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1. Introduction

Density is a fundamental characteristic of cities. In dense urban areas, workers are more produc-

tive, and a sophisticated literature relates much of this productivity premium to the advantages

of spatial proximity.1 Higher density may also improve consumers’ access to a variety of goods

and services (Glaeser, Kolko, and Saiz, 2001), but despite vigorous debate over the potential for

consumption amenities to drive urban success,2 direct evidence is scarce as to the origin and

importance of the consumption advantage of cities.

This paper sets out a new approach to estimating the consumption value of urban density. The

estimation uses travel data and exploits the recent availability of detailed online microgeographic

data on local businesses. While it is simple to compute the value of shorter trip times, my

methodology also allows me to estimate the gains from increased choice in denser areas (so-called

‘gains from variety’). I identify an individual’s willingness to pay for access to a preferred location

from the extra travel costs that she incurs to reach it. I provide estimates of the gains from density

in the us restaurant industry, a prominent part of the urban service sector.

This exercise is of interest for several reasons. American households spend a significant

share of their income on non-tradable services such as restaurants, live entertainment, and many

professional services (e.g. medical care) requiring face-to-face interactions, with restaurants alone

accounting for more than 5% of household expenditures. Non-tradables presumably represent

most of the consumption value of modern cities, given the dramatic decline in the cost of shipping

goods over the last century. My analysis highlights how urban density facilitates the movement

of people, on which much of the service sector depends.

Research on the consumption benefits of density also has important implications for our

understanding of travel behavior. The idea that urban density allows individuals to cheaply

substitute among travel destinations explains a striking feature of the data, namely that increasing

the density of available destinations fails to induce sizable reductions in trip times.3 Spatial

proximity to restaurants in urban areas could allow individuals to make very short trips to eat

1See for instance Melo, Graham, and Noland (2009) for a meta-analysis of estimates of agglomeration economies,
and Combes, Duranton, and Gobillon (2011) for a survey of key empirical issues.

2For instance, Clark (2003) shows that cities providing more natural and constructed amenities experience faster
population growth. Carlino and Saiz. (2008) find that metropolitan areas that are attractive to tourists (likely because
of consumer amenities) are also growing faster.

3I define density in terms of restaurants per minute of travel, not restaurants per mile. For instance, holding all else
constant a decrease in car travel speed reduces density.
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out, but I find that they often choose to benefit from higher restaurant density by visiting a

more distant location that they prefer. That is, the welfare gains from density are mostly gains

from variety, as opposed to travel time savings on each trip. This distinction is relevant to the

evaluation of policy proposals designed to reduce vehicle travel by encouraging higher density

living.

Finally, my results on the gains from variety in the service sector contribute to an emerging

literature estimating the gains from variety in consumer goods (Broda and Weinstein, 2006, 2010),

and provide empirical support for the widespread use of utility functions featuring a preference

for variety.4

To estimate the gains from density, I specify a discrete-choice model of demand for restaurants.

In the model, each restaurant receives a logit utility shock, and locations farther away from an

individual are more expensive because of travel costs. Individuals face a trade-off between the

gains from visiting a preferred restaurant and the costs of a long trip. The key parameter of

the model is an elasticity of substitution between restaurants, which I estimate by maximum

likelihood. This estimation does not require data on restaurant choice, only on trip length. If

individuals always travel to the closest restaurant, then restaurants must be perfect substitutes

and there are no gains from restaurant variety in dense areas, only savings through shorter trips.

If individuals take long trips to eat out, then restaurants are imperfect substitutes and gains from

variety are correspondingly large.5

Estimating a discrete-choice model for travel destinations requires not only data on travel be-

havior, but also comprehensive microgeographic data on the location of all destinations available

to an individual. The travel data is from the National Household Travel Survey (nhts), which

identifies trips to a restaurant and the location of an individual at the block group level. The nhts

also allows the estimation car travel speed in different areas. I collect data on each restaurant

online, from its Google Places page.6 I observe the exact location of almost all restaurants

(273,000 units) in 15 states representing 50% of the us population.7 For robustness tests and

4Preferences for variety are often modeled after Dixit and Stiglitz (1977). See Broda and Weinstein (2006) for an
empirical study of the gains from import variety, and Broda and Weinstein (2010) for an empirical study of the gains
from consumer goods variety.

