Lecture 2 MOD*N* and the $\Delta \Sigma$ Toolbox

Trevor Caldwell trevor.caldwell@awaveip.com

Lecture Plan

Date	Lecture (Wednesday 2-4pm)		Reference	Homework
2020-01-07	1	MOD1 & MOD2	PST 2, 3, A	1: Matlab MOD1&2
2020-01-14	2	$\mathbf{MODN} + \Delta \Sigma \mathbf{Toolbox}$	PST 4, B	2: ΔΣ Toolbox
2020-01-21	3	SC Circuits	R 12, CCJM 14	
2020-01-28	4	Comparator & Flash ADC	CCJM 10	3: Comparator
2020-02-04	5	Example Design 1	PST 7, CCJM 14	
2020-02-11	6	Example Design 2	CCJM 18	
2020-02-18	Reading Week / ISSCC			
2020-02-25	7	Amplifier Design 1		
2020-03-03	8	Amplifier Design 2		
2020-03-10	9	Noise in SC Circuits		
2020-03-17	10	Nyquist-Rate ADCs	CCJM 15, 17	Project
2020-03-24	11	Mismatch & MM-Shaping	PST 6	
2020-03-31	12	Continuous-Time $\Delta\Sigma$	PST 8	
2020-04-07	Exam			
2020-04-21	Project Presentation (Project Report Due at start of class)			

Circuit of the Day: Level Translator

• VDD1 > VDD2, e.g.

• VDD1 < VDD2, e.g.

Constraints

CMOS, 1-V and 3-V devices, no static current

What you will learn...

- *N*th-order modulator (MOD*N*)
- High-level design with the $\Delta\Sigma$ Toolbox

Review: A $\Delta\Sigma$ ADC System

Review: MOD1

ECE1371

Review: MOD2

Review Summary

• $\Delta\Sigma$ works by spectrally separating the quantization noise from the signal

Requires oversampling $OSR \equiv f_s/2f_B$ Achieved by the use of *filtering and feedback*

- A binary DAC is *inherently linear*, and thus a binary $\Delta\Sigma$ modulator is too
- MOD1-CT has inherent anti-aliasing
- MOD1 has *NTF*(z) = 1 z⁻¹

Arbitrary accuracy for DC inputs 9 dB/octave SQNR-OSR trade-off

• MOD2 has $NTF(z) = (1 - z^{-1})^2$

15 dB/octave SQNR-OSR trade-off

MODN

MODN's NTF is the Nth power of MOD1's NTF

NTF Comparison

Predicted Performance

In-band quantization noise power

$$IQNP = \int_{0}^{0.5/OSR} |NTF(e^{j2\pi f})|^{2} \cdot S_{ee}(f)df$$
$$\approx \int_{0}^{0.5/OSR} (2\pi f)^{2N} \cdot 2\sigma_{e}^{2}df$$
$$= \frac{\pi^{2N}}{(2N+1)OSR^{2N+1}}\sigma_{e}^{2}$$

 Quantization noise drops as (2N+1)th power of OSR (6N+3) dB/octave SQNR-OSR trade-off

NTF Zero Optimization

• Improve NTF Performance by minimizing the integral of $|NTF|^2$ over the passband

Normalize passband edge to 1 for ease of calculation Need to find the a_i which minimizes the integral

$$\int_{-1}^{1} (x^{2} - a_{1}^{2})^{2} dx, N = 2$$

$$\int_{-1}^{1} x^{2} (x^{2} - a_{1}^{2})^{2} dx, N = 3$$

$$\int_{-1}^{1} (x^{2} - a_{1}^{2})^{2} (x^{2} - a_{2}^{2})^{2} dx, N = 4$$

$$H(f)|^{2}$$

$$H(f)|^{2}$$

$$H(f)|^{2}$$

$$H(f)|^{2}$$

$$H(f)|^{2}$$

Solutions Up To Order = 8

Order	Optimal Zero Placement Relative to <i>f</i> _B	SQNR Improvement
1	0	0 dB
2	$\pm 1/\sqrt{3}$	3.5 dB
3	$0, \pm \sqrt{3/5}$	8 dB
4	$\pm \sqrt{3/7 \pm \sqrt{(3/7)^2 - 3/35}}$	13 dB
5	$0, \pm \sqrt{5/9 \pm \sqrt{(5/9)^2 - 5/21}}$	18 dB
6	$\pm 0.23862, \pm 0.66121, \pm 0.93247$	23 dB
7	$0,\pm 0.40585,\pm 0.74153,\pm 0.94911$	28 dB
8	$\pm 0.18343, \pm 0.52553, \pm 0.79667, \pm 0.96029$	34 dB

