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and consume either outside (with physical interaction with other people) or remotely (from home,
without physical interactions). Working (and consuming) outside is more productive and generates
stronger complementarities (positive externality). However, in the presence of a virus, working
outside facilitates infection and the diffusion of the virus (negative externality). Individuals are
forward-looking. We characterize an equilibrium of the dynamic network game and present an
algorithm for its computation. We describe the estimation of the parameters of the model
combining several sources of data on COVID-19 in Ontario, Canada: daily epidemiological data;
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model to evaluate the health and economic impact of several counterfactual public policies:
subsidies for working at home; testing policies; herd immunity; and changes in the network
structure. These policies generate substantial differences in the propagation of the virus and its
economic impact.
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1 Introduction

The purpose of this paper is to develop a framework that combines an epidemiological model of

COVID-19 diffusion with a structural game of network production and social interactions. The

model emphasizes several aspects which are typically absent from epidemiological models but are

work horses in economic models: (i) individuals make choices to maximize their own welfare and

respond to incentives affecting this welfare; (ii) individuals interact with each other and their choices

and contributions to economic and social outcomes depend on the behavior of coworkers, suppliers,

clients, family members, and friends. The production (social) system is a network. Importantly,

production and social networks also determine physical links between individuals that can facilitate

infection and the diffusion of a virus. In this paper, we develop a structural econometric model

that emphasizes the relationship between the production/social network in an economy and the

diffusion of COVID-19 and its economic impact. The model can be used to evaluate the impact

that different public policies have on the propagation of a virus and its economic effects.

Our model incorporates the following features.

Production and social network. The economy comprises a set of geographic locations and a set

of individuals. We distinguish three types of locations: homes, workplaces, and consumption places.

Each individual has her own set of locations where she develops her life: her home(s), workplaces,

and consumption places. The combination of these sets for all the individuals determines the

economy’s production and social network. The structure of the network is determined by data on

individuals’mobility in the absence of COVID-19.

Endogenous individuals’ choices. Every day, individuals choose to work and consume either

outside (with physical interaction with other people) or remotely (from home, without physical

interactions). Working (consuming) outside is more productive and generates complementarities.

Therefore, in the absence of a virus, working outside generates a positive externality.

Epidemiological model. In the presence of a virus transmitted through physical contact, working

or consuming outside facilitates the diffusion of the virus (negative externality). The epidemiological

part of our model incorporates substantial extensions with respect to standard SIR models. First,

the production/social network is an important component of our epidemiological model. Second,

the probability of infection is endogenous as it depends on working and consumption decisions of the

own individual and of other people in her production and social network.1 Third, the probability

1Other types of individuals’choices —which are important for the spread of the virus and have economic implica-
tions —are hygiene and keeping a distance from others in personal interactions. So far, we have focused on working
and consumption decisions because they have strong economic implications and we have mobility data that measures
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of infection varies across local regions in the network. The model provides a landscape of the

probability of infection over a city or region, and this landscape evolves endogenously.

Information structure and testing. A special feature of COVID-19 is that asymptomatic indi-

viduals, some of which may never develop symptoms, are infectious. In the absence of testing, an

individual without symptoms does not know whether she is healthy (noninfectious), or infected

asymptomatic, or even already recovered without having developed symptoms. This incomplete

information facilitates the diffusion of the virus and is an important element in our model. In

this context, testing asymptomatic individuals can reduce this uncertainty, both for the tested

individual and economy-wide. The degree of testing is a policy variable chosen by the government.

We characterize an equilibrium of the dynamic game and present an algorithm for its computa-

tion. We describe the estimation of the parameters of the model combining several sources of data

on COVID-19 in Ontario, Canada, with a daily frequency and at postal code level: epidemiological

data; individuals’mobility data; and electricity consumption commercial and for residential cus-

tomers. In this first report, we calibrate the model and use it to evaluate the health and economic

impact of factual and counterfactual public policies: subsidies for working at home; more testing;

herd immunity; and changes in the structure of the production/social network.

This paper tries to contribute to a rapidly growing economic literature on the diffusion of

COVID-19 and its economic impact. Our paper is closely related to the economic literature on

rational epidemics that extends the SIR epidemiological model (Kermack and McKendrick, 1927)

to take into account how individuals react to changes in prevalence: see Kremer (1996), Geoffard

and Philipson (1996), Auld (2003), Chan, Hamilton, and Papageorge (2016), or Greenwood et al.

(2019), among others. Most of this literature has focused on the HIV epidemics. Recent papers

apply this approach to study COVID-19. Alvarez, Argente, and Lippi (2020), Eichenbaum, Rebelo,

and Trabandt (2020), Hall, Jones, and Klenow (2020) combine an epidemiological model with a

macro equilibrium model where individuals make consumption and labor supply decisions and are

(intertemporal) utility maximizers. Within this framework, Jones, Philippon, and Venkateswaran

(2020) study the tradeoffs faced by a social planner who tries to mitigate the spread of COVID-19.

They show that the social planner’s solution implies a much more drastic reduction in consumption

and output than in a decentralized equilibrium. In a similar vein, Acemoglu et al. (2020) study

Pareto optimal lockdown policies for COVID-19 —where the key tradeoff is between deaths and

economic loss. They show that the Pareto frontier can be substantially improved if lockdown

them.
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policies apply differently across age groups.2

Our model has several features that we have not seen in the rational epidemics literature in

general or in its application to COVID-19. In our model, individuals are affected by their own pro-

duction/social group and not only by the aggregate. They have information not only about health

states at the aggregate level but also about individuals’in their teams. Furthermore, their working

and consumption decisions are the result of a network game with complementarities between the

players.

Our paper is also related to the literature of learning in social network games. Computational

tractability is a fundamental issue in this literature. Models with fully rational players with perfect

Bayesian updating beliefs are intractable except in very stylized cases, i.e., very few players and

simple exogenous networks. 3 Authors have proposed different forms of adaptive or naive learning

from neighbors (Bala and Goyal, 1998; Golub and Jackson, 2010). We follow this approach. More

specifically, our assumptions on agents’information structure and beliefs updating are in the spirit

of Acemoglu et al. (2011, 2014) and Mossel et al. (2020). In our model, agents combine local

and economy-wide information and use an adaptive rule to update their beliefs about health and

probability of infection. In contrast, to most models in this literature, agents in our model are

forward-looking and solve a dynamic programming problem. However, for tractability we need to

impose restrictions on their beliefs about other agents in the game.

In contrast to the standard SIR model, the infection rate in our model is endogenous and

heterogeneous across workplaces and consumption places. Pichler (2015) proposes a model of

endogenous sickness absences to study their procyclical behavior. Using state-level aggregate data

from Germany, he finds evidence that the probability that a sick individual goes to work is higher

in boom than in a bust, and this implies a broader spread of a virus during periods of economic

expansion. In our model, the risk of infection depends on the number of infected coworkers infected

who decide to work in the workplace and not at home. This is an endogenous decision. There

is complementarity in the production function between coworkers’choices of working in-site or at

home. This implies that an increase in the risk of infection of an individual has a multiplier effect

on coworkers’decision of working at home.

In our model, the local structure of the production/social network plays a key role in the diffusion

of the virus in a local community and across communities. Measures of social connectivity and

2Berger, Herkenhoff, and Mongey (2020) and Piguillem and Shi (2020) study the value of information from testing.
3See the discussion on this issue in the recent paper by Mossel et al. (2020; pages 1235-1236), and their citation

to Gale and Kariv (2003): "The computational diffi culty of solving the model is massive even in the case of three
persons".
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mobility are important. Kuchler, Russel, and Stroebel (2020) use data from Facebook to measure

the degree of social connectivity in Italy and in US. They present evidence on the relationship

between an index of social connectivity and the density of COVID-19 cases. In an influential

paper, Adda (2016) uses detailed weekly data on disease incidence in France covering a period of

25 years to measure how exogenous changes in social distancing —public transportation strikes,

opening of new railway lines, school closure due to holidays —affect the probability of infection.

Individuals’endogenous mobility choices are also an important component of our model. Engle,

Stromme, and Zhou (2020) use daily data on COVID-19 cases, mobility data from the market

research company Unacast (from mobile phones), and the timing of social-distancing policies in

New York. Based on their empirical analysis, the authors conclude that both increasing risk of

infection and policy restrictions have had a significant effect in reducing mobility.