5An endogeneity problem typically arises when estimating an elasticity of substitution, due to the unobserved
relationship between higher prices and better quality. In general, one should not interpret individuals’ insensitivity to
price differentials as a preference for variety, but rather as a willingness to pay for quality. With travel data however,
some variation in restaurant prices comes from transport costs that are plausibly unrelated to quality differentials.

6As of May 2012, Google’s local business pages are called Google+ Local pages.
7I choose these states because a vast majority of the trips in my travel data originate there. See section 3.
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extensions of the model, I also require data on restaurant characteristics. Each restaurant’s name

and category (e.g. ‘Pizza’) comes from its Google page. For a subset of my sample, there is

additional information such as meal price and quality ratings on Yelp, a popular review website.

To obtain estimates of the consumption value of urban density, I derive a variety-adjusted

restaurant price index from the logit model, which turns out to be identical to the ‘love-of-variety’

constant elasticity of substitution (ces) price aggregator.8 The restaurant price index in a location

is low if there are many restaurants nearby. Higher travel speed also decreases the price index.

I find large variations across areas in the price index, generating substantial spatial welfare

differentials. The gains from density are very localized, and much of the variation in the price

index occurs within large metropolitan areas (msa). For a car driver, the price index generally

drops by more than 20% from a city’s outskirts to its downtown. Considering restaurants only,

such density increase represents yearly gains between $300 and $500 for an average household.

These findings are consistent with Albouy and Lue’s (2011) quality of life estimates, which are

higher in denser areas and vary almost as much within metropolitan areas as across them.9

There are few existing estimates with which to compare my results on the consumption

benefits of density. A large literature measures the productivity advantages of cities, but their

consumption advantages has received less academic attention. Handbury and Weinstein (2012)

find that residents of larger cities face a lower price index for consumer goods (groceries), con-

trolling for store amenities, individual characteristics and differences in the number of varieties

available. Their price index drops by 10% from New York to Des Moines, the smallest msa in their

sample. They estimate that New York residents have access to 97,000 types of groceries within

the msa, versus 32,000 in Des Moines, leading to a 3% decrease in the price index that is purely

due to variety. While these numbers are estimated for large areas and do not take transport

costs into account, simple comparisons with my results for the restaurant industry hint at much

larger geographic welfare differentials in the non-tradable service sector. Residents of rural areas

sometimes face a restaurant price index 100% higher than that in the densest urban areas, in part

because of hefty transport costs to reach even the closest locations. Many residents of the New

York or Los Angeles metropolitan areas have access to more than 10,000 restaurants within 45

8Anderson, de Palma, and Thisse (1992) prove that the under a linear utility specification - that I use - the logit and
ces model lead to the same choice probabilities.

9Albouy and Lue (2011) obtain quality of life estimates using wage, housing-cost and commuting-cost differentials.
Regressions on these quality of life estimates also suggest that individuals are willing to pay for access to a high
density of bars and restaurants.
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minutes of car travel, and would face at least a 25% reduction in the restaurant price index from

moving anywhere in Des Moines, mostly because of a decrease in variety. Des Moines offers

faster car travel, but still only 650 restaurants within 45 minutes of travel. These results support

the argument in Glaeser et al. (2001) that cities have an edge in the service sector because of lower

transport costs in denser areas.

To obtain an aggregate measure of the welfare gains from restaurant variety, I compute how

much Americans are willing to pay each year to access additional restaurants beyond the closest

eating option available. I find values ranging from $80 to $160 billion. Realizing these (net)

benefits requires 5.6 billion hours of extra travel past the nearest restaurant, worth $67 billion at

a value of time of $12 per hour. Such non-work trips represent 70% of all travel in the us, and

the overwhelming majority of these trips are by car. Private vehicles are responsible for roughly

20% of national greenhouse gas emissions from fossil fuels, as well as externalities in the form

of pollution, accidents and congestion.10 From a policy-making perspective, my results draw

attention to a major obstacle facing any attempt at curbing vehicle travel: travel costs are low

relative to the gains from variety, and especially so in urban areas.