Topological Implication

- Feedback around pairs of integrators:
- **2 Delaying Integrators**

Poles are the roots of

$$1+g\left(\frac{1}{z-1}\right)^2=0$$

i.e. $z = 1 \pm j\sqrt{g}$

Not quite on the unit circle, but fairly close if *g* << 1.

Non-delaying + Delaying Integrators (LDI Loop)

Poles are the roots of

$$1+\frac{gz}{(z-1)^2}=0$$

i.e.
$$z=e^{\pm j heta}$$
, $\cos heta=1-g/2$

Precisely on the unit circle, regardless of the value of *g*.

Problem with Single-Bit

• A High-Order Modulator wants a Multi-bit Quantizer

E.g. MOD3 with an Infinite Quantizer and Zero Input

Simulation of MOD3-1b

MOD3 with Binary Quantizer

MOD3-1b is unstable, even with zero input

Solutions to the Stability Problem

Multi-bit quantization

Initially considered undesirable because we lose the inherent linearity of a 1-bit DAC

More general NTF (not pure differentiation)

Lower the NTF gain so that quantization error is amplified less

Reducing the NTF gain reduces the amount by which quantization noise is attenuated

- Multi-stage (MASH) architecture
- Combinations of the above are possible

M-Step Symmetric Quantizer

- $\Delta = 2$ (*nlev* = *M* + 1)
- No-overload range: $|y| \le n lev \rightarrow |e| \le \Delta/2 = 1$

Multi-bit Quantization

• A modulator with NTF = H and STF = 1 is guaranteed to be stable if $|u| < u_{max}$ at all times

$$u_{max} = nlev + 1 - ||h||_1$$

 $||h||_1 = \sum_{i=0}^{\infty} |h(i)|$

• In MODN $H(z) = (1 - z^{-1})^N$

$$h(n) = \{1, -a_1, a_2, -a_3, \dots (-1)^N a_N, 0 \dots \}, a_i > 0$$
$$\|h\|_1 = H(-1) = 2^N$$

• $nlev = 2^N$ implies $u_{max} = nlev + 1 - ||h||_1 = 1$ MODN is guaranteed to be stable with an N-bit quantizer if the input magnitude is less than $\Delta/2 = 1$

This result is quite conservative

• Similarly, $nlev = 2^{N+1}$ guarantees that MODN is stable for inputs up to 50% of full-scale

Inductive Proof of $||h||_1$ Criterion

- Assume STF = 1 and $|u(n)| \leq u_{max}$, $\forall n$
- Assume $|e(i)| \le 1$ for i < n (induction hypothesis)

$$\begin{aligned} y(n)| &= \left| u(n) + \sum_{i=1}^{\infty} h(i)e(n-i) \right| \\ &\leq u_{max} + \sum_{i=1}^{\infty} |h(i)||e(n-i)| \\ &\leq u_{max} + \sum_{i=1}^{\infty} |h(i)| \\ &= u_{max} + ||h||_1 - 1 \end{aligned}$$

- Since $u_{max} = nlev + 1 ||h||_1$ $\rightarrow |y(n)| \le nlev, |e(n)| \le 1$
- So by induction $|e(i)| \le 1$ for all i > 0

More General NTF

• Instead of NTF(z) = A(z)/B(z) with $B(z) = z^n$, use a more general B(z)

Roots of *B* are the poles of the NTF and must be inside the unit circle

Moving the poles away from z=0 toward z=1 makes the gain of the NTF approach unity

Lee Criterion for Stability

• Stability criteria in a 1-bit Modulator [Lee, 1987]: $||H||_{\infty} \leq 2$

The infinity-norm of *H* is the measure of the "gain" of *H* over frequency

 $\|H\|_{\infty} \equiv \max_{\omega \in [0,2\pi]} (|H(e^{j\omega})|)$

Is the Lee criterion <u>necessary</u> for stability?