A motivation for our paper is to provide a structural framework to evaluate the economic impact

of factual and counterfactual public policies to mitigate the spread of COVID-19. Recent papers

present evidence for Japan, Italy, and France, respectively. Inoue and Todo (2020) use a large

dataset with information from more than 1.6 million firms and almost 6 million supply-chain links

in Tokyo to quantify the economic impact of a hypothetical lockdown policy in this city. Their

estimates and experiments show a huge production loss of 309 billion yen per day. This effect would

quickly spread to the whole Japanese economy such that in one month total output would be reduced

by 86%. Boeri, Caiumi, and Paccagnella (2020) study the impact of COVID-19 on employment

and on the type of jobs in Italy. Barrot, Grassi, and Sauvagnat (2020) propose measures on the

degree of remote working for different industries in France and use these measures to estimate how

social-distancing policies have affected production. They conclude that a six weeks confinement

reduces GDP by approximately 5.6%. The upstream sectors are the most negatively affected. The

analysis emphasizes the importance of industrial composition for the aggregate economic impact.

A rapidly growing literature presents reduced form evidence on the socioeconomics of COVID-

19. Borjas (2020) shows how socioeconomic characteristics have a significant impact on the proba-

bility of being tested and on the result of the test for COVID-19 in New York city. Persons living

in poorer, black, and immigrant neighborhoods were less likely to be tested and had a higher prob-

ability of a positive result conditional on testing. Fang, Yang and Wang (2020) study the causal

effect of Wuhan lockdown on human mobility. Using data on real-time location of smart phones

and a Differences-in-Differences approach, they find that the lockdown reduced inflow into Wuhan

by 76%, outflows from Wuhan by 56%, and within-Wuhan mobility by 54%.
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The rest of this paper is organized as follows. Section 2 presents the model. Section 3 describes

data sources and provides a brief discussion on estimation. Section 4 presents a calibration of the

model and our policy experiments. We summarize and conclude in section 5.

2 Model

2.1 The network

The economy consists of a set of L geographic locations, L = {1, 2, ..., L}, and a set of N individuals,

I = {1, 2, ..., N}. We index individuals by i and locations by `. Time is discrete and indexed by

t ∈ {0, 1, ...}. One period is one day. There are three types of locations: homes, workplaces, and

consumption places. Each individual has her own set of locations where she develops her life: her

home(s), LHi , workplaces, LWi , and consumption places, LCi . Each of these individual-specific sets

may contain one or multiple locations.4

An individual’s household consists of all the other individuals who share the same home: that

is, the set Hi ≡ {j : LHi ∩ LHj 6= ∅}. Similarly, an individual’s production (consumption) team

consists of all the other people who share a workplace (consumption place) with her: that is, the

set Wi ≡ {j : LWi ∩LWj 6= ∅} for production, and the set Ci ≡ {j : LCi ∩LCi 6= ∅} for consumption.

The combination of all these sets, {LHi , LWi , LCi : i ∈ I} or equivalently {Hi, Wi, Ci : i ∈ I},

describes the network in this economy. This network is an exogenous primitive in the model.

The network can vary across economies because industrial composition, geography, transportation

infrastructures, culture, etc. In this model, the network not only describes social and economic

interlinks but also physical contacts. We assume that an individual with the virus can infect other

individual only if they share a common location, either home, or workplace, or consumption place.

A network can be represented by a graph consisting of nodes and edges. Nodes correspond

to the set of individuals while edges represent who they are connected to, either through homes,

workplaces or consumption places. The degree of a node, di, is defined as the number of neighbors

it has. In our model, di is the cardinality (number of elements) of the set {Hi,Wi, Ci}. There are

three interesting properties that can be used to describe a graph: (i) the distribution of degrees di,

which measures the heterogeneity of individual’s connectivity; (ii) the clustering coeffi cient, which

measures how often a triple of nodes forms a triangle; and (iii) the average path length, where a

4The specific definition of home, workplace, or consumption place depends on the data. We use mobility data
based on the geographic location of an individual’s cell phone. In our data, an individual’s home is defined as the
location where the phone sits between 6pm to 8am. The set of workplaces consists of the locations — other than
home—where the phone is located on working days from 9am to 5pm. The set of consumption places are those visited
during weekends and holidays between 9am and 5pm.
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path length is defined as the smallest number of edges one needs to travel to connect two nodes.

This statistic measures how connected the network is. A regular graph is a graph where each node

has the same degree: the distribution of degrees is degenerate. Social networks in reality have a

non-uniform distribution of degrees, with some individuals having more connections than others.

2.2 Health and diagnosis states and transitions

Variable xit ∈ X describes the health and diagnosis state of individual i at period t. It can take

ten possible values: X ≡ {H, AU , AD, SU , SD, RAU , RSU , RAD, RSD, Death}.

StateH (for Healthy) means that the individual has not been infected with the virus. States AU ,

AD, SU , and SD represent infected individuals at different states depending on the development

of symptoms and on the existence of diagnosis. State AU (for infected Asymptomatic Undiagnosed)

represents an individual who is infected and can transmit the virus but has not developed symptoms

yet and has not been diagnosed.5 State AD (for infected Asymptomatic Diagnosed) means that

the individual is infected and asymptomatic but she has been diagnosed. State SU (for infected

Symptomatic Undiagnosed) represents an infected individual who has developed symptoms but

has not been diagnosed. State SD (for infected Symptomatic Diagnosed) represents an infected

individual who has developed symptoms and has been diagnosed.

States RAU , RSU , RAD, and RSD represent recovered individuals who are at different states

depending on whether they developed symptoms and whether they were diagnosed.6 States RAU

and RSU represent recovered individuals who had never been diagnosed — asymptomatic and

symptomatic, respectively —such that the individual does not know if she has been infected. In

contrast, states RAD and RSD represent recovered individuals who had been previously diagnosed

such that they know they were infected and now are recovered. Finally, Death means death because

of the virus.

Transitions between states are based on two types of shocks: health shocks, and testing shocks.

Figure 1 presents a flow diagram of a simplified version of our model with only four health states.

Figure 2 presents the flow diagram of our model.

5Throughout the paper, we use the term infected as synonymous of infectious. In reality, this is not exactly the
case. A virus needs to replicate itself suffi ciently in a person’s body before this person becomes infectious. Our
model can be trivially extended to include an additional state between states H and AU such that the model would
distinguish between infected and infectious. This additional state — say E form “Exposed” —would represent an
individual who had the virus but has not become infectious yet.

6We assume that "Recovered" implies not infectious and immune.

6



Figure 1: Flow Diagram of States and Transitions in Simplified Model
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Figure 2: Flow Diagram of States and Transitions
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(i) Infection [Transition H → AU ]. Every day t, a healthy individual (H) can become infected

with a probability πIit. This probability is endogenous. It depends on the individual’s behavior

(confinement or not) and on the behavior of other individuals in her social group and in the rest of

the society. We describe the form of this endogenous probability in section 2.5 below. Individuals

in state H can be randomly selected to be tested. However, we assume that there are not false

positives such that the result of the test is negative and the individual remains in state H.

(ii) Transitions from AU . Every period, an individual in state AU (infected asymptomatic undiag-

nosed) receives a health shock and a testing shock. The health shock can take three possible values:

positive (with probability π+A), negative (with probability π−A), or neutral. If the shock is posi-

tive, the individual recovers and becomes immune. If the shock is negative, the individual develops

symptoms. We assume that individuals cannot transition within one day from asymptomatic to

death: they need to develop symptoms before dying.

The testing shock is independent of the health shock and it determines whether the individual

is tested for the virus (with probability λA) or not (with probability 1 − λA). We assume that

tests are accurate such that they cannot provide neither false positives nor false negatives. We also

assume that an individual in AU cannot be tested positive on the same day that she receives a

positive health shock and recovers.7

Under these conditions, there are five possible transitions from state AU . (1) Neutral health

shock and no testing —with probability (1−π+A−π−A) (1−λA) —implies that the individual remains

in the same state AU . (2) Neutral health shock and testing —with probability (1 − π+A − π−A)

λA —implies that she remains asymptomatic but now is diagnosed: she moves to state AD. (3)

Regardless testing, a positive health shock —with probability π+A —means that she recovers and

has not been diagnosed such that she does not know that she was infected. This corresponds to

state RAU . (4) Negative health shock and no testing —with probability π−A (1 − λA) —implies

that the individual develops symptoms but is still undiagnosed: she moves to state SU . (5) Finally,

with a negative health shock and testing —with probability π−A λA —the individual moves to state

SD where she is both symptomatic and diagnosed.

There are two relevant extensions of the model regarding the probability λA. First, it is in-

teresting to allow for false negatives in the results of the test. In this extension, the probability

λA could be interpreted as the product of two probabilities: the probability of being selected for

7We are assuming that all the testing is PCR testing. A PCR test detects the infection while it is active. For a
PCR test, individuals in states A and S should test positive, and individuals in states H and R negative. For this
test, the rates of false positives or false negatives are very low. An interesting extension of the model would be to
include other tests that are emerging, including testing for antibodies and immunity.
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testing times the probability of a positive result of test conditional on infection, i.e., a true positive.

In that model, parameter λA measures the government testing effort in two different dimensions:

the number of tests and the quality of the testing procedure. However, this extension of the model

requires also some non-trivial changes in individuals’beliefs about their actual health status.

Other relevant extension is to allow the probability that an asymptomatic individual is selected

for testing to depend on the number of members in her social group who are diagnosed as infected.

(iii) Transitions from SU . The transitions from state SU are similar to those from AU , but a

main difference is that a negative health shock implies death. Furthermore, the probabilities of a

positive and a negative health shock for a symptomatic individual —π+SU and π−SU , respectively

—are different that for an asymptomatic. The government policy on testing can be different for

symptomatic and asymptomatic, such that probability λS is different to λA. Similarly as for state

AU , we assume that the individual cannot recover and test positive on the same day.

Health and testing shocks determine four possible transitions from state SU . (1) Under neutral

health shock and no testing, the individual remains in state SU —with probability (1−π+SU−π−SU )

(1−λS). (2) With neutral health shock and testing, she becomes diagnosed and moves to state SD

—with probability (1− π+SU − π−SU ) λS . (3) A positive health shock —regardless testing —means

that she recovers and remains undiagnosed: she moves to state RSU with probability π+SU . (4)

Finally, regardless testing, with a negative health shock —with probability π−SU —the individual

dies.

(iv) Transitions from AD and from SD. For diagnosed individuals, testing does not matter and

only health shocks determine the transitions from these states. Again, we consider that health

shocks can take three values, positive, negative, and neutral.

For an individual in state AD, the probability distribution of the health shocks is the same as

under state AU . That is, we assume that diagnosis does not affect the health transition when the

individual is asymptomatic. There are three possible transitions. Under a positive health shock,

the individual recovers and arrives to state RAD —with probability π+A. Under a negative health

shock, she develops symptoms and moves to state SD —with probability π−A. And with a neutral

shock, she stays in state AD —with probability 1− π+A − π−A.

Being diagnosed can affect the distribution of health shocks if an individual is symptomatic:

that is, SD individuals are more likely to receive some treatment than SU individuals. Therefore,

the probabilities π−SD and π+SD can be different than the probabilities π−SU and π+SU .

There are three possible transitions under state SD. Given a positive health shock, the in-
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dividual recovers and arrives to state RSD —with probability π+SD. Under a negative health

shock —with probability π−SD —she dies. Finally, with a neutral shock she stays in state SD with

probability 1− π+SD − π−SD.

Finally, we assume that all the recovered states —RAU , RAD, RSU , RSD —are absorbing

states. Individuals in states RAU and RSU can be subject to random testing, but the test will be

negative and individuals remain in the same state.

2.3 Individual decisions

Every period t, individuals make two decisions: working at home or outside, and consuming at

home or outside. For the rest of this model section, we describe a simplified version where the

only decision is working either at home or outside. We represent this decision using the binary

variable ait, where ait = 0 means working outside, and ait = 1 means confinement at home. We

also abstract from the home and consumption teams —they only include the own individual —and

focus on the workplace team Wi that has size |Wi|.

The set of feasible choices for an individual depends on her current state. In particular, diag-

nosed individuals have mandatory confinement. We use A(xit) to represent the choice set under

state xit such that A(AD) = A(SD) = {1}, A(Death) = ∅, and at any other state A(xit) = {0, 1}.

For simplicity, we assume that confinement means that the individual does not have physical rela-

tionship with any other member of the society.

The assumption that individuals who are undiagnosed or recovered have the freedom to decide

to work at home or outside deserves some explanation. One may be concerned that this decision is

taken by the firm’s manager or, in the case of mandatory confinement policies, by the government.

These are important concerns that we take into account.

We incorporate government confinement policies in the model. We take into account that these

policies can be applied with very different degrees of flexibility and not uniformly in all the sectors

and regions of the economy. Though we can evaluate an hypothetical policy where the government

has the ability to lockdown every individual at home, we are interested in more realistic policies

that consist of penalties for working or consuming outside or subsidies for confinement at home.

These penalties and subsidies may vary across industries and/or geographic locations.

In our data, we cannot distinguish between managers, self-employed, and salaried workers. If

we had that information, we could take into account that a manager’s decision affects and limits

the possible choices of her workers.
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2.4 Information structure

The assumptions about individuals’information are important for the model predictions on indi-

vidual behavior and diffusion of the virus.

(i) Information about the network. An individual knows the identity of the members of her

social group but she does not have information about the structure of the network outside of her

own units, e.g., friends of friends, etc. According to this condition, we assume below that individuals

have only information about members of her social group and economy-wide aggregate information

provided by government and media.

(ii) Information about own health status. We consider that, without a test, an individual cannot

distinguish between being healthy (H), infected asymptomatic undiagnosed (AU), and recovered

after being asymptomatic undiagnosed (RAU). For the sake of notational simplicity, we use H̃ to

represent the union of these three states: H̃ ≡ H ∪ AU ∪ RAU . We assume that an individual’s

information about her own health status is captured by the variable x̃it such that:

x̃it =

 H̃ if xit ∈ {H, AU , RAU}

xit if xit /∈ {H, AU , RAU}
(1)

For an individual in H̃, it is important to know the likelihood of being in state H, or AU , or

RAU . In particular, her confinement decision can have implications on her future health only if

she is in state H, but it is completely irrelevant if she is already in states AU or RAU . Therefore,

an individual in state H̃ form beliefs about the probability of being in each of the three specific

states. We represent these beliefs as the probabilities BH|H̃
it , BAU |H̃

it , and BRAU |H̃
it such that BH|H̃

it +

B
AU |H̃
it + B

RAU |H̃
it = 1. These beliefs are part of the individual’s information set at period t. In

section 2.8 below, we describe our assumptions about the initial value and the updating rule of

these beliefs.

An individual in state RSU knows that she has experienced symptoms in the past and now does

not have those symptoms, but —similarly as someone in state RAU —she does not know that is

immune because she has not been diagnosed. From the point of view of an individual’s information,

state RSU is different to H̃ only if the symptoms from COVID-19 are different to those from other

diseases, like the common flu. For instance, if COVID symptoms were clearly distinguishable, then

state RSU would be equivalent to state RSD. At the other extreme, if the symptoms were the

same as those from a common flu, then state RSU would be part of H̃. More generally, we can have

a probabilistic belief that captures the informative content of COVID symptoms. In our numerical

experiments in section 4, we have assumed that state RSU is equivalent to RSD.
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(iii) Information about health statuses of team members. An individual knows the value x̃jt for

any other individual in her social group. For computational simplicity, we assume that individuals

do not use information on team members’health history (before period t).8

(iv) Information about health statuses of individuals outside the own team. An individual does

not know the health status of individuals outside her team. However, she has information at

the aggregate level for the whole economy. In particular, for every state x ∈ X , she knows the

proportion of individuals in state x at period t. We represent this aggregate shares as St(x), and

St is the vector {St(x) : x ∈ X}. The implicit assumption is that the Health Ministry collects this

information and communicates it to the citizenship.

(v) Aggregate probability of confinement. An individual has rational beliefs on the equilibrium

probability of confinement at period t for each state x̃. We use Qt(x̃) to represent these average

probabilities, and Qt to represent the vector {Qt(x̃) : x̃ ∈ X̃}.

(vi) Previous day’s own decision of confinement. Individual i knows her own choice at previous

period, ai,t−1. As we explain below in the description of the utility function, lagged choices are

payoff relevant because there are costs of changing the form of working —outside or remotely. For

computational simplicity, we assume that individuals do not use information in the lagged actions

of team members.

(vii) Private information productivity shocks. Finally, individuals are subject to productivity

shocks which are their own private information and are independently distributed across individuals

and over time. We represent those shocks as εit(0) —if working outside —and εit(1) —if working at

home.

Summarizing, the information set of individual i at period t is:

Ωit = (x̃it, St, Qt, εit(0), εit(1)) (2)

where we use x̃it to represent in a compact form the vector of state variables (x̃it, B
H|H̃
it , BAU |H̃

it ,

ai,t−1, {x̃jt : j ∈ Wi}).

2.5 Probability of infection

Let n(x,0)it be the number of members in i’s team who are in state x and choose to be work outside.