The logit model’s estimates of the gains from density implicitly assume that individuals benefit

from density in part by visiting preferred destinations. If the model is correct, then increasing

restaurant density should induce little reduction in travel times. The data allow me to test this

hypothesis. The model predicts the probability of a trip to each restaurant in each area, for a given

estimate of the elasticity of substitution between restaurants. Knowing the predicted probability

of a trip of each length for each traveler in my sample, I can obtain a set of predicted trip times

for comparison with actual trip times. To test the model, I run ols regressions of predicted trip

time on measures of restaurant density, and compare the coefficients with those from the same

regressions on actual data.11 This exercise identifies a discrepancy between the data and the

model’s prediction, in that individuals living in denser areas make somewhat shorter trips than

10See Parry, Walls, Winston Harrington, and Policies (2007) for a discussion of car externali-
ties. The data on greenhouse gases is from the us Environmental Protection Agency’s Inven-
tory of us Greenhouse Gas Emissions and Sinks: 1990-2010, which is available for download at
http://www.epa.gov/climatechange/emissions/usinventoryreport.html. In this paper, I find that for most
Americans, fast private vehicles are necessary to realize sizable gains from restaurant variety, but this situation is not
inevitable. A walker in Manhattan, the highest density area, faces a lower price index than a driver in 95% of other
areas of the country.

11In general, one cannot fit a model using a given dataset, and then test it using the same data. In this case however,
regressions on predicted trip time produce coefficients that are almost invariant (except for the constant term) to the
choice of parameters used to obtain these predicted trip times.
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what the model predicts.

I therefore extend the model in several directions to better match the data and to investigate the

possibility of omitted variables. The starting point for the first extension is a comparison of ols

and iv regression results on the determinants of trip time. The instrument for restaurant density is

past growth in population density, for a selected sample of travelers with a very low probability of

moving. In instrumented regressions, the effect of density on trip time is more positive and much

closer to the model’s prediction, suggesting that individuals with a high value of travel time, who

make shorter trips, sort into dense areas. Based on these results, I estimate a version of the logit

model with sorting by value of travel time into areas with different restaurant density. The next

two extensions allow remote restaurants to be close substitutes to similar restaurants (e.g. serving

the same type of cuisine) nearer to home, which could also explain why individuals in dense areas

make shorter trips than what the model predicts. I first estimate a model in which restaurants

in the same chain are perfectly substitutable. Then I specify and estimate a nested-logit model in

which restaurants within the same category (e.g. ‘Sushi’) are more substitutable. I infer exogenous

tastes for categories from a free-entry equilibrium condition for restaurant suppliers. Finally, I

use partial price data from Yelp to let meal prices vary with restaurant density, or with travel time

from an individual to a restaurant. These extensions ultimately lead to similar welfare results,

except for the nested-logit model whose parameters are hard to estimate precisely with my data.

These results on the consumption benefits of density are relevant to two major strands of

literature in urban planning and transportation. First, one can interpret my variety-adjusted

price index for destinations as what transportation researchers call a ‘travel accessibility index,’

with many desirable characteristics. The variety-adjusted price index accounts for differences in

car travel speed across areas, and places less weight on remote destinations. Most important, the

variety-adjusted price index has a microeconomic foundation. Unlike available travel accessibility

indices, it has a natural interpretation as a price, and it depends on the structural parameters of a

model.12 Second, reduced-form regressions of trip time on measures of restaurant density belong

to a vast empirical literature measuring the relationship between vehicle mile traveled (vmt) and

the built environment. The regressions in this paper differ from those in extant research in that

they use the exact location of destinations to measure density, instead of proxies like population