No. MOD2 is stable (for DC inputs less than full-scale) but $||H||_{\infty} = 4$.

• Is the Lee criterion sufficient to ensure stability? No. There are lots of counter-examples, but $||H||_{\infty} \le 1.5$ often works.

Simulated SQNR vs $||H||_{\infty}$

• 5th-order NTFs, 1-bit Quantizer, OSR = 32

SQNR Limits for 1-bit Modulation

ECE1371

SQNR Limits for 2-bit Modulators

SQNR Limits for 3-bit Modulators

ECE1371

Generic Single-Loop $\Delta \Sigma$ **ADC**

• Linear Loop Filter + Nonlinear Quantizer:

$$Y = L_0 U + L_1 V \implies V = STF \cdot U + NTF \cdot E, \text{ where}$$
$$V = Y + E \qquad NTF = \frac{1}{1 - L_1} \& STF = L_0 \cdot NTF$$
Inverse Relations:
$$L_1 = 1 - 1/NTF, L_0 = STF / NTF$$

$\Delta\Sigma$ Toolbox

Search for 'Delta Sigma Toolbox'

http://www.mathworks.com/matlabcentral/fileexchange

$\Delta\Sigma$ Toolbox Modulator Model

NTF Synthesis (synthesizeNTF)

Not all NTFs are realizable

Causality requires h(0) = 1, or in the frequency domain, $H(\infty) = 1$. Recall $H(z) = h(0)z^0 + h(1)z^{-1} + \cdots$

• Not all NTFs yield stable modulators

Rule of thumb for single-bit modulators: $||H||_{\infty} < 1.5$ [Lee]

- Can optimize NTF zeros to minimize the meansquare value of *H* in the passband
- The NTF and STF share poles, and in some modulator topologies the STF zeros are not arbitrary

Restrict the NTF such that an all-pole STF is maximally flat (almost the same as Butterworth poles)

Lowpass Example (dsdemo1)

- 5th-order NTF, all zeros at DC
- Pole/Zero diagram:

Lowpass NTF

Improved 5th-Order Lowpass NTF

Zeros optimized for OSR=32

Improved NTF

Bandpass Example

Bandpass NTF and STF

Summary: NTF Selection

- If OSR is high, a single-bit modulator may work
- To improve SQNR

Optimize zeros Increase $||H||_{\infty}$ Increase order

If SQNR is insufficient, must use a multi-bit design

Can turn all the above knobs to enhance performance

Feedback DAC assumed to be ideal

NTF-Based Simulation (dsdemo2)

```
order=5; OSR=32;
ntf = synthesizeNTF(order,OSR,1);
N=2^17; fbin=959; A=0.5; % 128K points
input = A*sin(2*pi*fbin/N*[0:N-1]);
output = simulateDSM(input,ntf);
spec = fft(output.*ds_hann(N)/(N/4));
plot(dbv(spec(1:N/(2*OSR))));
```

In mex form; 128K points in < 0.1 sec

NTF-Based Simulation (dsdemo2)

SNR vs Amplitude (simulateSNR)

Homework #2 (Due Jan 28)

• Extract code from dsdemo1 and dsdemo2 to:

- 1. Create a 4th-order NTF with zeros optimized for OSR=32 and $||NTF||_{\infty} = 3$.
 - a) Plot the poles/zeros and frequency response of your NTF.
- 2. Simulate a 5-step (6-level) $\Delta\Sigma$ modulator with this NTF (Note: full-scale is *M* with an *M*-step modulator).
 - a) Plot example input and output waveforms.
 - **b)** Plot a spectrum and the predicted noise curve.
 - c) Plot the SQNR vs input amplitude curve and note the maximum stable input.

What You Learned Today

- *N*th-order modulator (MOD*N*)
- High-level design with the $\Delta\Sigma$ Toolbox

Circuit of the Day: Level Translator

• 3V to 1V:

• 1V to 3V:

