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1 Introduction

The development of two-step estimation methods represents a substantial methodological contri-

bution in the econometrics of dynamic discrete choice structural models. The work by Hotz and

Miller (1993) and Hotz et al. (1994) represent seminal contributions in this literature. Other

contributions in this literature include the sequential policy iteration estimators in Aguirregabiria

and Mira (2002), and the extensions of these methods to dynamic games in Aguirregabiria and

Mira (2007) and Bajari, Benkard and Levin (2007). Since these methods avoid the solution of the

dynamic programming problems that describe individuals�behavior, they make the estimation of

richer speci�cations with larger state spaces computationally feasible. Nevertheless, the implemen-

tation of these methods still requires the computation of expectations (present values) de�ned as

integrals or summations over the space of state variables. In applications with continuous state

variables or with very large state spaces (e.g., dynamic games with heterogeneous players), the

exact solution of expectations or present values is an intractable problem. To deal with this dimen-

sionality problem, applied researchers use approximation techniques such as discretization, Monte

Carlo simulation, polynomials, sieves, neural networks, etc. Replacing true expected values with

approximations introduces an approximation error, and this error induces a statistical bias in the

estimation of the parameter of interests. To deal with this dimensionality problem, Aguirregabiria

and Magesan (2013) derive marginal conditions of optimality for a general class of single-agent

dynamic discrete choice models and show that these Euler equations provide moment conditions

that can be used to estimate structural parameters without the need to solve or approximate in�-

nite present values. Given the similarity of these optimality conditions with the ones for dynamic

decision models with continuous decision variables (Hansen and Singleton, 1982), we denote these

conditions as Euler Equations (EEs). Estimators based on moment conditions from these Euler

equations are not subject to bias induced by the approximation of value functions. Arcidiacono

and Miller (2011 and 2013) propose an approach in the same spirit for a class models with a

�nite-dependence representation.1

A common motivation for estimating dynamic structural models is the prediction of agents�

behavior and outcomes in scenarios di¤erent in some dimension, from the scenario that generated

the data. These predictions are useful because they allow the researcher to study the e¤ects of

policies that do not occur in the data, e.g., a new tax/subsidy, or a change in some of the structural

parameters of the model. These predictions are typically described as counterfactual experiments.

Despite the development of two-step estimation methods, the computation of counterfactual exper-

1The concept of �nite dependence was introduced in Altug and Miller (1998). Arcidiacono and Miller (2011, page
1824) provide the following simple and intuitive de�nition: �when two choice sequences with di¤erent initial decisions
lead to the same distribution of states after a few periods, we say there is �nite dependence�. They provide a more
general version of that de�nition in their 2013 working paper (Theorem 6) which we believe is equivalent to the
su¢ cient conditions for the existence of Euler Equations in our paper.

1



iments remains a serious computational challenge in this literature. The methods available for the

estimation of these counterfactuals require the full solution of, or at least the approximation to the

dynamic programming problem. In most applications, the exact solution is not computationally

feasible, and the approximation methods imply estimation errors that are potentially large and do

not converge to zero as the sample size goes to in�nity. In general, there is not a method for the

estimation of counterfactuals that is both computationally feasible (i.e., it avoids the full solution

of the dynamic programming problem) and econometrically consistent. The researcher must trade

o¤ these two criteria in deciding which method to use.

In this context, the contribution of this paper is threefold. First, we extend the derivation

of Euler Equations (EEs) to dynamic discrete games. This extension is not trivial. In general,

standard Euler equations, based on marginal conditions of optimality at two consecutive periods,

do not hold for games with heterogeneous players. We derive EEs that involve marginal expected

payo¤s at N + 1 periods, where N is the number of players in the game. Second, we show that

these EEs imply a �xed point mapping in space of an individual�s decision rule (i.e., conditional

choice probabilities) and that this �xed point mapping is a contraction. In contrast to the standard

policy-iteration mapping in DP problems, this EE-policy-iteration mapping does not involve the

computation of in�nite-period-forward present values, but only the N -period-forward expectations.

For this reason, the EE-policy-iteration mapping provides a method to compute the solution of

the DP problem that is computationally much cheaper than standard policy iterations. Still, the

consistent estimation of counterfactuals using the EE-policy-iteration mapping is subject to a curse

of dimensionality. Third, we de�ne a sample approximation to EE-policy-iteration mapping. This

sample approximation, which has the contraction mapping property, is de�ned only at sample

points of the state variables, and thus its dimensionality is �nite and relatively small. We show

that the unique �xed point of this sample EE-policy-iteration mapping is a consistent estimator of

the true counterfactual optimal decision rule. In contrast, using a sample version of the standard

policy iteration mapping does not provide a consistent estimator of the optimal decision rule. The

reason is that the sample EE-policy-iteration mapping is related to sample moment conditions that

are satis�ed asymptotically as the sample size goes to in�nity while that is not the case for the

sample conditions implied by the standard policy-iteration mapping.

Another useful application of the EE-policy-iteration mapping is that it can be used to de�ne

a sequential procedure to reduce the �nal sample bias of the two-step estimation methods based on

Euler Equations. The idea is that, once a researcher has estimated the parameters of the structural

model in the second step (the �rst step is the estimation of choice probabilities), she can �update"

or improve upon the initial estimate of the choice probabilities iterate in the EE-policy-iteration

mapping to �nd a �xed point that is consistent with the estimated parameters. With this updated

estimate of choice probabilities in hand, the researcher can re-estimate the parameters, and continue
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in this fashion until the parameter estimates do not change when the probabilities are updated. The

main advantage of using this sequential method is that the recalculation of the Conditional Choice

Probabilities at each iteration of this method does not require the computation of present values,

and that these probabilities only need to be estimated at values of the state variables observed in

the sample. Again, this substantially reduces the computational cost of estimating the model.

We illustrate the relative computational gains associated with our approach using two sets of

Monte Carlo experiments. In the �rst set, we show that in the context of a dynamic model of entry

and exit, a full solution using the standard policy iteration can take anywhere from 18 to 75 times as

long as a full solution using the EE-policy-iteration mapping depending on the dimensionality of the

state space, implying that models that are computationally infeasible for all practical purposes using

standard methods, are feasible using the method we propose. In particular, we show that although

the steps to convergence using the standard policy iteration mapping are greater,2 meaning that the

standard policy iteration mapping takes fewer iterations to a �xed point, each iteration of the EE-

policy-iteration mapping is so computationally inexpensive that it ends up being considerably faster

in total time to convergence. Second we examine the �nite sample properties of the two estimators

by considering a counterfactual policy question in the context of the dynamic model of entry and

exit. In particular we study how the two methods do in predicting �rm behavior in response to

a counterfactual increase in the cost of entry, holding the computation time of the two methods

�xed. Holding the computation time �xed requires us to estimate the counterfactual probabilities

on a smaller space in the case of the standard mapping, and this can introduce bias and higher

variance in the estimates.3 We show that, holding the computation time of the model �xed across

the two approaches, the �nite sample properties of the estimator that uses the EE-policy-iteration

mapping are better than those of the estimator associated with the standard mapping, in the sense

that it has lower mean squared error.

The paper is related to a literature that exploits properties of the dynamic discrete decision

problem to obtain a representation of the model that does not involve value functions. The key

papers here are Hotz and Miller (1993) and Arcidiacono and Miller (2011), who show that models

that possess a ��nite-dependence" property permit a representation whereby the choice probabili-

ties can be expressed as a function of expected payo¤s at a �nite number of states, meaning that

a researcher need not compute value functions to estimate the structural parameters of the model.

Aguirregabiria and Magesan (2013) similarly show that under a �weak stationarity" condition4

on the dynamic decision process, the model permits an EE representation which depends only on

2This is not surprising, as the standard policy iteration mapping is a composite mapping, while the EE-policy-
iteration mapping is not.

3This is a realistic approach, however, as state space reduction methods are often used to make computationally
infeasible methods feasible.

4Loosely speaking, a dynamic decision problem satis�es the weak stationarity condition if, for any state X today
the set of states reachable from decision d and decision d0 have at least one common element.
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the expected payo¤s today and tomorrow. The key contributions of this paper in this regard is

that, while the aforementioned papers propose representations that are useful for the estimation of

structural parameters, we propose a novel mapping for computing equilibrium probabilities, which

can be used to make counterfactual prediction regardless of how the parameters are estimated.

To the best of our knowledge, this is the �rst paper to do so. This is also the �rst paper that

we know of that proposes an EE-policy-iteration mapping for reducing the bias associated with

two-step estimation methods. Finally, our paper is related to Rust (1997), who proposes a ran-

domization method to reduce the computational cost of solving a dynamic programming problem

with continuous state variables.

The rest of the paper is organized as follows. Section 2 presents the model and the derivation

of Euler equations, and describes the two-step estimator based on these equations. Section 3

introduces the Euler Equation policy-iteration mapping and compares it to the standard policy

iteration mapping. Section 4 presents our method to estimate consistently counterfactuals, derives

its statistical and computational properties, and compares them with those from the standard

methods in the literature. In section 5, we present results from Monte Carlo experiments where we

illustrate the advantages our proposed method. We summarize and conclude in section 6.

2 Model and Euler Equations

2.1 Model and basic assumptions

We consider a dynamic programing (DP) model in discrete time, with discrete actions, and mixed

continuous/discrete state variables. Every period t, an agent takes a decision at to maximize his

expected intertemporal payo¤ Et[
PT�t
j=0 �

j �t(at+j ; st+j)], where � 2 (0; 1) is the discount factor,
T is the time horizon that can be �nite or in�nite, �t(:) is the one-period payo¤ function at period

t, and st 2 S is the vector of state variables at period t, which we assume follows a controlled
Markov process with transition probability function ft(st+1 j at; st). In this paper we consider
discrete choice models such that the decision variable at belongs to the discrete and �nite set

A = f0; 1; :::; Jg. The sequence of value functions fVt(:) : t � 1g can be obtained recursively using
the Bellman equation:

Vt(st) = max
at2A

�
�t(at; st) + �

Z
Vt+1(st+1) ft(st+1 j at; st) dst+1

�
(1)

The optimal the decision rule, �t(:) : S ! A, is obtained as the arg-max of the expression in
brackets. This model includes both stationary and non-stationary models. In the stationary case,

the time horizon T is in�nite, and payo¤ and transition probability functions are time-homogenous,

and this implies that the value function and the optimal decision rule are also invariant over time.

Following the standard model in this literature (Rust, 1994), we distinguish two sets of state

variables: st = (xt; "t), where xt is the vector of state variables observable to the researcher, and
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"t represents the unobservables for the researcher. The set of observable state variables xt itself

is comprised by two types of state variables, exogenous variables zt and endogenous variables yt.

They are distinguished by the fact that the transition probability of the endogenous variables

depends on the action at, while the transition probability of the exogenous variables does not

depend on at. The vector of unobservables satis�es the assumptions of additive separability (AS)

and conditional independence (CI). The one-period payo¤ function is additively separable in the

unobservables: �t(at; st) = �t(at;xt)+"t(at), where "t � f"t(a) : a 2 Ag is a vector of unobservable
random variables. And the transition probability (density) function of the state variables factors

as: f(st+1 j at; st) = fx (xt+1 j at,xt) dG ("t+1), where G (:) is the CDF of "t which is absolutely
continuous with respect to Lebesgue measure, strictly increasing and continuously di¤erentiable in

all its arguments, and with �nite means.

Under these assumptions, the optimal decision rule of this DP problem can be represented using

the Conditional Choice Probability (CCP) function Pt(a j x), from A � X ! [0; 1]. This function

represents the probability that given the observable state x the optimal decision at period t is a.

Let Pt(xt) represent the vector with J free CCPs conditional on xt. For notational simplicity, we

occasionally use Pt to represent Pt(xt) below. Without loss of generality, the probability of choice

alternative 0 is excluded from vector Pt. Given a CCP vector Pt, we can de�ne the expected payo¤

function

�Pt (Pt;xt) �
XJ

a=0
Pt(a j xt) [�t (a;xt) + et(a;xt;Pt)] (2)

and the expected transition probability of the state variables

fP (xt+1 j Pt;xt) �
XJ

a=0
Pt(a j xt) f(xt+1 j Pt;xt) (3)

where et(a;xt;Pt) is the expected value of "t(a) conditional on alternative a being chosen under

decision rule Pt. Using these de�nitions, the discrete-choice DP problem can be represented as a

continuous-choice DP problem.

PROPOSITION 1. Consider the DP problem where the decision variable at period t is the CCP

Pt, the current payo¤ is �Pt (Pt;xt), and the transition probability of the state variables is f
P (xt+1

j Pt;xt). By de�nition, the Bellman equation of this DP problem is:

V Pt (xt) = max
Pt2[0;1]J

�
�Pt (Pt;xt) + �

Z
V Pt+1(xt+1) f

P (xt+1jPt;xt) dxt+1
�

(4)

The value functions V Pt (:) and the optimal decision rule P
�
t () that solve this continuous-choice

DP problem are integrals, over the distribution of "t, of the value functions and optimal decision

rules in the original discrete-choice DP problem, i.e., V Pt (xt) =
R
Vt(xt; "t) dG("t) and P �t (ajxt) =R

1f�t(xt; "t) = ag dG(xt; "t), where 1f:g is the indicator function.

Proof: In Aguirregabiria and Magesan (2013), Proposition 2(i).
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Proposition 1 establishes a very useful representation property of this class of discrete choice

models. The discrete-choice DP model has a representation as a continuous-choice DP problem.

We show next that we can exploit this representation to derive Euler equations in similar way as

in other continuous-choice DP models.

2.2 Euler Equations in single-agent discrete choice models

Given the CCPs at two consecutive periods, Pt and Pt+1, de�ne the two-period-forward transition

probability function:

fP(2)(xt+2 j Pt;Pt+1;xt) =
Z
fP (xt+2 j Pt+1;xt+1) fP (xt+1 j Pt;xt) dxt+1 (5)

The two-period-forward transition probability function is a convolution of the one-period transitions

at periods t and t+1. Consider the following constrained optimization problem: choose the CCPs

Pt and Pt+1 to maximize the sum of the expected and discounted payo¤s at periods t and t + 1

subject to the constraint that the distribution of the state variables at period t+ 2 stays the same

as under the optimal solution to the DP problem (4). This constrained optimization problem is

formally given by:

max
fPt;Pt+1g

�Pt (Pt;xt) + �
R
�Pt+1(Pt+1;xt+1) f

P (xt+1jPt;xt) dxt+1

subject to: fP(2)(xt+2 j Pt;Pt+1;xt) = f
P
(2)(xt+2 j P

�
t ;P

�
t+1;xt) for any xt+2

(6)

By construction, the unique solution to this problem is given by the CCP functions P�t and P
�
t+1

that solve the DP problem (4) at periods t and t + 1.5 Note that for each value of xt there is a

di¤erent constrained optimization problem, and therefore a di¤erent solution.

We can solve this problem using Lagrange method. There are two sets of Lagrange marginal

conditions of optimality: conditions with respect to Pt,

@�Pt
@Pt

+ �

Z
�Pt+1(Pt+1;xt+1)

@fP (xt+1jPt;xt)
@Pt

dxt+1 �
Z
�(xt+2)

@fP(2)(xt+2)

@Pt
dxt+2 = 0; (7)

and conditions with respect to Pt+1,

�

Z
@�Pt+1

@Pt+1(xt+1)
fP (xt+1jPt;xt)dxt+1 �

Z
�(xt+2)

@fP(2)(xt+2)

@Pt+1(xt+1)
dxt+2 = 0, (8)

where �(xt+2) is the Lagrange multiplier associated to the constrain for state xt+2. We de�ne as

Euler Equations those equations that result from the combination of Lagrange conditions (7) and

(8) and that do not include the Lagrange multipliers �. Euler equations are marginal conditions

of optimality for the DP problem that include payo¤s and probabilities at two consecutive periods

and, very importantly, do not include value functions or Lagrange multipliers. Not every DP
5Of course, if the DP problem is stationary, then this solution will be such that P�t = P

�
t+1.
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problem admits a representation in terms Euler equations. For the rest of this subsection, we

present conditions for the derivation of these equations in our model and a detailed description of

the derivation.

First of all, it is important to distinguish between endogenous and exogenous state variables.

The vector xt has two subvectors, yt and zt, such that fx(xt+1jat;xt) = fy(yt+1jat;yt) fz(zt+1jzt).
The vector yt contains endogenous state variables that evolve according to a controlled Markov

process that depends on the action at. The vector zt contains exogenous state variables that follow

a stochastic process that does not depend on actions at or on the endogenous state variables. We

do not impose any restriction on the vector of exogenous state variables, as it can include both

continuous and discrete variables, nor do we place restrictions on the transition probability function

fz. However, the derivation of Euler equations requires conditions on the stochastic process of the

endogenous state variables.

DEFINITIONS. (i) Y is the set of vectors in the support of the endogenous state vector yt. (ii)

For a given vector yt, let Y(1)(yt) � Y be the set with all the vectors yt+1 with fy(yt+1jat;yt) >
0 for some value of at. (iii) Similarly, for given yt, let Y(2)(yt) � Y be the set with all the

vectors yt+2 with Pr(yt+2jat; at+1;yt) > 0 for some value of at and at+1. (iv) efy(yt+1ja;yt) is the
�di¤erential" transition probability fy(yt+1jat;yt)�fy(yt+1j0;yt), where using choice alternative 0
as the reference or baseline is arbitrary. (v) eF(yt) is a matrix with elements efy(yt+2ja;yt+1) where
the columns correspond to all the values yt+2 2 Y(2)(yt) leaving out one, and the rows correspond
to all the values (a;yt+1) 2 [A� f0g]� Y(1)(yt).

The following assumption establishes su¢ cient conditions for the existence of Euler equations

in our model.

ASSUMPTION EE. (1) The vector of endogenous state variables yt has discrete (not necessarily

�nite) support Y. (2) Matrix eF(yt) is full column rank.
As will become more clear below in the derivation of the Euler Equation representation, we leave

out one element yt+2 from the set Y(2)(yt) in the construction of the matrix eF(yt) because given
(say) the �rst jY(2)(yt)j � 1 restrictions on the two periods ahead transition function in problem 6,

the last restriction is automatically satis�ed, because the two periods ahead transition probabilities

must sum to one. As such we only need jY(2)(yt)j � 1 linearly independent columns.
We now draw on examples from commonly used models in empirical IO to provide some intuition

for Assumption EE-2, before going on to show how it allows for the Euler Equation representation.

EXAMPLE 1 (Rust (1987) Bus Engine Replacement Problem). In this example, the endogenous

state variable yt is the mileage on the bus engine. Suppose that the space of possible mileages is given

by the discrete set Y = f0; 1; 2; :::g, and that mileage follows a transition rule yt+1 = (1�at)�yt. The
transition probability function is f(yt+1j1; yt) = 1fyt+1 = 0g and f(yt+1j0; yt) = 1fyt+1 = yt + 1g.
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Then, for yt = y � 0 we have that Y(1)(yt) = f0; y + 1g and Y(2)(yt) = f0; 1; y + 2g. Without
loss of generality, we leave out y + 2 from the set Y(2)(yt). De�ne ef(yt+2jyt+1) = f(yt+2j1; yt+1)�
f(yt+2j0; yt+1) such that in this model ef(yt+2jyt+1) = 1fyt+2 = 0g � 1fyt+2 = yt+1 + 1g and the
matrix eF(y) is given by:

eF(y) =

" ef(yt+2 = 0 j yt+1 = 0) ef(yt+2 = 1 j yt+1 = 0)ef(yt+2 = 0 j yt+1 = y + 1) ef(yt+2 = 1 j yt+1 = y + 1)
#
=

�
1 �1
1 0

�
(9)

In this example, the matrix eF(yt) clearly has full column rank.
EXAMPLE 2 (Dynamic model of entry and exit). In this example, the endogenous state variable

yt is the incumbency status of the �rm such that Y = f0; 1g. The transition function is given by
yt+1 = at such that f(yt+1jat; yt) = 1fyt+1 = atg. Unlike the previous example, in this case the sets
Y(1)(yt) and Y(2)(yt) are independent of yt and Y(1)(yt) = Y(2)(yt) = Y. Without loss, we leave out
yt+2 = 1 from the set Y(2)(yt). The di¤erential transition probability is ef(yt+2jyt+1) = 1fyt+2 =
1g � 1fyt+2 = 0g, and the transition matrix eF(y) is just the column vector ( ef(0j0); ef(0j1)) =
(�1;�1)0.

Note that when the set Y(2)(yt) has only two elements for any yt 2 Y, Assumption EE-2 is
automatically satis�ed because eF(y) has only one column and it is di¤erent to zero. Clearly, if the
matrix eF(y) has more columns than rows EE-2 can not be satis�ed because the column rank is at
most equal to the number of rows. As such, a necessary condition for EE-2 is that J � jY(1)(yt)j �
jY(2)(yt)j�1. In the case of a binary choice model, this condition is jY(1)(yt)j � jY(2)(yt)j�1. What
this means is that the set of possible values of the endogenous state variable two periods forward,

Y(2)(yt), can at most have one more value than the set of possible values of yt one period forward
- the set of possible values of y can only increase by one each time period.

PROPOSITION 2. Under Assumption EE the marginal conditions for the maximization of the

Lagrangian function in (6.) imply the following Euler equations. For every value of xt:

@�Pt (Pt;xt)
@Pt(xt)

+ �
P
xt+1

h
�Pt (Pt+1;xt+1)�m(xt+1)0

@�P
t+1(zt+1)

@Pt+1(zt+1)

i ef(yt+1ja; xt) fz(zt+1jzt) = 0 (10)

where @�P
t+1(zt+1)=@Pt+1(zt+1) is a column vector with dimension J jY(1)(yt)j � 1 that contains

the partial derivatives f @�Pt+1(yt+1; zt+1)= @Pt+1(a j yt+1; zt+1) g for every action a > 0 and

every value yt+1 2 Y(1)(yt) that can be reached from yt, and �xed value for zt+1; and m(xt+1) is

a J jY(1)(yt)j � 1 vector such that m(xt+1) � fPt+1� [eFt+1�eFt+1]�1 eFt+1�, where f et+1 is the vector
of transition probabilities ffP (yt+2 j xt+1) : yt+2 2 Y(2)(yt)g, and eFt+1 is the matrix eF(yt) of
di¤erential transition probabilities ef(yt+2ja;xt+1) de�ned above.
Proof: In Aguirregabiria and Magesan (2013), Proposition 3.
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EXAMPLE 3 (Machine replacement model). Consider the model in Example 1. Taking into account

the form of the matrix eF(y) in this model, it is possible to show that the Euler equation for this
model is:

@�Pt
@Pt(1jxt) + � Et

�
�Pt+1(1; zt+1)��Pt+1(yt + 1; zt+1)

�
+� Et

h
@�Pt+1(1;zt+1)

@Pt+1(1j1;zt+1)Pt+1(0j1; zt+1)�
@�Pt+1(yt+1;zt+1)

@Pt+1(1jyt+1;zt+1)Pt+1(0jyt + 1; zt+1)
i
= 0

(11)

where we use Et(:) to represent in a compact form the expectation over the distribution of fz(zt+1jzt).
Suppose that the unobservables are i.i.d. extreme value distributed with dispersion parameter �".

Then, the marginal expected pro�t @�Pt =@Pt(1jxt) is equal to � (1;xt)� � (0;xt)� �" [lnPt(1jxt)�
lnPt(0jxt)], and operating in the previous expression, it is possible to obtain the following Euler
equation: h

� (1; yt; zt)� � (0; yt; zt)� �" ln
�

Pt(1jyt;zt)
1�Pt(1jyt;zt)

�i
+

� Et
h
� (1; 1; zt+1)� � (1; yt + 1; zt+1)� �" ln

�
Pt+1(1j1;zt+1)

Pt+1(1jyt+1;zt+1)

�i
= 0

(12)

EXAMPLE 4. Consider binary choice model of entry/exit in Example 2. The Euler equation for

this model is:

@�Pt
@Pt(1jxt) + � Et

�
�Pt+1(1; zt+1)��Pt+1(0; zt+1)

�
+

� Et
�
@�Pt+1(0;zt+1;Pt+1)

@Pt+1(1j0;zt+1) Pt+1(1j0; zt+1)�
@�Pt+1(1;zt+1;Pt+1)

@Pt+1(1j1;zt+1) Pt+1(1j1; zt+1)
�

= 0

(13)

Finally, for the logit version of this model the formula for this Euler equation is:h
� (1; yt; zt)� � (0; yt; zt)� �" ln

�
Pt(1jyt;zt)
1�Pt(1jyt;zt)

�i
+

� Et
h
� (1; 1; zt+1)� �t (1; 0; zt+1)� �" ln

�
Pt+1(1j1;zt+1)
Pt+1(1j0;zt+1)

�i
= 0

(14)

2.3 Euler Equations in Dynamic Games

2.3.1 Continuous decision/state dynamic games

Consider a two player dynamic game. The two players are represented by the indexes i and j,

respectively. The period payo¤ function of player i is �i(ait; ajt; yit), where �i is a twice continu-

ously di¤erentiable real-valued function, variables ait 2 R and ajt 2 R represent the decisions of
players i and j, and yit 2 R is the endogenous state variable for player i. For concreteness, we

consider the case where yit+1 = �i yit + ait, where �i 2 (0:1) is a parameter. For instance, this
framework can represent an investment game played between two �rms in an oligopoly industry,

where yit represents a �rm�s stock of a certain capital equipment, ait is the amount of investment

9



(or disinvestment) at period t, and �i is the exogenous depreciation rate of capital. For the sake of

notational simplicity, we omit here the exogenous state variables. The payo¤ relevant state vari-

ables of the model are (yit; yjt). A Markov Perfect Equilibrium (MPE) in this dynamic game can

be characterized in terms of a pair of strategy functions f�i(yit; yjt); �j(yit; yjt)g such that �i and
�j are functions from R2 into R1. Given an arbitrary strategy of player j, say �j , let V �i (yit; yjt)
be player i�s value function, i.e., the value associated to his best response. This value function is

the solution to the following Bellman equation:

V �i (yit; yjt) = max
ait2R

f �i(ait; �j(yit; yjt); yit) + � V �i (�i yit + ait, �j yjt + �j(yit; yjt)) g (15)

For notational convenience, de�ne ��it(ait; yit; yjt) � �it(ait; �j(yit; yjt); yit), such that
d��it
dyit

�
@�it
@yit

+
@�it
@ajt

@�jt
@yit

and
d��it
dyjt

� @�it
@ajt

@�jt
@yit

. For a given player, say i, we can obtain: the marginal

condition of optimality with respect to ait, in equation (16)(a); and the envelope conditions with

respect to the endogenous state variables yit and yjt, in equations (16)(b) and (16)(c).

(a)
@�it
@ait

+ �
@V �it+1
@yit+1

= 0

(b)
@V �it
@yit

=
d��it
dyit

+ �
@V �it+1
@yit+1

�i + �
@V �it+1
@yjt+1

@�jt
@yit

(c)
@V �it
@yjt

=
d��it
dyjt

+ �
@V �it+1
@yjt+1

�
�j +

@�jt
@yjt

�
(16)

We can combine these three conditions to obtain the following equation that does not involve the

value function but only marginal period pro�ts.

@�it
@ait

+ �

�
@�it+1
@ait+1

�i �
d��it+1
dyit+1

�
�

�
@�jt+1
@yit+1

�
r�jt+2

�
@�it+1
@ait+1

+ �

�
@�it+2
@ait+2

�i �
d��it+2
dyit+2

��
� �

d��it+2
dyjt+2

�
= 0

(17)

where r�jt+2 � [�j + @�jt+2=@yjt+2] =@�jt+2=@yit+2. We denote this equation the Euler equation of
player i in this dynamic game. Note that when @�jt+1=@yit+1 = 0, there are not dynamic strategic

interactions between players and the Euler equation becomes the standard one in a single-agent

model, i.e.,
@�it
@ait

+ �

�
@�it+1
@ait+1

�i �
@�it+1
@yit+1

�
= 0. In contrast to the single-agent case where the EE

involves marginal payo¤s at two consecutive periods, this EE involves marginal payo¤s at three

periods.

2.3.2 Discrete Choice/State Dynamic Games

Consider now a binary choice version of the previous two player game. The period payo¤ function

of player i is �i(ait; ajt; yit) + "it(ait), where ait 2 f0; 1g represents the decision of player i, and
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yit+1 = ait, i.e., a market entry game. "it(0) and "it(1) are private information state variables that

are i.i.d. over players and over time. A MPE in this dynamic game can characterized in terms of

a pair of vectors of probabilities Pi � fPi(yt) : yt 2 f0; 1g2g and Pj � fPj(yt) : yt 2 f0; 1g2g.
Let �Pi (Pi;Pj ,yt) be the expected payo¤ of player i (before the realization of "�s) if players behave

according to their CCPs (Pi;Pj). Given an arbitrary strategy of player j, say Pj , let V Pi (yt) be

player i�s value function, i.e., the value associated to his best response. This value function is the

solution to the following Bellman equation:

V Pi (yt) = max
Pit

�
�Pi (Pit;Pj ;yt) + � E

�
V Pi (yt+1) j Pit;Pj ;yt

� 	
(18)

where

E
�
V Pi (yt+1) j Pit;Pj ;yt

�
= (1� Pit(yt))

�
(1� Pj(yt)) V Pi (0; 0) + Pj(yt) V Pi (0; 1)

�
+ Pit(yt))

�
(1� Pj(yt)) V Pi (1; 0) + Pj(yt) V Pi (1; 1)

� (19)

As in the single-agent discrete choice/state case, the derivation of Euler equations in a dynamic

game with discrete choice/state is based on the de�nition of a constrained optimization problem.

The key features of this constrained optimization problem are: (1) the objective function is the

expected and discounted payo¤ during three consecutive periods; (2) the constraint establishes that

the distribution of the endogenous state variables at the end of these three periods should be same

as in the equilibrium of the dynamic game; and (3) the choice variables are player i�s CCPs Pit,

Pit+1, and Pit+2. Formally, this constrained optimization problem is (omitting Pj as an argument

for notational simplicity):

max
fPit;Pit+1;Pit+2g

�Pi (Pit;yt) + �E
�
�Pi (Pit+1;yt+1) jPit;yt

�
+ �2E

�
�Pi (Pit+2;yt+2) jPit;Pit+1;yt

�
subject to: f(3)(yt+3 j Pit;Pit+1;Pit+2;yt) = f(3)(yt+3 j P�i ;P�i ;P�i ;yt) for any yt+3

where f(3)(yt+3 j Pit;Pit+1;Pit+2;yt) is the distribution of yt+3 conditional on yt and induced by
the CCPs Pit; Pit+1; Pit+2 and Pj . This three-period-forward transition probability function is a

convolution of the one-period transitions at periods t, t+ 1, and t+ 2.

f(3)(yt+3jPit;Pit+1;Pit+2;yt) �
X
yt+2

f(1) (yt+3jPit+2;yt+2)

24X
yt+1

f(1) (yt+2jPit+1;yt+1) f(1) (yt+1jPit;yt)

35
with

f(1)(y
0jPi;y) � (1� Pi(y))1�y

0
i Pi(y)

y0i (1� Pj(y))1�y
0
j Pj(y)

y0j

By construction, the unique solution to this problem is Pit = Pit+1 = Pit+2 = P�i , where P
�
i is

the best response probability of player i in the in�nite horizon dynamic game. The Euler equation

for player i is the result of combining three sets of Lagrange marginal conditions of optimality: the

marginal conditions with respect to (a) Pit, (b) Pit+1, and (c) Pit+2.

11



2.4 Relationship between Euler Equations and other CCP representations

Our derivation of Euler equations for DDC models above is related to previous work by Hotz and

Miller (1993), Aguirregabiria and Mira (2002), and Arcidiacono and Miller (2011). These papers

derive representations of optimal decision rules using CCPs and show how these representations

can be applied to estimate DDC models using simple two-step methods that provide substantial

computational savings relative to full-solution methods. In these previous papers, we can distin-

guish three di¤erent types of CCP representations of optimal decisions rules: (1) the present-value

representation; (2) the terminal-state representation; and (3) the �nite-dependence representation.

The present-value representation consists of using CCPs to obtain an expression for the expected

and discounted stream of future payo¤s associated with each choice alternative. In general, given

CCPs, the valuation function can be obtained recursively using its de�nition. And given this

valuation function we can construct the agent�s optimal decision rule (or best response) at period t

given that he believes that in the future he will behave according to the CCPs in the vector P. This

present-value representation is the CCP approach more commonly used in empirical applications

because it can be applied to a general class of dynamic discrete choice models. However, this

representation requires the computation of present values and therefore it is subject to the curse of

dimensionality. In applications with large state spaces, this approach can be implemented only if it

is combined with an approximation method such as the discretization of the state space, or Monte

Carlo simulation (e.g., Hotz et al, 1995, and Bajari et al., 2007). In general, these approximation

methods introduce a bias in parameter estimates.

The terminal-state representation was introduced by Hotz and Miller (1993) and it applies

only to optimal stopping problems with a terminal state. The �nite-dependence representation

was introduced by Arcidiacono and Miller (2011) and applies to a particular class of DDC models

with the �nite dependence property. A DDC model has the �nite dependence property if given

two values of the decision variable at period t and their respective paths of the state variables

after this period, there is always a �nite period t0 > t (with probability one) where the state

variables in the two paths take the same value. The terminal-state and the �nite-dependence CCP

representations do not involve the computation of present values, or even the estimation of CCPs

at every possible state. This implies substantial computational savings as well as avoiding biases

induced by approximation errors.

The system of Euler-equations that we have derived in Proposition 3 can be seen also a CCP

representation of the optimal decision rule in a DDC model. Our representation shares all the

computational advantages of the terminal-state and �nite-dependence representations. However,

in contrast to the terminal-state and �nite-dependence, our Euler equation representation applies

to a general class of DDC models. We can derive Euler equations for any DDC model where the

unobservables satisfy the conditions of additive separability in the payo¤ function, and conditional
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independence in the transition of the state variables.

3 Policy Iteration mappings

Consider the Euler equation in the machine replacement model of Examples 1 and 3:h
� (1; yt; zt)� � (0; yt; zt)� �" ln

�
Pt(1jyt;zt)
1�Pt(1jyt;zt)

�i
+

� Et
h
� (1; 1; zt+1)� � (1; yt + 1; zt+1)� �" ln

�
Pt+1(1j1;zt+1)

Pt+1(1jyt+1;zt+1)

�i
= 0

(20)

Solving for Pt(1jyt; zt) we can get the following expression:

Pt(1jyt; zt) =
exp

n
�(1;yt;zt)��(0;yt;zt)

�"
+ � Et

h
�(1;1;zt+1)��(1;yt+1;zt+1)

�"
� ln

�
Pt+1(1j1;zt+1)

Pt+1(1jyt+1;zt+1)

�io
1 + exp

n
�(1;yt;zt)��(0;yt;zt)

�"
+ � Et

h
�(1;1;zt+1)��(1;yt+1;zt+1)

�"
� ln

�
Pt+1(1j1;zt+1)

Pt+1(1jyt+1;zt+1)

�io
(21)

The right-hand-side of this equation describes a function �(xt;Pt+1) from the vector of CCPs at

period t + 1, Pt+1, into the probability space, such that �(xt; :) : [0; 1]jX j ! [0; 1]. Let �(P) be

the vector-valued function that consists of the collection of the functions �(xt; :) for every value of

xt in the state space X : �(P) � f�(xt;P) : for any xt 2 Xg. By de�nition, �(P) is a �xed point
mapping in the probability space [0; 1]jX j. Using this mapping we can represent in the following

vector form the relationship between CCPs at periods t and t+ 1 implied by the EE as follows:

Pt = �(Pt+1) (22)

In the stationary version of the model (i.e., in�nite horizon and time-homogeneous payo¤ function),

the optimal CCPs are time invariant: Pt = Pt+1. Therefore, expression (22) describes the optimal

CCPs as a �xed point of the mapping �. We denote � as the Euler Equation - Policy Iteration

mapping (EE-PI) mapping.