The probability of infection is an increasing function of the number of infected people that individual

i interacts with at period t: that is, a function of n(AU,0)it + n
(SU,0)
it . Let πIit be the probability of

8Team members’health history may be informative about an individuals’own health. Suppose that yesterday
individuals i and j were in state H̃ and they were working together, and today individual j is in state SD. This
information from period t− 1 contributes to update upwards individual i’s belief of being infected at period t.
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infection and let Λ(.) be the logistic function. Then,

πIit =


0 if ait = 1

1− (1− ρI)n
(AU,0)
it +n

(SU,0)
it if ait = 0

(3)

where the parameter ρI ∈ (0, 1) measures the probability of getting infected from one infectious

teammate. The expression assumes independence (and homogeneity) between the events of getting

infected from each sick member. Note that πIit is zero if there are not infected team members.

The probability of infection depends on variables which are not part of the information set of

individual i. In particular, individual i does not know the number n(AU,0)it +n
(SU,0)
it because: (i) she

cannot distinguish team members who are healthy from those who are infected but undiagnosed;

and (ii) she does not know their current confinement decisions ajt. Given her information set Ωit,

individual i forms expectations about her infection probability πIit. We describe these beliefs in

section 2.8.1.

2.6 Production function

The amount of output generated by an individual depends on her own health status and confinement

choice, and on the health statuses and confinement choices of her coworkers. If an individual is

diagnosed with infection, she is isolated and does not participate in production such that her

output is zero. Therefore, we have that Yit = 0 if xit ∈ {AD, SD, Death}. For the other states,

the production function is:

Yit = α(ait) + β(ait, 0) n
(a=0)
it + β(ait, 1) n

(a=1)
it + γ(ait) Qt (4)

where α(0), α(1), β(0, 0), β(0, 1), β(1, 0), β(1, 1), γ(0), and γ(1) are structural parameters, and

n
(a=0)
it and n(a=1)it are the numbers of other individuals in the production team who decide to work

at the workplace and remotely from home, respectively.

Parameter α(a) represents the output of an individual when nobody else in the production

unit works and her confinement choice is a. We expect α(0) > α(1) since confinement reduces an

individual’s feasible actions.

Parameter β(a, a′) measures the contribution of a coworker to the output of an individual when

the coworker’s confinement choice is a′ and the individual’s choice is a. We expect β(a, 0) >

β(a, 1) and β(0, a′) > β(1, a′). Furthermore, we expect to have complementarity (supermodularity)

between the confinement decisions of coworkers such that:

β(0, 0)− β(0, 1)− β(1, 0) + β(1, 1) > 0 (5)
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Finally, Qt is the proportion of individuals confined at the economy level —i.e., Qt ≡
∑

x̃ St(x̃)

Qt(x̃) —and the term γ(ait)Qt accounts for the possible dependence of productivity on the aggregate

level of confinement. This effect may be different when working at home or outside. For instance,

complementarity in working at home at the aggregate level means that γ(1) − γ(0) > 0. This

parameter can vary substantially across industries: see Barrot, Grassi, and Sauvagnat, (2020) for

related evidence.

2.7 Preferences

An individual’s utility depends on the utility from consumption, u(Cit), plus the utility from her

health status, φ(xit), and minus adjustment costs ω(ait, ai,t−1).9 In this version of the model

we do not consider intertemporal consumption smoothing. Consumption is equal to output mi-

nus net taxes (taxes minus subsidies), τi(ait, xit). These taxes may depend on the individual’s

confinement decision and on her health/diagnosis state.10 Therefore, consumption is Cit(ait) =

Yit(ait)− τi(ait, xit), and the utility function is:

Uit(ait) = u(Yit(ait)− τi(ait, xit)) + φ(xit)− ω(ait, ai,t−1) + εit(ait) (6)

where {φ(x) : x ∈ X}, ω(1, 0), and ω(0, 1) are parameters, and εit(0) and εit(1) are private infor-

mation shocks in individual i’s utility of working outside and confined, respectively, and they are

independently and identically distributed across individuals and over time with an extreme value

type I distribution. We assume that u(.) is a linear function: u(C) = C.11

For the utility from health status, we assume that φ(Death) = 0 and:

φ(x) =


φalive + φhealth for x ∈ {H,AU,AD,RAU,RSU}

φalive + φhealth + φimmu for x ∈ {RAD,RSD}

φalive for x ∈ {SU, SD}

(7)

Parameter φalive represents the flow utility from being alive. Parameter φhealth represents the extra

utility from being (or feeling) healthy. Since an individual cannot distinguish between states H,

AU , or RAU , we assume that these states report the same utility. Parameter φimmu captures the

additional utility from the knowledge of being recovered and immune.

9The cost of no change is zero, such that ω(0, 0) = ω(1, 1) = 0.
10For instance, we may think in different tax/subsidy policies for immune individuals.
11Alternatively, our specification can be interpreted as one where the utility function is logarithmic, u(C) = ln(C),

the production function is Cobb-Douglas, Yit = exp{α(ait)+ β(ait, 0) n
(a=0)
it + β(ait, 1) n

(a=1)
it + γ(ait) Qt}, and taxes

are proportional, i.e., Cit = Yit(1− τit).
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Changing the location for working involves adjustment costs. Parameter ω(1, 0) is the cost of

moving from working outside to working at home; similarly, ω(0, 1) is the cost of moving from

working at home to working outside. They capture actual sunk investment costs as well as habits.

These costs can play an important role to explain persistence in individual behavior and slow

transitions at the aggregate level.

2.8 Beliefs and equilibrium

To maker her choice, an individual needs to form beliefs about different objects. First, if an

individual is in state H̃, she needs to form beliefs about the probability of her actual health status,

H, AU , or RAU . We represent these beliefs using the probabilities BH|H̃
it , BAU |H̃

it , and BRAU |H̃
it ,

where, by definition, we have that BH|H̃
it +B

AU |H̃
it +B

RAU |H̃
it = 1. Second, individuals have beliefs

about the probability distribution of their own health at t + 1 given their information and their

own decision at period t. We denote these beliefs as Bi
i(xi,t+1|x̃it, ait). Third, they have beliefs

about the current health status and confinement choices of coworkers, that we denote as Bn(x,a)
it ,

for x ∈ X̃ and a = 0, 1. Finally, individuals have beliefs about the probability distribution of next

period health status of their team members —that we represent as Bj
i (xjt+1 | Ωit) —and about the

evolution of the state variables at the aggregate level — that we denote as BSi (St+1,Qt+1 | Ωit).

Section 2.8.1 describes our conditions on all these beliefs.

Let Bi(Ωit) represent — in a compact form —all the above individual i’s beliefs given her in-

formation set Ωit. Given these beliefs, an individual’s best response is the solution of a dynamic

programming problem with the following Bellman equation:

V Bi(Ωit) = max
ait∈A(x̃it)

E
[
u(Cit(ait)) + φ(xit)− ω(ait, ai,t−1) + εit(ait) + δV Bi(Ωit+1) | ait, Bi,Ωit

]
(8)

where δ ∈ (0, 1) is the time discount factor. The expectation operator in this Bellman equation

involves the distribution of Ωit+1 conditional on Ωit, as well as the distribution of n
(x,0)
it —which

affect individual i’s output and probability of infection – conditional on Ωit.

2.8.1 Beliefs

To make our equilibrium concept relatively simple to compute, we introduce several conditions on

beliefs. This section describes these conditions.

(i) Current health status and confinement choices of other individuals in the team. For any state

x different to H̃, individual i knows the number of coworkers in that state —n(x)it —but she does
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not know their current confinement choices: i.e., she does not know n
(x,0)
it and n(x,1)it . We assume

that individuals use the aggregate frequencies in Qt(x̃) to form probabilistic beliefs about the

choices of team members in state x̃. Individuals believe that n(x,0)it has a Binomial distribution

with arguments n(x)it and p(x,0)it = 1 − Qt(x). We represent the density function of this Binomial

distribution as Bn(x,0)
it (n).

An individual also knows the number of coworkers in state H̃, that we denote as n(H̃)it . But she

does not the values of n(x,a)it for x = H, AU, RAU and a = 0, 1. We assume that individuals use the

aggregate frequencies in St to form her beliefs about the actual health status of a team member at

state H̃. Therefore, for x ∈ H̃, individuals believe that variable n(x,a)it has a Binomial distribution

with arguments n(H̃)it and p(x,a)|H̃it , where:

p
(x,a)|H̃
it ≡ St(x)

St(H̃)
(1−Qt(H̃))1−a Qt(H̃)a. (9)

We represent the density function of this Binomial distribution as Bn(x,a)|H̃
it (n).