12See Bhat, Handy, Kockelman, Mahmassani, Chen, and Weston (2000) for a review of the literature on travel
accessibility indices, and for many examples of such indices proposed in transportation research.
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and job density. Consistent with my results, other studies find a very small effect of density

on vmt, and I show that a model of travel demand with substitutable destinations provides a

theoretical framework to understand this empirical regularity.13

2. A logit model of travel demand

My analysis starts from two assumptions about demand for restaurant travel. The first is that

restaurants are substitutable, so that an individual prefers some restaurants to others. The second

is that travel is costly, so that the price of visiting a restaurant farther away is higher. Irrespective

of the details of the model, these assumptions imply a trade-off between the gains from going

to a preferred restaurant and the costs of a long drive. At higher density, the price difference

between two adjacent restaurants is lower. This means that travelers in dense areas have a lower

probability of visiting the restaurant closest to home, which has the lowest transport costs but is

not necessarily preferred. Increasing density induces little reduction in trip time, but generates

gains from variety, i.e. from visiting preferred location.

Consider an individual living in area k and choosing a restaurant.14 Let i index the number Ik

of restaurants available, so that i ∈ {1,2,3, . . .,Ik}. The restaurant with index i = 1 is closest, i = 2

is second closest and so on. Denote travel time to restaurant i by tki, and the price of a meal at

any restaurant by a constant p.15 The total price of eating at restaurant i, including transport costs

to and from the restaurant, is pki = p+ 2γtki, where γ is the value of travel time. This total price

is what should be understood when I refer to restaurant price elsewhere in the paper, unless I

mention ‘meal’ price specifically.

Each restaurant receives a random idiosyncratic shock εki, which captures an individual’s

preference for restaurant i. εki is a random draw from a type I extreme value distribution with

scale parameter 1/(σ − 1), where σ will turn out to be the elasticity of substitution between

13See Ewing and Cervero (2010) for a meta-analysis. They find a weighted average elasticity of vmt of -0.04 with
respect to household/population density and 0.00 with respect to job density (the area over which density is computed
varies in each study). The literature also finds that the number of and purpose of trips that individual undertake vary
little across areas.

14In Appendix B, I extend the model to cover the decision of how much to spend on restaurants and how much
to spend on all other goods. This extension allows me to provide welfare estimates that account for the degree of
substitution between restaurants and all other goods.

15Assuming a constant meal price is equivalent to assuming that utility is invariant to variation in meal prices,
because higher (lower) prices are always exactly compensated by higher (lower) quality. Such an assumption is
reasonable if quality is mostly produced through variable costs, as is likely the case in the restaurant industry (see
Berry and Waldfogel (2010) for a discussion of product quality in the restaurant industry).
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restaurants. Following Anderson et al. (1992), define the utility from making rki trips to restaurant

i as:

uki = ln(rki) + εki.

Let yk be expenditures on restaurants for an individual in area k, so that pkirki = yk is the

individual’s budget constraint. Substituting rki from the budget constraint into the utility function

leads to the following indirect utility from choosing restaurant i:

vki = ln(yk)− ln(pki) + εki.

This individual’s utility maximization problem is:

max{−ln(pk1) + εk1, . . . ,−ln(pki) + εki, . . . ln(pkIk) + εIk}. (1)

Note that expenditures yk are constant within an area and do not affect restaurant choice. The

logit choice probability is equal to eln(pki)/(σ−1)

∑
Ik
i=1 e

ln(pki)/(σ−1)
for all restaurants i (see Train (2009) for details

and a proof). Restaurant i is chosen with probability
p1−σ
ki

∑
Ik
i=1 p

1−σ
ki

and the number of trips is equal

to rki = yk/pki, so the probability of a trip to restaurant i of length tki in area k, given the set of

travel times to all restaurants: Tk = {tk1, . . . ,tki, . . . ,tkIk} is:

probki = prob(tki|Tk) =
p−σ
ki

∑
Ik
i=1 p

−σ
ki

. (2)

The probability ratio of a trip to two restaurants i and j is:

probki

probkj
=

(

pki

pkj

)−σ

=

(

p+ 2γtki
p+ 2γtkj

)−σ

. (3)

As an example, if i = 1 and j = 2, then probk1
probk2

=
(

p+2γtk1
p+2γtk2

)−σ

is the ratio of the probability that an

individual travels to the closest restaurant to the probability that she travels to the second closest.