PROPOSITION 3. The EE-PI is a contraction mapping. The optimal vector of CCPs that solves

the dynamic decision problem, P�, is the only �xed point of the EE-PI mapping.

Proof: In the Appendix.

A corollary of Proposition 3 is that successive iterations in the EE-PI mapping is a method to

solve this discrete choice dynamic programming problem. Below we compare this method to the

most commonly used methods of successive approximation to the value function (i.e., iterations in

the Bellman equation), and iteration in the standard best respond mapping.
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4 Estimation of Counterfactuals

4.1 GMM estimation of structural parameters

Suppose that the researcher�s dataset consists of panel data of N agents over T periods of time with

information on agents�actions and state variables, f ait ; xit : i = 1; 2; :::; N ; t = 1; 2; :::; Tg. Here
we consider the typical sample in a single-agent model where the number of agents N is large, and

the number of time periods is typically short. The researcher is interested in using this sample to

estimate the structural parameters in preferences, transition probabilities, and the discount factor.

Let � be the vector of structural parameters. We describe here the GMM estimation of these

structural parameters using moment restrictions from the Euler equations derived above.

The Euler equations that we have derived imply the following orthogonality conditions: E(
�(ait;xit;xit+1;Pit; Pit+1; �) j ait;xit) = 0, where

�(ait;xit;xit+1;Pit; Pit+1; �) � @�Pt
@Pt(aitjxit) + �

h
�Pt+1(xit+1)�m(xit+1)0

@�P
t+1(zit+1)

@Pt+1(zit+1)

i ef(yit+1jait;xit)
f(yit+1jait;xit)

(23)

Note that this orthogonality condition comes from the Euler equation in Proposition 2, but we

have made two changes. First, we have included the expectation E( :jait;xit) that replaces the sumP
xit+1

and the distribution of xit+1 conditional on (ait;xit), i.e., f(yit+1jait;xit) fz(zit+1jzit). And
second, the Euler equation applies to any hypothetical choice, a, at period t, but in the orthogonality

condition E( �(ait;xit;xit+1;Pit; Pit+1; �) j ait;xit) = 0, we consider only the actual/observed choice
ait.

Given these conditions, we can construct a consistent an asymptotically normal estimator of �

using a semiparametric two-step GMM. The �rst step consists in the nonparametric estimation of

the CCPs Pt(ajx) � Pr(ait = a j xit = x). Let bPt;N � f bPt(ajx)g be a vector of nonparametric
estimates of CCPs for any choice alternative a and any value of x observed in the sample. For

instance, bPt(ajx) can be a kernel (Nadaraya-Watson) estimator of the regression between 1fai = ag
and xit. Note that we do not need to estimate CCPs at states which are not observed in the sample.

For simplicity, suppose that the sample includes only two periods, t and t+1. Let bPt;N and bPt+1;N
be vectors with the nonparametric estimates. In the second step, the GMM estimator of � is:

�̂N = argmin
�2�

m0
N

�
�; bPt;N ; bPt+1;N� 
N mN

�
�; bPt;N ; bPt+1;N� (24)

where mN (�;Pt;Pt+1) is the vector of sample moments:

mN (�;Pt;Pt+1) =
1

N

NX
i=1

Z(ait;xit) �(ait;xit;xit+1;Pit; Pit+1; �) (25)

Z(ait;xit) is a vector of instruments, i.e., known functions of the observable decision and state

variables at period t. As in the case of the static ARUM, this semiparametric two-step GMM
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estimator is consistent and asymptotically normal under mild regularity conditions. This two-step

semiparametric estimator is root-N consistent and asymptotically normal under mild regularity

conditions (see Theorems 8.1 and 8.2 in Newey and McFadden, 1994). The variance matrix of this

estimator can be estimated using the semiparametric method in Newey (1994), or as recently shown

by Ackerberg, Chen, and Hahn (2012) using a computationally simpler parametric-like method as

in Newey (1984).

The estimation based on the moment conditions provided by the Euler-equation, or terminal-

state, or �nite-dependence representations imply an e¢ ciency loss relative to estimation based on

present-value representation. As shown by Aguirregabiria and Mira (2002, Proposition 4), the

two-step pseudo maximum likelihood estimator based on the CCP present-value representation is

asymptotically e¢ cient (equivalent to the maximum likelihood estimator). This e¢ ciency property

is not shared by the other CCP representations. Therefore, there is a trade-o¤ in the choice between

CCP estimators based on Euler equations and on present-value representations. The present value

representation is the best choice in models that do not require approximation methods. However,

in models with large state spaces that require approximation methods, the Euler equations CCP

estimator can provide more accurate estimates.

4.2 Pseudo Maximum Likelihood estimator based on EE-PI mapping

Let ZN be the set with all the values of the vector of exogenous state variables z that we observe

in the sample: ZN � fzit; zit+1 : i = 1; 2; :::; Ng. Given ZN , let PN be the vector of CCPs at every
possible action and endogenous state variable but only at the values of the exogenous state variables

observed in the sample: PN � fP (ajy; z) : (a; y; x) 2 A � Y � ZNg. We de�ne a sample-based
version of EE-PI mapping that is de�ned on PN . For our example,

�N (yt; zt;P; �) =
exp

n
�(1;yt;zt;�)��(0;yt;zt;�)

�"
+ �EN;zt

h
�(1;1;zt+1;�)��(1;yt+1;zt+1;�)

�"
� ln

�
P (1j1;zt+1)

P (1jyt+1;zt+1)

�io
1 + exp

n
�(1;yt;zt;�)��(0;yt;zt;�)

�"
+ �EN;zt

h
�(1;1;zt+1;�)��(1;yt+1;zt+1;�)

�"
� ln

�
P (1j1;zt+1)

P (1jyt+1;zt+1)

�io
(26)

where EN;z(:) represents the sample counterpart of the conditional expectation over the distribution
of zt+1 conditional on zt = z, i.e., for an arbitrary function h(zt+1), EN;z(h(zt+1)) =

PN
i=1wN (zit�z)

h(zit+1), where wN (zit�z) is a weighting function such as wN (zit�z) = 1fzit�z = 0g=
PN
j=1 1fzjt�

z = 0g (i.e., frequency estimator), or wN (zit � z) = K
�
zit�z
bN

�
=
PN
j=1K

�
zjt�z
bN

�
(i.e., Kernel

estimator). Given �N (yt; zt;P; �), we can de�ne the sample-based EE-PI mapping as:

�N (P; �) � �N (a; y; z;P; �) : (a; y; x) 2 A� Y � ZNg (27)

Note the dimension of the mapping �N is J � N � jYj that can be several orders of magnitude
smaller than the dimension of � is the dimension of Z is large relative to N .
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PROPOSITION 3. The sample-based EE-PI mapping �N is a contraction mapping, and it con-

verges uniformly in (P; �) to the true EE-PI mapping �:

�N (P; �)!p�uniformly �(P; �)

Proof: In the Appendix.

We can de�ne a two-step Pseudo Maximum Likelihood (PML) estimator of � using this sample-

based mapping. For arbitrary (PN ; �), de�ne the pseudo log-likelihood function:

QN (PN ; �) =

NX
i=1

ln�N (ait; yit; zit;PN ; �) (28)

Given a nonparametric estimator of PN , say bPN , the two-step PML is the value of � that maximizes
the pseudo likelihood, i.e.,b�N = argmax�QN (bPN ; �).
4.3 Estimation of counterfactuals

Given the sample and the estimator of the structural parameters �̂N , the researcher is interested

in estimating the vector of agents�s CCPs if we perturb the structural parameters from �̂N to an

alternative vector ��. Let P� � P(��) be this vector. For single-agent models, this vector is de�ned
as the unique �xed point in P of the contraction mapping �:, i.e., P(��) = �(P(��); ��).

In most empirical applications, the dimension of the state space, and in particular the dimension

of Z, is very large such that the exact computation of P(��) at every possible state is computation-
ally unfeasible. Here we consider the estimation of P(��) at the subset of state points that come

from the sample. More speci�cally, let ZN be the set with all the values of the vector of exogenous
state variables z that we observe in the sample: ZN � fzit; zit+1 : i = 1; 2; :::; Ng. The researcher
is interested in estimating the vector of 2N CCPs:

P�ZN = PZN (�
�) � fP (ajy; z; ��) : (a; y; x) 2 A� Y � ZNg (29)

Note that P�ZN is a subset of P�. Also, note that P�ZN includes all the possible values of the

endogenous decision and state variables but only only sample observations for the exogenous state

variables. The implicit assumption is that the counterfactual experiment from �̂N to �� does not

involve any change in the stochastic process of the exogenous state variables fz.

Here we show how we can use Euler equations to estimate the counterfactual P�ZN . The vector

of counterfactual probabilities P�ZN satis�es the orthogonality conditions from the Euler equations.