(ii) Expected probability of infection. Conditional on working choice ait, the expected probability

of infection for individual i —that we denote as πI,ownit (ait) —has the following expression:

πI,ownit (ait) ≡ (1− ait)
∑
n

∑
n′

B
n(AU,0)|H̃
it (n) B

n(SU,0)
it (n′)

[
1− (1− ρI)[n+n

′]
]

(10)

(iii) Next period own health status, and updating of beliefs under state H̃ . Let Bi
it(x
′|x̃, a) be the

belief that individual i has at period t about the probability of xit+1 = x′ given that x̃it = x̃ and

ait = a. For states xit other than H̃, the individual knows her current health status xit such

that the expression for Bi
it(x
′|x̃, a) is straightforward and is given by the transition rules that we

have described in section 2.2 above. Note that all the transitions from states different to H̃ do not

depend on the individual’s choice ait: once the individual is infected, her confinement choices do

not have any effect of her own confinement choices.

Here we focus on beliefs on the distribution of xit+1 given that the current state is H̃. An

individual in this state uses probabilistic beliefs about her actual status, that we denote as BH|H̃
it ,

B
AU |H̃
it , and BRAU |H̃

it . The only transition probabilities that depend on the individual’s choice are

the probabilities of xit+1 = H and xit+1 = AU . They have the following form:
Bi
it(H | H̃, ait) = B

H|H̃
it

(
1− πI,ownit (ait)

)
Bi
it(AU | H̃, ait) = B

AU |H̃
it (1− π+A − π−A) (1− λA) +B

H|H̃
it πI,ownit (ait)

(11)
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The first equation says that an individual is healthy at t + 1 if she was healthy at period t —that

has subjective belief BH|H̃
it —and was not infected during that period —that has subjective belief

1− πI,ownit (ait). The second equation establishes that she arrives to state AU at t+ 1 either if she

was at state AU at period t and she gets a neutral health shock and no testing, or shes was at

state H at period t and gets infected. The rest of the transition probabilities from state H̃ do not

depend on ait. They are:

Bi
it(RAU | H̃, ait) = B

RAU |H̃
it +B

AU |H̃
it π+A

Bi
it(AD | H̃, ait) = B

AU |H̃
it (1− π+A − π−A) λA

Bi
it(SU | H̃, ait) = B

AU |H̃
it π−A (1− λA)

Bi
it(SD | H̃, ait) = B

AU |H̃
it π−A λA

(12)

At period t + 1, if the individual is in state H̃, the beliefs about her actual health status are

updated using the following natural formula. For x = H, AU , RAU :

B
x|H̃
i,t+1 =

Bi
it(x | H̃, ait)

Bi
it(H | H̃, ait) +Bi

it(AU | H̃, ait) +Bi
it(RAU | H̃, ait)

(13)

Note that this updating rule depends on the individual’s previous confinement choice and on pre-

vious infection probabilities. In particular, BH|H̃
i,t+1 is greater (and B

AU |H̃
i,t+1 is smaller) with ait = 1

than with ait = 0.

(iv) Next period health statuses of other individuals in the production unit. Let Bj
it(x
′|x̃) be the belief

that individual i has at period t about the probability of xjit+1 = x′ given that x̃jt = x̃ where j is a

team member. For states xjt other than H̃, individual i knows coworker j’s health status xjt such

that the expression for Bj
jt(x

′|x̃) is straightforward and is given by the transition rules in section

2.2 above. To predict next period’s health of team members currently in state H̃, an individual

needs to form beliefs about team members’current health, probability of infection, and confinement

choice. Beliefs on current health are based on aggregate frequencies: St(H)/St(H̃), St(AU)/St(H̃),

and St(RAU)/St(H̃). Her belief on the probability of confinement is also the aggregate probability

Qt(H̃). Similarly, she also uses aggregate frequencies to predict the probability of infection of other

team members. That is,

πI,othert (Qt) = (1−Qt(H̃))
[
1− (1− ρI)|W|[St(AU) (1−Qt(AU))+St(SU) (1−Qt(SU))]

]
, (14)

where |W| is the average number of members in a social group. This implies the following beliefs
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for the transition of health status for team members who are currently at state H̃:
Bj
it

(
H | H̃

)
=

St(H)

St(H̃)

[
1− πI,othert (Qt)

]

Bj
it

(
AU | H̃

)
=

St(AU)

St(H̃)
(1− π+A − π−A) (1− λA) +

St(H)

St(H̃)
πI,othert (Qt)

(15)

Note that the expressions in equation (15) are equivalent to those in (11) but replacing πI,ownit (ait)

with πI,othert (Qt) and B
x|H̃
it with St(x)/St(H̃). Similarly, beliefs Bj

it(xjt+1 | H̃) for states xjt+1 ∈

{RAU , RAD, AD, SU , SD} are the same as the beliefs Bi
it(xit+1 | H̃) in equation (12) but replacing

the own Bx|H̃
it with St(x)/St(H̃).

(vi) Adaptive beliefs about next day aggregate states. For beliefs about next day realization of

aggregate variables —Qt+1 and St+1 —we assume that individuals have adaptive beliefs:

Bi(St+1,Qt+1 | Ωit) = 1 {St+1 = St, Qt+1 = Qt} (16)

2.8.2 Equilibrium

Given her information and beliefs, an individual’s best response is the solution to the Bellman equa-

tion in (8). Following Aguirregabiria and Mira (2007), the solution to this dynamic programming

problem can be described as a conditional choice probability satisfying a best response condition:

P (x̃it,St,Qt) = Λ (v (1; x̃it,St,Qt)− v (0; x̃it,St,Qt)) (17)

where P (x̃it,St,Qt) is the conditional probability of confinement; v (a; x̃it,St,Qt) is the expected

intertemporal utility of choosing alternative a; and Λ(.) is the logistic function — that is, the

distribution of εit(0)− εit(1).

Let x̃t be the vector (xit, ai,t−1, B
H|H̃
it , BAU |H̃

it : i = 1, 2, ..., N). That is, x̃t contains health

status, current beliefs about status conditional on H̃, and last period choice of every individual in

the economy.12

DEFINITION. Given x̃t (and the corresponding St), an equilibrium is a conditional choice probabil-

ity function of confinement, P (x̃it,St,Qt), and an aggregate vector of probabilities of confinement,

Qt = {Qt(x̃) : x̃ ∈ X̃}, that satisfy the following conditions: (i) P (x̃it,St,Qt) is the best response

probability function of the dynamic programming problem in equation (8); and (ii) for any x̃ ∈ X̃ ,

Qt(x̃) is the probability that results from the aggregation of individual choice probabilities:

Qt(x̃) =

∑
i∈I 1{x̃it = x̃} P (x̃, x̃−it,St,Qt)∑

i∈I 1{x̃it = x̃} � (18)

12Since St is the vector of frequencies of each health status, we have that St is a deterministic function of x̃t.
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Remark 1. Equilibrium existence. The best response conditional choice probability in equation

(17) is a well-defined function that is continuously differentiable in all its arguments. Equilibrium

conditions (18) define a fixed point mapping in Qt. This mapping is continuos from [0, 1]|X̃ | into

[0, 1]|X̃ |. By Brower’s theorem, an equilibrium exists.

Remark 2. Strategic complementarity vs. substitutability in individuals’confinement decisions. If an

individual’s propensity to confinement increases with the aggregate probability of confinement —if

P (x̃it,St,Qt) increases withQt —, then we say that confinement decisions are strategic complements

and we have a coordination game. Otherwise, confinement decisions are strategic substitutes and

we have an entry game.

Depending on the values of the parameters, this model can generate either complementarity or

substitutability. The complementarity between individuals’confinement decisions in the production

function can generate strategic complementarity in this game. However, individuals’concern for

their future health can generate strategic substitutability. The larger the proportion of confined

individuals, the lower the probability of getting infected and the smaller the expected health benefits

of current confinement.

Strategic complementarity or substitutability in confinement decisions can have important pol-

icy implications. Under complementarity, small incentives to confinement may generate large

changes in the aggregate probability Qt. In contrast, under substitutability, it may be diffi cult

to achieve a high aggregate probability of confinement.

Remark 3. Multiplicity. Under substitutability, the model has a unique equilibrium Qt. Under

complementarity, the game can have multiple equilibria.

Remark 4. Comparison to Markov Perfect Equilibrium. The concept of Markov Perfect equilibrium

(MPE) is commonly used in the literature of dynamic games —especially, in industrial organization

—(Maskin and Tirole, 1988; Ericson and Pakes, 1995). The equilibrium concept that we use has

clear similarities with MPE but it has an important differences. Individuals do not have rational

expectations about the future evolution of the aggregate state variables {Qt+s,St+s : s ≥ 1}. We

avoid this assumption of rational expectations mostly because of its computational burden for the

solution (and estimation) of a network game. Note that the stochastic process for St andQt depends

—in a complicated way —on the network structure and the current state xt of the whole economy.