If σ = ∞, then restaurants are perfect substitutes and the ratio in equation (3) tends to infinity

as the individual travels exclusively to the closest restaurant. If the difference between tk1 and

tk2 is large, in a low-density area in which restaurants are far apart, then the proportion of trips

to restaurant 1 will be larger. That is, in low-density areas individuals mostly visit the closest

restaurants, because substituting between restaurants is expensive.

It is easy to use equation (3) to show that σ represents the elasticity of substitution between

restaurants. In the model, an individual has constant tastes and always travels to the same restau-

rant, so a low σ represents heterogeneous preferences across many individuals. However, one can
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equivalently think of one individual getting new idiosyncratic shocks from the same distribution

before each restaurant choice, in which case a low σ also represents a taste for variety.16 The price

index that I derive next does not distinguish between these two interpretations, and neither do

my empirical results.

A price index

The indirect utility function of an individual is equal to the expected value of the indirect utility

vki, given that individuals choose the restaurant that maximizes equation (1):

E

(

max
i∈{1,...,Ik}

{vki}

)

= ln



yk

(

Ik

∑
i=1

p1−σ
ki

)(1/(1−σ))


 . (4)

Suppose that there are two areas, k and k′, each with its own restaurant choice set, of size Ik and

Ik′ . Define a relative price index Pk,k′ as the factor by which the restaurant prices in area k would

have to change in order to equalize indirect utility in both areas, assuming constant expenditures

on restaurant. That is:

ln



y

(

Ik

∑
i=1

(Pk,k′pki)
1−σ

)(1/(1−σ))


 = ln



y

(

Ik′

∑
i=1

p1−σ
k′i

)(1/(1−σ))


 ,

so that:

Pk,k′ =

(

∑
Ik′
i=1 p

1−σ
k′i

)1/(1−σ)

(

∑
Ik
i=1 p

1−σ
ki

)1/(1−σ)
. (5)

Note that Pk,k′ is exactly the relative price index that would be derived from ces preferences.17 To

see how this index captures welfare gains from restaurant density, suppose that there is an infinity

of restaurants equally spaced on a line, 2 minutes from one another in area k and 4 minutes from

one another in area k′, so that the density of restaurants is higher in area k. A restaurant with

any given index i has a lower price in the denser area k, because pki = p+ 4γi > pk′i = p+ 8γi.

This is true for all i, so the denominator of equation (5) must be smaller than its numerator, and

Pk,k′ is smaller than 1.

16The logit model can be thought of as a microfoundation for ces preferences. Dixit and Stiglitz (1977), in their
original paper, also mention that ces preferences can equivalently represent an aggregation of many individuals’
heterogeneous preferences, or the preferences of one individual with a taste for variety.

17I do not use the exact price index proposed by (Sato (1976) and Vartia (1976)) for ces preferences, or the equivalent
index that is robust to the introduction of new goods, introduced by Feenstra (1994). These indices are useful because
they provide expressions in which the expenditure shares on each variety capture an unobserved quality parameter,
which disappears from the expression of the exact price index. In my framework, however, the particular quality
parameter of any given restaurant is less relevant, because variation in prices come from variation in travel time from
an individual, not from unobserved quality. I include such a quality parameter in the nested-logit model of section 7.
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It is useful to define the numerator in equation (5) as a price index in area k, denoted by

Pk, and the denominator as a variety-adjusted price index in area k′, denoted by Pk′ , so that for

instance:

Pk =

(

Ik

∑
i=1

(p+ 2γtki)
1−σ

)1/(1−σ)

. (6)

Note that this price index has another interpretation as what transportation researchers call a

‘travel accessibility index’,18 with a number of desirable characteristics. First, the total price of

reaching a destination depends on travel time, not just on distance, so the price index allows

for speed differences across areas. Second, the impact of a destination on accessibility decreases

with how far it is from home, and one can estimate the strength of this decay. If σ is high, then

only destinations very close to home affect Pk, and the contribution of remote destinations is

negligible. If σ is very low then even distant destinations contribute to accessibility. Third, Pk has

a micro-foundation. Both σ and γ are structural parameters with an economic interpretation, γ as

a monetary value of travel time, and σ as an elasticity of substitution. Pk itself is an economically

meaningful quantity (a price), that is sometimes called the ‘unit cost of services’ when derived

from ces preferences.