Our estimator of P�ZN is the unique �xed point of the empirical EE-PI mapping �N (P; ��), i.e.,

the estimator [P�ZN is implicitly de�ned as:

[P�ZN = �N
�
[P�ZN ; �

�
�

(30)
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In single-agent models, this condition uniquely identi�es the counterfactual P�ZN . For the derivation

of the statistical properties [P�ZN . An important property of this estimator is that it is consistent
regardless the dimension of Z. This property is not shared by other estimators based on other
approximations of the dynamic decision problem.

PROPOSITION 4. The vector of CCPs [P�ZN implicitly de�ned as the �xed point [P
�
ZN = �N

�
[P�ZN ; �

�
�

is a root-N consistent and asymptotically normal estimator of P�ZN .

We can use a policy iteration algorithm in the mapping �N (:; ��) to compute the counterfactual

experiment.6 This method implies computational savings with respect the standard approaches of

value function iteration or iterations in the standard best response mapping. First, note that we

do not have to compute in�nite-period-forward present values. An evaluation of the standard PI

mapping involves two steps: valuation iteration, i.e., given P we calculate the present values of

behaving according to these probabilities forever in the future; and policy improvement iteration,

i.e., given these present values, we calculate the best response today to these future valuations. The

EE-PI mapping has also this two steps, but the "valuation step" is relatively trivial because it only

involves the expectation of one-period forward payo¤s. This implies very substantial computational

savings. Second, in contrast to our method, other common methods su¤er of an approximation

bias: an asymptotic bias that does not go zero as the sample size increases and the degree of

approximation (e.g., number of Monte Carlo simulations) stays constant.

5 Monte Carlo Experiments

In this section we consider Monte Carlo experiments to study the performance of the EE-Policy-

Iteration method relative to standard policy iteration methods in the context of a simple dynamic

model of entry and exit. We study the performance of the methods in two distinct dimensions. First

we examine the di¤erences in the computational burdens that the two policy iteration methods

impose, as well as the sources of the di¤erences. The standard policy iteration mapping is a

composite mapping, as the policies are expressed in terms of value functions, which are themselves

expressed in terms of the policies. The EE-Policy-Iteration Mapping, by contrast, is not a composite

mapping. We would expect then that the steps to convergence using the standard mapping are

larger, meaning it requires fewer iterations than the EE-Policy-Iteration mapping, but each step is

potentially much more costly, making the relative total time to convergence ambiguous in principle.

We use the experiments to study the time per iteration and number of iterations each method

takes to convergence to get a better understanding of the computational costs. Second, we use the

experiments to evaluate the �nite sample properties of the estimators associated with each method.

6To save iterations, it seems natural to start iterating at the estimates of the CCPs under thet estimated values
of �̂N .
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The two policy iteration methods o¤er an interesting bias-variance trade o¤. The application of the

standard mapping typically requires the researcher to use approximation methods (i.e., simulation

or state-space reduction) which imply estimation errors that are potentially large. These errors

enter in a complicated, non-linear fashion into the probability estimates, and can lead to potentially

signi�cant bias. The EE-Policy-Iteration mapping is not subject to this bias, but, as the mapping

is derived from Euler Equations, it does not exploit all the restrictions that the model places on

the data. In this way the estimates associated with the EE-Policy-Iteration mapping are prone to

being higher variance than those of the standard mapping. We estimate counterfactual probabilities

using each method for a large number of simulated datasets, and study this trade-o¤.

5.1 Design

We consider a simple dynamic model of entry/exit. Let the action space be given by A = f0; 1g,
where at is the indicator of being active in a market or in some particular activity. The endogenous

state variable yt is the lagged value of the decision variable, yt = at�1, and it represents whether the

agent was active at previous period. The vector of observable state variables is given by xt = (yt; zt)

where zt is a vector of exogenous state variables. The vector zt is itself comprised by several

exogenous state variables, including the �rm productivity7, and market and �rm characteristics

that a¤ect variable pro�t, �xed cost, or/and entry costs. We specify each of these components in

turn.

We assume the following form of the variable pro�t function: V Pt = pt exp (� !t), where pt

is the market price pt and !t is a �rm productivity shock that varies across �rms in the same

market. The market price pt has the following form: pt = �V P0 + �V P1 z1t + �
V P
2 z2t, where z1t and

z2t are exogenous state variables (e.g., z1t is market size and z2t can be interpreted as measuring

the competition the �rm faces), and �V P1 and �V P2 are parameters. We assume the following form

for �xed cost, FCt = �FC0 +�FC1 z3t, and for the entry cost, ECt = �EC0 +�EC1 z4t, where z3t and z4t

are exogenous state variables, and ��s are parameters. Only �rms who were not active last period

(i.e., yt = 0) pay the entry cost. An active �rm earns a pro�t �(1;xt) + "t(1) where �(1;xt) =

V P t� FCt� ECt � (1� yt), and the payo¤ to being inactive is �(0;xt)+ "t(0), where we make the
normalization �(0;xt) = 0 for all possible values of xt. Finally we assume that "t(0) and "t(1) are

extreme value type 1 distributed with dispersion parameter �".

We assume that each of the 4 di¤erent market characteristics (z1; z2; z3; z4) take K possible

discrete values, Zj = fz(1)k ; z
(2)
k ; :::; z

(K)
k g such that jZj j = K for j = 1; :::; 4. We also assume that

! is a discrete random variable that takes R possible values. The dimension of the state space

jX j is then 2 �K4 � R. We assume the variables in the vector z are mutually independent. Each
7We treat productivity as �observable" but typically in real applications we will not have data on productivity

and we will have to recover it from data in a separate step.
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zkt follows an discrete-AR(1) process. Let ~zkt be an continuous �latent" variable that follows the

AR(1) process ~zkt = 
k0 + 

k
1 ~zkt�1 + ekt, where ekt � iid N(0; �2k). Then the transition probability

for the state variable zkt is given by

Pr(zkt+1 = z
0jzkt = z) =

8>>><>>>:
�
�
z0�
k0�
k1 z+(wk=2)

�k

�
if z0 = z

(1)
k

�
�
z0�
k0�
k1 z+(wk=2)

�k

�
� �

�
z0�
k0�
k1 z�(wk=2)

�k

�
if z

(2)
k � z0 � z(K�1)k

1� �
�
z0�
k0�
k1 z�(wk=2)

�k

�
if z0 = z

(K)
k

with wk =
z
(K)
k �z(1)k
K�1 . We assume that productivity !it also follows a discrete-AR(1) process. The

continuous �latent" variable ~!t follows the AR(1) process ~!t = 
!0 + 

!
1 ~!t�1 + e!t , where e

!
t �

iidN(0; �2e!), and the de�nition of the transition probabilities for the discrete variable is the same

as for the z0s variables. Finally, the transition of the endogenous state variable induced by the

CCP is the CCP itself, i.e., fP (yt+1jxt; P ) = P (xt) = Pr(at = 1jxt).
The Euler Equation for this model is the one in Example 2. We can represent this Euler equation

in the following compact form:

Efzt+1jztg
he�c (xt; �) + e�f (zt+1; �)� ln� P (xt;�)

1�P (xt;�)

�
� � ln

�
P (1;zt+1;�)
P (0;zt+1;�)

�i
= 0

where e�c (xt; �) � [� (1;xt)� � (0;xt)] =�", and e�f (zt+1; �) � � [� (1; 1; zt+1)� � (1; 0; zt+1)] =�",
and � represents the vector of structural parameters in the payo¤ function, i.e., � = (�; �V P0 ; �V P1 ;

�V P2 ; �FC0 ; �FC1 ; �EC0 ; �EC1 ; �")
0. Efzt+1jztg denotes the expectation operator over the distribution

of zt+1 conditional on zt. This EE implies the following EE-PI mapping:

�(xt;P; �) =
exp

ne�c (xt; �) + Efzt+1jztg he�f (zt+1; �)� � ln�P (1;zt+1;�)P (0;zt+1;�)

�io
1 + exp

ne�c (xt; �) + Efzt+1jztg he�f (zt+1; �)� � ln�P (1;zt+1;�)P (0;zt+1;�)

�io
5.2 Comparing solution methods

In this subsection we compare the computational burden using the standard PI mapping, 	(xt;P),

and the EE-PI mapping, �(x;P), both de�ned over the complete state space. The DGP process

used in this exercise is summarized in table 1.
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Table 1
Parameters in the DGP

Distribution of ": Extreme Value with �" = 1
Payo¤ Parameters: � = 1

�V P0 = 0:5; �V P1 = 1; �V P2 = �0:1
�FC0 = 0:5; �FC1 = 1
�EC0 = 1; �EC1 = 1;

Market size (z1): z1t is AR(1), 
0 = 0; 
1 = 0:6; �e = 1
Competition (z2): z2t is AR(1), 
0 = 0; 
1 = 0:6; �e = 1
Fixed Cost Shock (z3): z3t is AR(1), 
0 = 0; 
1 = 0:6; �e = 1
Entry Cost Shock (z4): z4t is AR(1), 
0 = 0; 
1 = 0:6; �e = 1
Productivity : !t is AR(1), 
0 = 0:2; 
1 = 0:9; �e = 1