It seems unrealistic to assume that individuals know the whole network structure. Furthermore,

our adaptive expectations assumption is plausible in such a complex environment and at the daily

frequency.
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Remark 5. Endogenous stochastic process of {x̃t,at : t ≥ 1}. As defined above, the equilibrium

concept that we use takes x̃t as given and it applies to one period. However, this equilibrium

concept implies a stochastic process for the vectors of state and decisions variables. Given x̃t, the

equilibrium at period t implies and aggregate Qt and the corresponding CCPs for every individual

i: Pi(x̃t) ≡ P (x̃it,St,Qt). These probabilities define the distribution of the vector of choices at

conditional on x̃t. Then, the transition probabilities of the health state variable and the updating

rule of beliefs define the probability distribution of x̃t+1 conditional on x̃t and at.

3 Data, Identification, and Estimation

3.1 Data

Ideally, the model could be estimated using individual level panel data with a daily frequency,

with information on state and decision variables for the own individual and for members of her

social group. As far as we know, this type of data —at the individual level —is not available yet for

COVID-19.13 In this section, we discuss several sources of data on COVID-19 that can be combined

to estimate the model parameters. We focus on data available for Ontario, Canada.

(i) Basic clinical and epidemiological data on COVID-19. Medical research provides measures

of the distribution of the incubation period, the time to develop symptoms, recovery time, basic

reproduction number R0, and death rate. This information can be found in medical journals.

We use these data to calibrate some of the epidemiological parameters of the model, i.e., the π

parameters.

(ii) Epidemiological data from Public Health Ontario (PHO). This dataset contains information on

every identified case of COVID-19. For each case, it provides the following variables: month and day

of detection, gender, age group, transmission through travel dummy, hospitalization, admission to

intensive care unit (ICU), death, recovery; with the dates of each of these events. Importantly, this

data file also provides information on the exact geographic location of the physician that reported

the case: name of hospital/clinic, postal code, and exact longitude and latitude of the hospital. A

separate data file provides information on testing at the aggregate Ontario level: number of tests,

and positive and negative results.

We use these data to measure the state variables St(x) as well as testing probabilities λAt and

λSt. The geographic and demographic dimension of these data implies that we can measure the

13Several government and private institutions are currently collecting survey data on individuals’symptoms, health
status, and mobility choices. An example is the COVID-19 Symptoms & Social Distancing Web Survey from the
Program on the Global Demography of Aging at Harvard University: https://www.hsph.harvard.edu/pgda/covid/

21



shares St at a more disaggregate level that the province of Ontario. We can measure shares Sgmt

where g is an index for gender-age group, and m is an index for geographic region, e.g., postal code,

or a geographic level that represents the region of attraction of a hospital/clinic.

On the negative side, these epidemiological data contain information on the shares St(x) only

for some states x or grouped states. More specifically, we observe St(x̃) for the following states x̃:

Death; recovered-diagnosed, R̃D ≡ RAD∪RSD; and nonrecovered-diagnosed, D̃ ≡ AD∪SD. As

a residual, we have the share of the remaining states: H̃ ≡ H ∪ AU ∪ RAU , and symptomatic-

undiagnosed both recovered and nonrecovered, S̃U ≡ SU ∪RSU .

As for data on testing, publicly available information from PHO does not distinguish between

asymptomatic and symptomatic, such that we have only a measure λt. In summary, the epidemi-

ological data from PHO can be summarize as follows:

Epid. Data =
{
Sgmt(Death), Sgmt(R̃D), Sgmt(D̃), Sgmt(H̃ ∪ S̃U), λt : g, m, t

}
(19)

Figure 3 presents daily time series of: (a) number of new cases; (b) new deaths; (c) new

tests; (d) new recovered; (e) change in the number of hospitalized; (f) change in the number in

ICU; (g) change in the number in ICU with ventilator; and (h) logarithm of cumulative cases. In

these figures, we highlight the date of March 17 when the Ontario government declared a state of

emergency. For series (d) to (g), the first date with reported data was March 29.14 These figures

show a rapid growth in the number of new cases and deaths. There is also fast growth in the

number of new tests. Figure 3(h), for the logarithm of cumulative cases, shows three periods in

terms of the average growth rate.

In figure 4, we present a sequence of maps to illustrate the geographic diffusion of COVID-19

in Southern Ontario —that accounts for 94% of the Ontario population. Each region represents a

public health unit based on the boundaries defined by Public Health Ontario. The colors represent

different levels of the (cumulative) number of confirmed cases per thousand population in a public

health unit. We present maps for eight different days with a weekly frequency, from March 17 to

May 5. The diffusion of the virus is very heterogeneous across geographic regions. Simcoe and

Brockville were the first regions to achieve relatively high levels of infection per capita. Toronto

(population 5.5M) and Ottawa (1M) have also reached similar levels. In contrast, the third and

fourth most populated cities in Ontario — Hamilton and London, with 0.7M and 0.4M people,

respectively —have reached so far a much smaller number of cases per capita.

14For those series, the first observation is not the daily change but the level on that date.
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Figure 3: Time Series of the Evolution of Covid-19 in Ontario
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Figure 4: Maps of the Evolution of Covid-19 in Southern Ontario
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(iv) Data on social network. Different marketing companies, as well as Google, collect real time

information on the geographic location of mobile phones and other mobile devices. Using these

data before COVID-19, it is possible to assign each mobile phone a home location Hi (i.e., the place

where the phone sits at night), a workplace Wi (i.e., the place where the phone is most frequently

found during working time); and consumption places Ci.

This type of data is proprietary and it is quite expensive at the individual cell phone level.

However, it is possible to get this type of information at an aggregate geographic level and in a

probabilistic form. Here we describe a type of data that some market-data companies (e.g., Safe

Graph in US, or Environics Analytics in Canada) have made available to academic researchers.15

LetM = {1, 2, ..., M} be the set of geographic locations in Ontario, e.g., set of postal codes.

For each triple (mH, mW , mC) ∈ M3, define GmH,mW ,mC as the proportion of individuals (mobile

phones) that have mH as home, mW as workplace, and mC as consumption place.16 Of course,

most of the entries in the array {GmH,mW ,mC} are zero. Note that this array represents individual

mobility choices before the spread of COVID-19.

(iv) Data on confinement decisions. This information is also based on phone mobility data. At the

postal code and daily level, we have the proportion of phones with home in postal code m which

did not go outside to work or to consume at day t. We denote these observed variables as Q
W
mt and

Q
C
mt, respectively.

(v) Data on electricity consumption. We have data from the Ontario’s Independent Electricity

System Operator (IESO) Smart-metering program on electricity consumption at the hourly and

user level. Based on information on the capacity installed and the peak hours of consumption before

COVID-19, we distinguish two types of clients: residential (home) and commercial (workplace). We

construct the variables EHmt and E
W
mt that represent electricity consumption in postal code m, day

t, by households and workplaces, respectively.

Using data from the network structure before COVID-19 in {GmH,mW ,mC}, we can construct

the variables gHm and gWm that represent the share of households with home in postal code m,

and the share of workers with workplace in m, respectively. Combining these variables with the

aggregate consumptions EHmt and E
W
mt, we can construct the consumption per household (e

H
mt) and

the consumption per workplace (eWmt):

eHmt ≡
EHmt/N

gHm
and eWmt ≡

EWmt/N

gWm
(20)

15See Chen and Pope (2020) on the use of cell phone mobility data for US.
16This definition is based on the condition that each individual has one home, workplace, and consumption place,

but it can be trivially extended to more than one.

25



We use these variables to estimate the parameters in the production function.

Using electricity consumption as a measure of output needs further explanation. Let Y Hmt and

YWmt be the output per individual producing home goods and tradable goods, respectively. We

assume that the production technology is Leontief (constant coeffi cients) with respect to electricity.

That is,

Y Hmt = min

{
KHmt ,

1

ΨHm
eHmt

}
and YWmt = min

{
KWmt ,

1

ΨWm
eWmt

}
(21)

where KHmt and K
W
mt represent the contribution of inputs other than electricity, and ΨHm and ΨWm

are technological coeffi cients that measure the amount of electricity required to produce a unit of

output. Note that these technological coeffi cients may vary across geographic locations because

variation in the industrial composition and in the size and type of households.

Given this production function and the assumption that inputs are used effi ciently, we have the

following relationship between electricity consumption and output:

ln eHmt = lnY Hmt + ln ΨHm and ln eHmt = lnY Hmt + ln ΨHmt

Based on this expression, we have that the time difference in log electricity consumption is equal

to the time difference in log output: i.e., ∆ ln eWmt = ∆ lnYWmt .