Theoretical predictions of the determinants of trip time

A model in which density allows individuals to realize gains from variety has strong implications

for the effect of density on trip time. To develop an understanding of the model’s predictions on

the relationship between expected trip time and the restaurant choice set, I now prove theoretical

results that hold exactly for simple distributions of restaurants (e.g. uniform). In section 6, I

obtain the model’s predictions for the true distribution of restaurants in the data, that I use to test

the model.

The expected length of a trip to a restaurant is the sum of the probability of each trip multiplied

by its travel time, so average trip time in area k is equal to:

t̄k =
∑

Ik
i=1(p+ 2γtki)

−σtki

∑
Ik
i=1(p+ 2γtki)−σ

. (7)

18Ben-Akiva and Lerman (1985) propose to use denominator of a logit probability in a travel model as a travel
accessibility index, and Niemeier (1997) is the first to estimate this index in a model of mode choice and commute
to different types of job. My index is easy to interpret because I use the linear utility specification of Anderson et al.
(1992), and introduce value of travel time as a structural parameter.
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Figure 1: Proposition 1 - Average trip time larger in case b

Case A b b

Case B b b

b b b b

b b b b

Proposition 1 is an implication of the independence of irrelevant alternative (iia) of the logit

model. The iia property implies that the probability ratio of traveling to any restaurant i and

j (see equation 3) depends only on their respective prices, and not on the prices of any other

restaurants.

Proposition 1 Average trip time (t̄) decreases with the addition of a new restaurant at travel time smaller

than t̄, increases with the addition of a restaurant at travel time larger than t̄ and stays constant with the

addition of a restaurant at travel time exactly equal to t̄.

Proof The result follows from the iia property. Complete proof in Appendix Appendix A.

The first part of the proposition is a direct consequence of the iia: the addition of a new

restaurant does not change the relative proportions of trips between all other restaurants, so

adding a restaurant at exactly t̄ cannot change average trip time. The same intuition explains why

adding restaurants after t̄ increases average trip time, and adding restaurants before t̄ decreases

average trip time. Figure 1 illustrates an important implication of the proposition. All distances

in the figure are in units of time and each dot represents a restaurant in an individual’s choice

set. In case a, the density of restaurants close to home is high, while the density of restaurants far

from home is low, leading to shorter trips, on average, than in case b which displays the reverse

density pattern. This result maps into the intuition that someone living in a low-density suburb is

likely to travel to the high-density downtown to eat, while a person living downtown is unlikely

to drive out to the suburbs for a meal.

The next proposition is the key theoretical result of this section. It formalizes the idea that

increasing density is ineffective at reducing trip time, or equivalently that much of the gains from

density are gains from variety, that originate from one’s ability to visit a preferred location.

Proposition 2 Suppose that restaurants are uniformly distributed at distance t from one another. Then as

t decreases to 0, t̄ converges to a value larger than 0, i.e. limt→0+ t̄ > 0.
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Figure 2: Proposition 2 - Average trip time similar in case a and case b

Case A b b

Case B b b

b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b

Proof In Appendix Appendix A.

The proposition shows that as density increases to infinity, average trip time does not decrease

to zero. In a logit model, individuals make long trips even in the densest areas because additional

restaurants never become redundant. In an alternative model with only five different categories of

restaurant, t̄ would tend to 0 as density increases to infinity and all five categories of restaurants

become available infinitely close to home. Simulation results show that t̄ converges fast as

density increases, and that raising density as in figure 2 has almost no effect on average trip

time starting from almost any density level observed in the data.19 Minimal assumptions about

travel demand would imply that increased density fails to induce large reductions in trip time,

because individuals choose to gain from density by visiting a location closer to their ideal. The

stronger result of Proposition 2 derives entirely from the independence of irrelevant alternatives.

