough points

Recommend  $N = 64 \cdot OSR$ 

#### Scale (and smooth) the spectrum

A full-scale sine wave should yield a 0-dBFS peak

• State the noise bandwidth

For a Hann window, NBW = 1.5/N

# **Coherent vs Incoherent Sampling**

![](_page_34_Figure_1.jpeg)

- Coherent sampling: only one non-zero FFT bin
- Incoherent sampling: spectral leakage

# Windowing

•  $\Delta\Sigma$  data is usually not periodic

Just because the input repeats does not mean the output does too!

#### Windowing is unavoidable

A finite-length data record is equal to an infinite record multiplied by a *rectangular window*  $w(n) = 1, 0 \le n < N$ 

#### Multiplication in time is convolution in frequency

![](_page_35_Figure_6.jpeg)

## **Example Spectral Disaster**

#### Rectangular window, N=256 40 **Out-of-band quantization noise** obscures the notch! 20 0 ЧB -20 Actual $\Delta \Sigma$ spectrum -40 $W(f) / \|w\|_2$ Windowed spectrum -60 0.25 0.5 Normalized Frequency, f

## Window Comparison (N=16)

![](_page_37_Figure_1.jpeg)

# **Window Properties**

| Window                                                           | Rectangular | Hann <sup>†</sup>                  | Hann <sup>2</sup>                                 |
|------------------------------------------------------------------|-------------|------------------------------------|---------------------------------------------------|
| w(n),<br>n = 0, 1,, N - 1<br>( $w(n) = 0$ otherwise)             | 1           | $\frac{1-\cos\frac{2\pi n}{N}}{2}$ | $\left(\frac{1-\cos\frac{2\pi n}{N}}{2}\right)^2$ |
| Number of non-zero<br>FFT bins                                   | 1           | 3                                  | 5                                                 |
| $\ \boldsymbol{w}\ _2^2 = \sum \boldsymbol{w}(\boldsymbol{n})^2$ | N           | 3 <i>N</i> /8                      | 35 <i>N</i> /128                                  |
| $W(0) = \sum w(n)$                                               | N           | N/2                                | 3 <i>N</i> /8                                     |
| $NBW = \frac{\ w\ _{2}^{2}}{W(0)^{2}}$                           | 1/ <i>N</i> | 1.5/ <i>N</i>                      | 35/18 <i>N</i>                                    |

**†**. MATLAB's "hann" function causes spectral leakage of tones located in FFT bins unless you add the optional argument "periodic."

# Window Length, N

#### Need to have enough in-band noise bins to

- 1. Make the number of signal bins a small fraction of the total number of in-band bins <20% signal bins  $\rightarrow >15$  in-band bins  $\rightarrow N > 30 \cdot OSR$ 
  - Make the CND were stable
- 2. Make the SNR repeatable

 $N = 30 \cdot OSR$  yields std. dev. ~1.4 dB

 $N = 64 \cdot OSR$  yields std. dev. ~1.0 dB

 $N = 256 \cdot OSR$  yields std. dev. ~0.5 dB

#### • $N = 64 \cdot OSR$ is recommended

## **FFT Scaling**

• The FFT implemented in MATLAB is  $X_{M}(k+1) = \sum_{n=0}^{N-1} x_{M}(n+1)e^{-j\frac{2\pi kn}{N}}$ • If  $x(n) = A \sin(2\pi fn/N)$ , then  $|X(k)| = \begin{cases} \frac{AN}{2} & k = f \text{ or } N - f \\ 0 & \text{ otherwise} \end{cases}$ 

#### → Need to divide FFT by (N/2) to get A

Note: *f* is an integer in (0, N/2).  $X(k) \equiv X_M(k+1)$ ,  $x(n) \equiv x_M(n+1)$  since Matlab indexes from 1 rather than 0.