(vi) Data on public policies. Dates of "State at Home" orders, and industries/sectors affected.

3.2 Identification and Estimation

We can distinguish three different groups of structural parameters in the model: the epidemiolog-

ical parameters, θπ; the testing parameters, θλ; the production function parameters, θY ; and the

preferences parameters, θU .

θπ ≡ (ρI , π−A, π+A, π−SU , π+SU , π−SD, π+SD)′

θλ ≡ (λA, λS)′

θY ≡ (α(0), α(1), β(0, 0), β(0, 1), β(1, 0), β(1, 1),γ(0), γ(1))′

θU ≡ (δ, φalive, φhealth, φimmu, ω(0, 1), ω(1, 0))′

(22)

We consider the following sequential approach for the estimation of these structural parameters.

STEP 1. Parameters θπ and θλ are estimated from the epidemiological data and the testing data.

STEP 2. Production function parameters are estimated using data of log electricity per household

and per workplace, ln eHmt and ln eWmt, average confinement, Q
W
mt and Q

C
mt, and shares of health

states, Smt(x̃).
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STEP 3. Given estimates of θπ, θλ, and θY , we estimate the preference parameters, θU , using a

Simulated Method of Moments (SMM) estimator. This estimator minimizes the distance between

actual moments from the data {Smt(x̃), Q
W
mt, Q

C
mt, ln eHmt, ln eWmt} and moments using simulated

data from solving the model.

4 Numerical experiments

In this section, we present several numerical experiments to illustrate the properties and predictions

of the model. These results are preliminary as they are based on a simplified version of the model

and a rudimentary calibration of the model parameters. Based on our calibration, we solve the

model and simulate the path of the endogenous variables under different experiments. Experiment 1

is our benchmark scenario and is characterized by a ring network structure, an initial herd immunity

of 0%, and no public interventions – no testing and no subsidies. Each of the other experiments

incorporates a specific modification with respect to this benchmark. In experiment 2, the initial

level of herd immunity is 67%. In experiment 3, we incorporate a government subsidy to work from

home. We present results for three levels of this subsidy: 20%, 30%, and 40% of an individual’s

earnings if her workplace works at full capacity, i.e., when all the workers are active and working

in site. In experiment 4 we introduce testing. We present results for three different levels of the

testing rate: 2%, 10%, and 20% for asymptomatic individuals, and 80% for symptomatic. Finally,

in experiment 5 we modify the structure of the network of social connections.

We start by describing the simplified version of the model and our calibration of the parameters.

Table 1
Parameters in Benchmark Scenario (Experiment 1)

• Population: N = 100, 000 Production function
• # individuals infected at period 1: 10 α(0) + β(0, 0) |W| = F
• Number of team members: |W| = 10 α(0) + β(0, 1) |W| = 0.40 F

α(1) + β(1, 0) |W| = 0.35 F
Epidemiological parameters α(1) + β(1, 1) |W| = 0.20 F
• π−A = 1/6; π+A = 1/7 α(0) = 0.20 F
• π+SU = 1/14; π−SU = (10/90)(1/14), α(1) = 0.05 F
implying mortality rate at SU = 10%. Λ (α(1)− α(0) + [β(1, 0)− β(0, 0)]|W|) = 0.005
• π+SD = 1/10; π−SD = (5/95)(1/10)
implying mortality rate at SD = 5% Preferences
• Infection rate: ρI = 0.108 Λ(α(1)− α(0) + [β(1, 1)− β(0, 1)]|W|+ δφhealth)=0.99
implying basic rep.number R0 = 3.5 δ = 1.0
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4.1 Simplified model

The results that we present here are based on a version of the model that incorporates the simpli-

fying assumptions A1 and A2 below. The only reason why we include these conditions is compu-

tational. Under these assumptions, the equilibrium objects Qt and Pit are scalars and not vectors

that depend on all the state variables. Computing an equilibrium in this simplified model takes only

5 minutes —approximately —while for the general model it requires a few hours. By starting with

the simplified model, we have been able to try many different specifications and parameterizations

at a very low cost of time.

A1. Individuals in the recovered states RSU , RAD, and RSD always choose to work outside.

Individuals in state SU always choose to work at home. This behavior is common knowledge.

According to this assumption, the only individuals free to choose are those in state H̃ =

{H ∪AU∪ RAU}.

A2. Individuals are quasi myopic. They are forward looking only in terms of how today’s decision

affects their own risk of being infected next period.

4.2 Parameterization / Calibration

Table 1 presents then parameters used for the benchmark scenario (Experiment 1).

Population. We consider a relatively large population with 100, 000 individuals.

Number of individuals infected at the initial period. At day 1, there are 10 individuals (i.e., 0.01%

of the population), randomly selected, who are infected and undiagnosed (state AU). The rest of

the individuals are in state H.

Network structure. In these experiments we consider four different types of networks: a ring lattice;

a small world network; a caveman graph; and a randomly rewired caveman graph. Figure 5 presents

examples of these network structures with 25 individuals.

A ring lattice is a regular graph —each node has the same degree —where nodes are arranged

in a circle with each node connected to |W| nearest neighbors. A ring network with N >> |W|

has a high clustering coeffi cient and high average path length. A ring lattice does not capture the

observed degree heterogeneity that we find in actual social networks. The network at the bottom

left of figure 5 is a ring lattice with 25 individuals each having 5 edges.

The small world network is a variation of a ring lattice where some nodes are randomly rewired.

This random rewiring has the effect of reducing the average path length. An example of a small
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world network is shown at the lower right of figure 5.

A caveman graph consists of several local clusters where nodes within a cluster are highly

connected but there is very little connection between clusters. In our model, this graph may

represent an economy where there is very small overlapping between production teams. Compared

to a ring lattice, a caveman network shares the feature of a large average path length, but their

local structures are very different.

Finally, we consider a variation of the caveman graph where some nodes are randomly rewired.

Figure 5 (upper right) shows an example, with 25 individuals, 5 local clusters, and rewiring prob-

ability of 0.5. Rewiring decreases average path length making the network more connected.

In our benchmark economy (experiment 1), the network consists of ring lattice with N =

100, 000 and |W| = 10. We have chosen |W| = 10 workers per team because it is close to median

plant size in many industries. In experiment 5, we modify this network structure by changing the

value of the parameter |W| and by considering the other three types of networks.

Epidemiological parameters for COVID-19. We let π−A = 1/6 (i.e., average incubation period of 6

days), and π+A = 1/7 (i.e., 7 days of average waiting time to recovery if no symptoms).

For the recovery of symptomatic-undiagnosed individuals (state SU), we set π+SU = 1/14,

i.e., 14 days of average waiting time to recovery after developing symptoms. Parameter π−SU

is set to match a mortality rate of 10% for these undiagnosed (untreated) individuals. That is,

π−SU/π+SU = 10/90, and this implies π−SU = 0.0079.

For the recovery of symptomatic-diagnosed individuals (state SD), we set π+SD = 1/10, i.e., 10

days of average waiting time to recovery with diagnosis and treatment. Parameter π−SD is set to

match a mortality rate of 5% for these diagnosed (treated) individuals. That is, π−SD/π+SD = 5/95,

and this implies π−SD = 0.0053.

To calibrate the parameter ρI in the probability of infection, we match the value of the basic

reproduction number R0. For COVID-19, different studies provide values of R0 between 3 and

4. We choose a value R0 = 3.5. Using the standard representation of R0 in the epidemiological

literature, we have that R0 = |W| ρI/(π+A + π−A). This condition —together with the choice of

|W| = 10 —implies a value of ρI = 0.108.

Production function. For the moment we have chosen γ(0) = γ(1) = 0. Under this condition,

the production function becomes Yi = α(ai) + β(ai, 0) n
(a=0)
i + β(ai, 1) n

(a=1)
i , where n(a=0)i is the

number of other members physically present in the workplace, and n(a=1)i is the number of those
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Figure 5: Examples of Network Structures (25 individuals)
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working from home. The selection of the parameters α(0), α(1), β(0, 0), β(0, 1), β(1, 0), and β(1, 1)

is based on the following conditions that relate these parameters with the amount of output at full

capacity, F .

a. Full capacity output: everybody works outside: α(0) + β(0, 0) |W| ≡ F .

b. Own individual works outside, team members work at home: α(0) + β(0, 1)|W| = 0.40 F .

c. Own individual works at home, team members work outside: α(1) + β(1, 0)|W| = 0.35 F .

d. Everyone works from home: α(1) + β(1, 1)|W| = 0.20 F .

e. Own individual works outside, all members inactive: α(0) = 0.20 F .

f. Own individual works at home, all members inactive: α(1) = 0.05 F .