The iia property of the logit and ces models is the object of valid criticism by Ackerberg and

Rysman (2005) for instance, but ultimately its relevance is an empirical issue and I postpone this

discussion to section 6.

The next proposition shows that moving the entire distribution of restaurants x minutes away

from an individual (increasing travel time to each restaurant by x minutes) increases average trip

time by approximately x minutes, exactly so if the elasticity of substitution is infinite.

Proposition 3 As σ becomes large, moving every restaurant x minutes farther from an individual

increases t̄ by a value arbitrarily close to x minutes as σ becomes large.20

Proof In Appendix Appendix A.

19If density is very low, for instance if there is only one restaurant close to home and one very far from home, then
average trip time will be almost equal to travel time to the restaurant close to home, because substitution is almost
impossible. In this case, increasing density increases travel, because average trip time must increase with the addition
of restaurants between the closest and farthest ones.

20Simulation results shows that the proposition holds for reasonable values of σ, in particular for the value that I
estimate from the data.
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Figure 3: Proposition 3 - Average trip time one minute larger in case a

Case A b

Case B b b b b b b b b

b b b b b b b
1 minute

b b b b

Figure 3 illustrates Proposition 3, which is especially relevant given that a majority of Amer-

icans live in residential areas, relatively far from commercial zones. The model predicts that an

individual living in a suburb five minutes away from the nearest restaurant drives on average

five minutes less on his trip than another individual residing farther outside the city, ten minutes

away from the same distribution of restaurants. This result highlights that not all of the gains from

density are pure gains from variety, and that residents of dense urban areas may also benefit from

shorter trip times, to the extent that they are located closer to a given distribution of restaurants.

The next proposition displays some comparative statics.

Proposition 4 t̄ decreases with the elasticity of substitution σ, increases with meal price p, and decreases

with value of travel time γ.

Proof In Appendix Appendix A.

The first part of Proposition 4, that average trip time is low when destinations are highly

substitutable, is a core feature of a logit model of travel demand, and it allows to estimate σ with

travel data. The last two parts of Proposition 4, that average trip time increases with value of travel

time and decreases with meal price, correspond to the intuition that long trips are undertaken

if travel costs are low or if the object of the trip is valuable. One usually stays close to home to

buy a low value item like a coffee, but travels to a preferred and possibly further destination to

purchase an expensive watch.

In my presentation of the model, I interpret the elasticity of substitution as a demand-side

parameter capturing heterogeneous preferences or a taste for variety. It would also be reasonable

to interpret an elasticity of substitution as a supply-side parameter that depends on the diversity

of restaurants in an area. In the logit model however, the parameter σ is constant across areas and

spatial welfare differences come from variation in restaurant density, not in restaurant diversity.

In section 7, I propose a simple extension of the model in which restaurants in the same chain

are perfectly substitutable. This relaxes the iia property of the logit model, by taking one aspect
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of restaurant diversity into account. I also present a nested-logit model, an extension of the logit

model in which I introduce a supply-side, and allow restaurants within a given category (e.g.

Chinese, Pizza, Sushi) to be more substitutable than restaurants across categories.

3. Data

The data on restaurant location come from the Google Places page of each restaurant in the

summer of 2011 (these pages are currently called Google+ Local pages).21 When available,

additional data on restaurant characteristics are drawn from Yelp, a popular user review website.

The travel data, which identify trips to a restaurant, are from the 2008–2009 edition of the

National Household Travel Survey (nhts). I assume that each traveler resides at his block group’s

population-weighted centroid, which I obtain from the Missouri Data Center’s mable Geocorr2K

database.22

Restaurant data

Data from Google Maps applications offer complete coverage and exact information on restaurant

location, both necessary for the innovations of the paper. As an aggregator of local business data,

Google Places includes a page for any restaurant with a presence on alternative websites such as