Discount factor � = 0:95

We compare the cost associated with solving a �xed point of each method for 6 di¤erent dimen-

sions of the state space jX j: 64, 486, 2032, 6250, 15,552. Table 2 presents the time per iteration,
number of iterations and total computation time as a function of the state space dimensionality. For

each value of the state space dimensionality we started from ten di¤erent initial points in searching

for the �xed point. The numbers in this table are the average over these.
Table 2

Comparison of Standard and EE Policy Iteration Methods

Number Number Seconds Total Time
states Iterations Per Iteration Time (seconds) Ratio
jX j EE �(P) ST 	(P) EE �(P) ST 	(P) EE �(P) ST 	(P)

64 13.2 5 0.001 0.033 0.019 0.16 18.4

486 13 4.9 0.008 0.891 0.11 4.36 39.7

2032 13 5 0.067 9.984 0.87 49.91 57.3

6250 13 5 0.478 92.813 6.21 464.06 74.8

15552 13 5 3.169 564.798 41.20 2823.99 68.5

A single iteration in the EE-PI mapping is computationally cheaper than one iteration in the

standard (ST) PI method. The computational saving, per iteration, of EE-PI relative to ST-PI

comes from avoiding the computation of in�nite-period forward present values. This computational

saving, in CPU time, increases in a convex way with the dimension of the state space, and it becomes
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very substantial for large state spaces. For state space jX j = 15; 552, that is still quite small relative
to the dimensions that we �nd in some applications, the CPU seconds for one EE-PPI iteration is

3:1, while one ST-PI iteration requires 564:7 seconds.

The number of iterations to obtain convergence is larger for the EE-PI method than for the

standard PI: 13 versus 5. This is because the ST-PI is a stronger contraction than the EE-PI. To

compare the degree of contraction of the two mappings, we calculate the Lipschitz Constants of

the two PI mappings are c	(P) and c�(P) de�ned as:

c	(P) � supx

�
jj	3(x;P)�	2(x;P)jj

jj	(x;P)�Pjj

�

c�(P) � supx

�
jj�3(x;P)� �2(x;P)jj

jj�(x;P)�Pjj

� (31)

Table 3 reports the values of these constants, averaged over a random grid of values of P, for

di¤erent dimensions of the state space.

Table 3
Lipschitz Constants of the two PI mappings

Dimension jX j c� c	

64 0.085 0.007

486 0.053 0.004

2032 0.051 0.003

6250 0.059 0.004

15552 0.060 0.004

Very importantly, the EE-PI method shares a well-known property of the standard PI method

(see Rust, 1996): the number of iterations to convergence is very stable with respect to the di-

mension of the state space. In fact, in our numerical example the number of iterations of the two

methods remain constant at 5 and 13 iterations respectively. This property has two important

implications. First, for a large enough state space, the EE-PI method is computationally more

e¢ cient than the ST-PI method: their respective number of iterations stay constant but the cost

of one iteration in ST-PI increases faster with jX j than the cost of one EE-PI iteration. A second
implication has to do with the comparison between EE-PI and value function (or Bellman equation)

iteration as solution methods. Since the source of this computational savings per-iteration in EE-PI

is similar to the one in value function iteration (i.e., they both require computing only one-period
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forward expectations), one could be tempted to claim that the computational advantages (and

disadvantages) of EE-PI are similar to those of value function iteration. However, a key di¤erence

between these two solution methods is in the behavior of the number of iterations to convergence

when the state space increases. For the method of value function iterations, it is well known that

the number of iterations monotonically increases with the dimension of the state space. Therefore,

for large state space value function iteration can be substantially more expensive than EE-PI as a

solution method.

This intuition is con�rmed in tables 4 and 5. In table 4 we see compare the computational costs

of the value iteration method with the EE-PI method. Finding a �xed point in the space of value

functions requires hundreds of iterations while the EE-PI mapping requires only 13. Each value

function iteration is less costly than an EE iteration regardless of the size of the state space, but the

number of value iterations makes the total time required to �nd a �xed point using value iterations

as much as 20 times as large as the total time using the EE-PI mapping. In other words, although

each value iteration is less costly than each EE-PI iteration, the steps towards convergence using the

EE-PI mapping are signi�cantly larger than the steps towards convergence using value iterations.

This is made clear in table 5 when we compare the Lipschitz constants of the two mappings.
Table 4

Comparison of EE Policy Iteration and Standard Value Iteration Methods

Number Number Seconds Total Time
states Iterations Per Iteration Time (seconds) Ratio
jX j EE �(P) VF EE �(P) VF EE �(P) VF

64 13.2 310.3 0.001 0.0003 0.019 0.094 4.95

486 13 271.4 0.008 0.004 0.11 1.009 9.173

2032 13 280.2 0.067 0.046 0.87 12.756 14.662

6250 13 294.9 0.478 0.420 6.21 123.831 19.94

15552 13 295.9 3.169 2.877 41.20 851.599 20.67
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Table 5
Lipschitz Constants of the EE-PI and Value function mappings

Dimension jX j c� cV F

64 0.085 0.319

486 0.053 0.124

2032 0.051 0.192

6250 0.059 0.268

15552 0.060 0.284

5.3 Counterfactual experiment

As we are ultimately interested in using our framework to estimate counterfactual behavior, we now

study how the two methods perform relative to one another in answering an economically relevant

counterfactual policy question in the context of the simple dynamic entry-exit model presented

above. The counterfactual policy we consider is an increase in the cost of entry. The presence

of entry costs can generate misallocation in an industry. There may be potential entrants that

are more productive than incumbent �rms but are not willing to enter in the market and replace

the less e¢ cient �rms because the entry cost makes this unpro�table. However the presence of

entry costs makes exit less attractive to incumbent �rms, and in this way higher entry costs may

discourage productive incumbents from exiting. The net e¤ect of eliminating or reducing entry costs

on industry output and productivity is not unambiguous. We are interested in the quanti�cation

of this e¤ect.

Suppose that the industry consists of N potential entrants, indexed by i. Competition in this

industry is characterized by monopolistic competition, i.e., single-agent model. The expected value

of the total output produced by �rms active in the industry is:

Q(zt) = E

 
NX
i=1

ait exp (� !it) j zt

!
= N

Z
q(zt; !) exp (� !) f

�
!(!) d!

where f�! is the steady-state or ergodic distribution of !it, and q(z; !) is the steady-state probability

that a �rm is active when the exogenous state variables take the values (z; !), i.e., q(z; !) �
Pr(ait = 1jzt = z; !it = !). Note that q(z; !) is di¤erent from the CCP function because the

probability q(z; !) is not conditional on the �rm�s incumbent status at previous period. However,

by de�nition, the steady-state condition implies the following relationship between q(z; !) and the
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CCPs P (0; z; !) and P (1; z; !):

q(z; !) = (1� q(z; !)) P (0; z; !) + q(z; !) P (1; z; !) (32)

Rearranging we get:

q(z; !) =
P (0; z; !)

1� P (1; z; !) + P (0; z; !) (33)

Notice that the e¤ect of an increase in the entry cost on q(z; !) is ambiguous. This is because:

@q(z; !)

@EC
=

@P (0;z;!)
@EC (1� P (1; z; !)) + @P (1;z;!)

@EC P (0; z; !)�
1� P (1; z; !) + P (0; z; !)

�2 (34)

and @P (0;z;!)
@EC < 0 (a higher entry cost makes entry less attractive for new entrants) and @P (1;z;!)

@EC >

0 (a higher entry cost makes exit less attractive for incumbents). If increasing the entry cost

causes disproportionately more productive incumbents to stay in the market, higher entry cost

may actually increase output.8 We are interested in using this model to study the e¤ect of the

entry cost on expected total industry output: i.e., the e¤ect of a change in EC on Q(zt).

More speci�cally, the counterfactual experiment we consider is an increase in the entry cost

parameter �EC0 from 1 to 2:5. We consider a state space with jZ1j = jZ2j = jZ3j = jZ4j = j
j =
10, such that the number of points in the complete state space is jX j = 2 � 105. This is a realistic
size for interesting applications in economics. All other settings are as in table 1.

We simulate many sets of data, and compare the average (over the samples) answer to the coun-

terfactual question delivered by each method. For the purposes of illustration, Table 4 presents

the average (over Monte Carlo simulations) of several statistics that describe the factual and coun-

terfactual data generating processes: average probability of activity of being active,
P
it ait=NT ;

probability of exit,
P
it(1�ait)ait�1=

P
it ait�1; probability of entry,

P
it ait(1�ait�1)=

P
it(1�ait�1);

and measure of persistence in incumbent status, ^cov(ait; ait�1)= ^var(ait).

Table 6: Summary Statistics Describing the DGP

Probability Exit Entry Persistence
of Activity Probability Probability

Factual DGP 0.389 0.472 0.284 0.244

Counterfactual DGP 0.310 0.374 0.168 0.457

8Speci�cally, the sign of @
2q(z;!)
@EC@!

is also ambiguous. That is, it is not clear if an increase in the entry cost e¤ects
the steady state probability of observing a low productivity �rms more than the steady state probability of observing
a high productivity �rm. In principle these e¤ects could have opposite sign. This makes it unclear how average
output depends on the entry cost. Although the number of �rms increases, the new �rms may be disproportionately
less productive.