It is straightforward to verify that conditions (a) to (f) imply that function β(a, a′) is: monotonic

in its two arguments, i.e., β(0, 0) > β(1, 0) > β(1, 1), and β(0, 0) > β(0, 1) > β(1, 1); and super-

modular, i.e., β(0, 0)− β(0, 1)− β(1, 0) + β(1, 1) > 0.

The value for full capacity output F is chosen such that the probability of working at home

when there is zero risk of infection and all the team members are working outside is 0.5%. That

is, Λ(α(1) + β(1, 0)|W| − α(1) − β(0, 0)|W|) = 0.005, and given conditions (a) to (f), this implies

that Λ(−0.65F ) = 0.005.

Utility of health status. The parameter φhealth that captures the utility of being uninfected is chosen

such that an individual with no active team members and with probability one of getting infected

chooses working at home with probability 99%. That is, Λ(α(1) − α(0) +[β(1, 1) − β(0, 1)]|W|

+δφhealth) = 0.99. The daily discount factor δ is equal to one.

4.3 Results

4.3.1 Experiment 1: No interventions

Figure 6 presents the simulated paths of endogenous variables in our benchmark scenario with a

ring network without testing and without subsidies.

Number of new infections per day (row 2, column 1) and cumulative share of infected individuals

(row 1, column 4). During the first 10 days, the rate of infection is quite small. Then, it increases

very rapidly and by day 30 practically the whole population has got infected. At its peak, the

number of new infections per day reaches 14, 000.
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Probability of confinement (row 1, column 1) . This probability responds endogeneously —with

some lag —to the rapid expansion of the virus. However, at its peak only 2% of the workers decide

(voluntarily) to be confined.

Share of deceased (row 1, column 2) and share of immune (row 1, column 3). The rapid expansion

of the virus generates a fast convergence to the new steady-state. This steady-state is practically

achieved after only 80 days. The share of deaths is 5%.

Aggregate output (row 2, column 2). The long-run (permanent) effect of the virus on aggregate

output is a reduction by 7.5%. This long-run effect is due to 5% reduction in the labor force (deaths)

together with the complementarity in the production function. The steady-state amount of output

is reached after 80 days periods, and it follows after a very deep crisis that lasts approximately 30

days. During this deep recession, output becomes as low as 58% of its full capacity.

4.3.2 Experiment 2: Herd immunity

Figures 7 presents the results for experiment 2 where everything is the same as in our benchmark

except that at period t = 1 the share of immune individuals is 67%.17 The goal of this experiment

to show the value of immunity. We can interpret this immunity as the result of vaccination. We

can also interpret it as a second wave of the virus that arrives once a substantial proportion of the

population is already immune because of previous recovery after infection.

The evolution of all the endogenous variables is dramatically different than under the benchmark

scenario. The diffusion of the virus is very slow. The number of infected individuals per day is

always lower than 30 and the effect on output is negligible. Herd immunity has a nonlinear effect

on the diffusion of the virus.

17Based on standard SIR models, the simplest formula for the herd immunity threshold is 1−1/R0 where R0 is the
basic reproduction number. According to this formula, and our choice of R0 = 3.5, the herd immunity threshold in
our benchmark scenario is 71%. An initial share of immune individuals of 67% is slightly lower than this threshold.
Of course, we expect our model to deliver threshold values different than 1−1/R0. In fact, we find in this experiment
that a 67% of immune individuals is enough to generate a very slow diffusion of the virus.
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Figure 6: Experiment 1: No Public Interventions
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Figure 7: Experiment 2: Initial Herd Immunity of 67 percent
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4.3.3 Experiment 3: Subsidy to work from home

In experiment 3, we modify the benchmark scenario by including a subsidy to work from home.

We implement experiments for three different values of the subsidy: 20%, 30%, and 40% of the full

capacity output. That is, τ(0) = 0 (no subsidy or tax for working outside), and τ(1) = 0.2F , or

0.3F , or 0.4F , respectively.

Figure 8 shows the effects of each subsidy rate with respect to the benchmark. The subsidy

— even at 20% which is not large as a percentage of the full salary —has a very strong positive

effect on confinement decisions, especially during the peak of the virus expansion. At this peak, the

probability of working at home increases from 2% without the subsidy to more than 12%. It has

also an important effect on the number of infections per day during the peak: it goes from 14, 000

individuals to less than 11, 000. As expected, all these effects become larger when the subsidy rate

increases.

4.3.4 Experiment 4: testing

In experiment 4, we modify the benchmark scenario by introducing testing, both to symptomatic

individuals —with a probability λS = 80% —and to asymptomatic individuals —with three experi-

ments where the probability λA takes the values 2%, 10%, and 20%, respectively.

Figure 9 presents the effects with respect to the benchmark. Very interestingly, we find that the

effects of introducing testing are basically the complements of the subsidy to confinement. Testing

has practically zero effect on the number of infections per day. However, it has an important effect on

the timing of confinement and on output, and in the number of deaths. Testing identifies infected

individuals and removes them from the labor force. Due to complementarity in the production

process, this has a positive incentive on confinement. Now, the peak of confinement occurs earlier

than in the benchmark. This has also an effect on output: the recession is slightly not as deep and

it is substantially shorter. The long run effects are also smaller, due to the savings of lives.

As the rate of testing asymptomatic individuals increase — to 10% and 20% —the effects on

infection start to show, with a lower peak of infectious cases, further reduction in death toll, and

even stronger reaction for the dynamics of decision to work from home.

4.3.5 Experiment 5: Modifying the network structure

Here we include a set of experiments to illustrate how the structure of the social/production network

influences virus diffusion and its economic impact. Very interestingly, we show that the network
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Figure 8: Experiment 3: Subsidy to Work from Home. Differences with Benchmark
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Figure 9: Experiment 4: Testing. Differences with Benchmark
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structure also affects individuals’confinement decisions.

Figure 10 presents the simulated paths of the endogenous variables compared to the benchmark

model. The small world network (green curve) is generated from the same ring lattice as the

benchmark but with a re-wiring probability of 0.5 using the Watts-Strogatz algorithm. It shows a

very similar virus diffusion pattern with similar peak and number of new cases per day. Although

the small world network is more connected than the benchmark, the virus does not spread much

faster because individuals respond with a higher probability of confinement.

The ring lattice with a smaller degree — |W| = 6 instead of |W| = 10 —delivers the largest

differences compared to the benchmark. In this network, with larger social distance, the virus

diffuses more slowly. As a result, the share of individuals who choose to work from home is smaller

and it peaks much later. Output also gets a much smaller hit.

The caveman network (red curve) shows also different diffusion dynamics than the benchmark.

Since individuals are strongly connected within the local clusters, there is a much stronger response

to work from home, which then leads to a slower spread of the virus. The economy is hit not as

hard as in the benchmark and the total death toll is also smaller. Its variation with a rewiring

probability of 0.5 (blue curve) depicts an even more optimistic picture compared to the benchmark,

thanks to a stronger propensity to work from home.

Figure 11 shows the logarithm of cumulative cases for the different networks. Though the

differences between these four networks are relatively small, they generate substantial differences

in the growth rate of the total number of infections. The ring lattice with |W| = 10 and the small

world network have the largest growth rate of 57%. The caveman network and its variation have

about 47% growth rate. The ring lattice with |W| = 6 generates a growth rate of 30%.
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Figure 10: Experiment 5: Network structures. Differences with Benchmark
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5 Conclusions

The COVID-19 pandemic has generated important challenges in our societies. The academic eco-

nomics profession has responded quickly and enthusiastically to these challenges, with notorious

engagement. We, as many other academics, believe that COVID-19 is a unique opportunity to make

substantial research progress on some issues which are important for the economics of pandemics

but which are not only constrained to this problem. This paper is a first report of an ongoing

research project motivated by some of these problems.

In this paper, we propose dynamic structural network game to study individuals’working and

consumption decisions during the COVID-19 pandemic. The model can be estimated using daily

data on the spread of the virus, individuals’ mobility choices, and electricity consumption for

households and establishments. This type of data is now available for multiple countries or regions.

The topics that we plan to investigate in research program are especially connected to COVID-

19 but they are also of broader interest in economics and especially in empirical IO and structural
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Figure 11: Experiment 5: Log total infection cases for different network structures
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econometrics. (1) Incorporate, in structural models, high-frequency granular data on individuals’

mobility choices. (2) Estimation of production functions that account for different productivity of

working in-site or at home and for complementarity in these decisions. (3) Estimation of games

allowing for flexible information structures, biased beliefs, and learning. (4) In dynamic social

network games, definition of equilibrium concepts which are realistic and can be computed at a

reasonable cost when applied to the social network structures that we observe in reality.
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