## How To Do Smoothing

#### **1.** Average multiple FFTs

Implemented by MATLAB's psd() function

#### 2. Take one big FFT and "filter" the spectrum

Implemented by the  $\Delta\Sigma$  Toolbox's <code>logsmooth()</code> function

logsmooth() averages an exponentially-increasing
number of bins in order to reduce the density of
points in the high-frequency regime and make a nice
log-frequency plot

### **Raw and Smoothed Spectra**

![](_page_42_Figure_1.jpeg)

## Simulation vs Theory (MOD2)

![](_page_43_Figure_1.jpeg)

## What Went Wrong?

 We normalized the spectrum so that a full-scale sine wave (which has a power of 0.5) comes out at 0 dB (hence the 'dBFS' units)

We do the same for the error signal, use  $S_{ee}(f) = 4/3$ But this makes the discrepancy 3 dB worse

- We tried to plot a *power spectral density* together with something that we want to interpret as a *power spectrum*
- Sine-wave components are located in individual FFT bins, but broadband signals like noise have their power spread over all FFT bins

The 'noise floor' depends on the length of the FFT

## **Spectrum of a Sine Wave + Noise**

![](_page_45_Figure_1.jpeg)

## **Observations**

- The power of the sine wave is given by the height of its spectral peak
- The power of the noise is spread over all bins The greater the number of bins, the less power there is in any one bin
- Doubling N reduces the power per bin by a factor of 2 (i.e. 3 dB)

But the total integrated noise power does not change

## How Do We Handle Noise?

- An FFT is like a filter bank
- The longer the FFT, the narrower the bandwidth of each filter and thus the lower the power at each output
- We need to know the noise bandwidth (NBW) of the filters in order to convert the power in each bin (filter output) to a power density
- For a filter with frequency response *H(f)*,

$$NBW = \frac{\int |H(f)|^2 df}{H(f_0)^2} \qquad \qquad \boxed{\begin{array}{c} NBW \\ f_0 \end{array}} |H(f)| \\ f_0 \end{array}$$

## **FFT Noise Bandwidth**

• Alternatively, for  $||h||_1$  as the L1-norm and  $||h||_2$  as the L2-norm

$$NBW = \frac{\int |H(f)|^2 df}{|H(0)|^2} = \left(\frac{\|h\|_2^2}{\|h\|_1^2}\right), f_0 = 0$$

Parseval's theorem

$$\int |H(f)|^2 df = \sum |h(n)|^2$$

• If  $h(n) \ge 0$ 

$$|H(\mathbf{0})| = \sum |h(n)|$$

![](_page_48_Picture_7.jpeg)

## **Better Spectral Plot**

![](_page_49_Figure_1.jpeg)

## Homework #1 (Due Jan 14\*)

- A. Create a Matlab function that computes MOD1's output sequence given a vector of input samples and exercise your function in the following ways:
  - **1.** Verify that  $\overline{v} \approx u$  for a few random DC inputs in [-1,1]
  - 2. Plot the output spectrum with a half-scale sine-wave input. Use good FFT practice. Include the theoretical quantization noise curve and list the theoretical and simulated SQNR for OSR = 128.
- **B.** Repeat with MOD2

![](_page_50_Picture_5.jpeg)

## **MOD2 Expanded**

![](_page_51_Figure_1.jpeg)

**Difference Equations:** 

$$v(n) = Q(x_2(n))$$
  

$$x_1(n+1) = x_1(n) - v(n) + u(n)$$
  

$$x_2(n+1) = x_2(n) - v(n) + x_1(n+1)$$

## **Example Matlab Code**

```
function [v] = simulateMOD2(u)
    x1 = 0;
    x2 = 0;
    for i = 1:length(u)
        v(i) = quantize(x2);
        x1 = x1 + u(i) - v(i);
        x2 = x2 + x1 - v(i);
    end
return
```

```
function v = quantize(y)
    if y>=0
        v = 1;
    else
        v = -1;
    end
return
```

## What You Learned Today

• MOD1: 1<sup>st</sup>-order  $\Delta \Sigma$  modulator

Structure and theory of operation

- Inherent linearity of binary modulators
- Inherent anti-aliasing of continuous-time modulators
- MOD2:  $2^{nd}$ -order  $\Delta \Sigma$  modulator
- Good FFT practice