24



These descriptive statistics are consistent with what we expect. When entry costs increase,

potential entrants are less likely to enter, and potential exiters (incumbent �rms) are less likely to

exit. The activity decision is more persistent when entry costs are higher - �rms who are currently

out of the market are more likely to remain so, and similarly with incumbents. The net e¤ect of

the counterfactual is for activity to decrease.

To make a fair comparison of the two policy iteration mappings, we would like to keep the time

required to solve the �xed points roughly equal. We now describe in some detail how we do so.

De�ne the full space of the exogenous vectors (z; !) to be Z, and let ZN denote the set of points

that we observe in a given sample of size N : ZN = fz1; :::; zNg. Let cE 2 (0; 1] and cS 2 (0; 1]
be constants, and de�ne NE � int+(cEN) and NS � int+(cSN) where int+(x) represents the

smallest integer greater than or equal to x. That is, NE and NS are a fraction of the markets in

the data. Further, de�ne:

ZEN � fzit : t = 1; 2; i = 1; 2:::; NEg

ZSN � fzit : t = 1; 2; i = 1; 2:::; NSg

That is, ZEN is the set of exogenous vectors z observed over both periods in the �rst NE �rms,

and similarly for ZSN . In the Monte Carlo experiments we will solve the EE-mapping on the space
de�ned by ZEN and we will solve the ST-mapping on the space de�ned by ZSN . In order to keep the
computation time roughly constant across the two, we will choose cS < cE . That is, we will use a

smaller number of markets to de�ne the space on which we solve the standard mapping than we

do for the EE mapping.

To solve the mappings on these di¤erent spaces we must de�ne a transition function for each.

In the case of the EE-mapping we have for any value of the exogenous state vector today z and

tomorrow z0 such that z; z0 2 ZEN we de�ne:

bfEN (z0jz) �
PN
i=1K

�
zit�z
bN

�
1 fzit+1 = z0gPM

m=1K
�
zit�z
bN

�
and similarly for bfSN (z0jz). bfEN implies a matrix of dimension jZEN j� jZEN j while bfSN implies a matrix
of dimension jZSN j � jZSN j. Notice that we use all the simulated data to estimate both bfEN and bfSN .

The objects that we are interested in for the purposes of answering our counterfactual question

are: (1) the average probability of being active as a function of !:

E[q0(z; !)j!] =
Z
q0(z; !) f

�
z (z)dz ;

(2) the treatment e¤ect at the (population) average market type ~z:

TE(~z) = �(~z) =

Z �
qcf (~z; !)� q0(~z; !)

�
exp

�
� !
�
f�!(!) d! ;
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and (3) the average (over market types) treatment e¤ect:

ATE =

Z
�(z) f�z (z)dz

To study the relative ability of the two methods to answer counterfactual questions, we calculate

these objects using CP estimates from both the EE-PI mapping and the ST-PI mapping. Before

displaying the results, we discuss in some detail how we calculate these objects. For the calculation

of the average probability of activity as a function of productivity, we do the following. Consider

�rst the Euler Equation estimates. Let (zE ; !E) be a representative element on the grid ZEN . To
calculate the EE estimate of E[q0(z; !)j!] we �rst obtain

q̂EE(z; !) =
P̂EE(0; z; !)

1� P̂EE(1; z; !) + P̂EE(0; z; !)

for each (zE ; !E) 2 ZEN , where P̂EE represents the Euler Equation estimate of the choice probabil-
ities. Let f̂�E(z) represent the ergodic distribution of the vector of market characteristics z on the

space zEN . Then, we calculate:

ÊEE [q(z; !)j!] =
Z
q̂EE(z; !)f̂�E(z)dz

and similarly we can calculate the analogous object given the ST-PI mapping, ÊST [q(z; !)j!]. 9

With the estimate of the treatment e¤ect�(z) at each vector of market characteristics z in hand,

the EE and ST estimates of the Average Treatment E¤ect can be obtained simply by integrating

over the space of market characteristics using f�E(z) and f
�
S(z). The estimates of the treatment

e¤ect at the mean market type ~z require us to evaluate the EE and CP mappings at a point that

is potentially not in the sample.

9Note that an important di¤erence between the two estimates ÊEE [q(z; !)j!] and ÊST [q(z; !)j!] is the probability
distributionsf̂�E(z) and f̂

�
S(z) used to integrate over the space of market characteristics. As ZE

N will typically be much
larger than ZS

N (in order to keep the computation times the same) the di¤erences in the �nite sample properties
of the estimates ÊEE [q(z; !)j!] and ÊST [q(z; !)j!] will depend, to some extent, on the di¤erences in the estimates
f̂�E(z) and f̂

�
S(z). In particular, we have more observations for each probability we estimate in f̂

�
S(z) than we do in

f̂�E(z), and this should contribute to higher precision for the ST-PI estimates. Of course the fact that the grid ZE
N is

closer to the true grid than ZS
N contributes to lower bias in the case of the EE-PI mapping. One way to control for

these di¤erences, should we wish to do so, is to replace the estimated probabilities with the probabilities f�E(z) and
f�S(z) where:

f�E(z) =
f�(z)P

z02ZE
N
f�(z)

for anyz 2 ZE
N

f�S(z) =
f�(z)P

z02ZS
N
f�(z)

for anyz 2 ZS
N

That is, we normalize the true ergodic distribution so that it is a well-de�ned probability distribution on the respective
spaces ZE

N and ZS
N .
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5.3.1 Results

Table 5 presents the average and maximum (over the vector of exogenous variables) Root Mean

Squared Error (RMSE) and the Mean Absolute Bias (MAB) of the two methods based on 1; 000

Monte Carlo simulations from the DGP.

Table 7: Results from Monte Carlo Experiments

Parameter Method Average Average
root MSE MAB

E[q0(z; !)j!] ST-mapping 0.120 0.095
EE-mapping 0.032 0.026

TE(~z) ST-mapping 0.086 0.066
EE-mapping 0.045 0.036

ATE ST-mapping 0.059 0.039
EE-mapping 0.010 0.008

The results quite clearly indicate that the EE-method is considerably lower bias and MSE than

the ST-method in all cases. Moreover, the EE-PI took 1/5 as much time as the ST-PI did to yield

a �xed point (although the amount of time required to calculate a �xed point is very small in both

cases), meaning not only is the EE mapping do a better job of making counterfactual predictions

in a statistical sense, it does so quicker than the ST mapping does. While it is not so surprising

that the EE-mapping has lower bias, it is perhaps surprising how much lower the variance is. In

fact we can see that the proportion of the MSE due to variance in the estimates is much larger in

the case of the ST-mapping. This may be due to the fact that, as we use a much smaller number of

markets to de�ne the grid on which the ST-CPs are estimated, we expect more variance in the grid

over simulations, which would imply more variance in the estimates. This should be a concern for

researchers applying the standard policy iteration mapping using state space reduction methods.

Note as well, both methods are signi�cantly better at predicting the average treatment e¤ect than

the treatment e¤ect at the average. This is not so surprising. If the estimators over predict on

average at some points and under predict at others, some of this will be averaged away in the ATE,

but of course not for an estimate at one single point (the average).

6 Conclusion

TBW
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APPENDIX

[1] Euler equation dynamic game with continuous decision variable.

From equation (a), we have that
@V �it
@yit

=
�1
�

@�it�1
@ait�1

and �
@V �it+1
@yit+1

= �@�it
@ait

. Plugging these expres-

sions into equation (b), we obtain:

(b0)
�1
�

@�it�1
@ait�1

=
d��it
dyit

� @�it
@ait

�i + �
@V �it+1
@yjt+1

@�jt
@yit

Solving for �
@V �it+1
@yjt+1

in (b0), we get:

(b00) �
@V �it+1
@yjt+1

= �
�
�
@�jt
@yit

��1�@�it�1
@ait�1

+ �

�
@�it
@ait

�i �
d��it
dyit

��
Plugging equation (b00) in both the right-hand-side and the left-hand-side of equation (c), we get:

(c0)
�1
�

�
�
@�jt�1
@yit�1

��1�@�it�2
@ait�2

+ �

�
@�it�1
@ait�1

�i �
d��it�1
dyit�1

��

=
d��it
dyjt

�
�
�
@�jt
@yit

��1�@�it�1
@ait�1

+ �

�
@�it
@ait

�i �
d��it
dyit

���
�j +

@�jt
@yjt

�
Re-arranging terms and dating the equation two periods forward, we can re-write equation (c0) as:

@�it
@ait

+ �

�
@�it+1
@ait+1

�i �
d��it+1
dyit+1

�
�

�
@�jt+1
@yit+1

�
r�jt+2

�
@�it+1
@ait+1

+ �

�
@�it+2
@ait+2

�i �
d��it+2
dyit+2

��
� �

d��it+2
dyjt+2

�
= 0

where r�jt+2 � [�j + @�jt+2=@yjt+2] =@�jt+2=@yit+2.
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