Yellow Pages, or an owner willing to create its own page. I collect data on all restaurants in a

set of 15 us states containing more than 50% of the us population. I select these states because

each of them funded the collection of additional data in my travel database, beyond the federally

funded national sample.23 My restaurant sample consists of 273,000 eating places. Table 1 lists the

states in my sample, the number of restaurants I have in each state, and an alternative estimate

of the number of ‘eating and drinking’ places in each state in 2010, from the National Restaurant

Association.24 On average, the two estimates differ by 9%, with a high of +20% in Vermont

and a low of -19% in New York.25 My dataset includes fast food and full-service restaurants, as

21I collected the data using php, a popular web programming language.
22MABLE Geocorr2K computes a block group’s centroid from the centroids of each of its constituent census blocks,

using census block populations as weights.
23I add Arizona, which purchased two regional-level add-on data, but no state-level add-on. The states that I exclude

do not have enough travel data to compute estimates of speed at the local level, and too few trips to justify restaurant
data collection.

24The state-level reports are accessible at http://www.restaurant.org/research/state/. The National Restaurant
Association obtains this number from their own research and from federal government data.

25I also have a partial sample of 168,000 restaurants in other states of the country (for a total of 440,000 restaurants)
to reduce measurement error from trips across state borders.
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well as pubs, delis and other eating places. Coffee shops, such as Starbucks, are almost entirely

excluded.26

For robustness tests and extensions of the model, I also collect data on restaurant characteris-

tics. The Google Places page of a restaurant provides the name of the restaurant and the type of

cuisine that it serves (e.g. Korean, American, Chicken, Sushi). I code restaurants into 85 different

categories, using definitions from Yelp, the most popular user review website for restaurants. I

also identify restaurants belonging to the 50 largest restaurant chains in my sample (the largest of

which is Subway). At the time of data collection, about 50% of Google Places pages contained a

hyperlink leading to an alternative restaurant page on Yelp. Yelp contains information on average

quality ratings from private reviewers (from 0 to 5 in 0.5 increments), prices ($, $$, $$$ and $$$$,

that I code as $7.5, $15, $35 and $70),27 number of reviews, and sometimes on attire (casual 1,

dressy 2, formal 3), ambience (9 degrees from casual 1 to upscale 9), parking availability (that

I code as as a dummy for the availability of a parking lot, as opposed to only street parking),

and whether a reservation is necessary (a dummy variable). A conflict between Google and Yelp

occurred about a third of the way through data collection, after which Google removed the link to

Yelp from its pages. I therefore have Yelp data for 70,000 restaurants, concentrated in the largest

metropolitan areas due both to the data collection strategy and to the geographical preferences of

Yelp’s contributors.

Travel data

The nhts is a nationally representative survey of travel behavior conducted about every six

years. State transportation agencies can also fund the collection of additional (add-on) travel data,

which are also publicly available. There are data on 125,000 households in these add-on states I

restrict my sample to, representing 90% of the nhts total. Each participating household member

completes a travel diary on a travel day assigned to the household, recording the purpose, length,

duration, start time and mode of every trip undertaken that day. Crucially, the data identify trips

to ‘get/eat meal’, the origin of the trips (e.g. home) and the purpose of the next trip (e.g. return

home). The data also contain a rich set of individual, household and trip characteristics, as well

26Before 2011 Starbucks was not generally considered a restaurant chain, although it is now widely cited as the 3rd

largest chain in the us. At the time of data collection, Starbucks was not indexed as a restaurant on Google (it is now).
Also, trips to coffee shops are identified separately in my travel data.

27On Yelp, the dollar signs represent the ‘approximate cost per person for a meal including one drink, tax and tip’:
$ = under $10, $$ = $11-30, $$$ = $31-60, $$$$ = above $61.
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Table 1: Number of restaurants in each state

State Sample NRA estimate Difference (%)

Arizona 8459 9125 -7
California 61749 62794 -2
Florida 32405 34914 -7
Georgia 15550 16081 -3
Indiana 10714 10875 -1
Iowa 5729 5908 -5
New York 33496 41221 -19
North Carolina 15763 16860 -7
South Carolina 8460 7652 11
South Dakota 1526 1803 -16
Tennesse 10136 9017 12
Texas 42473 37765 12
Vermont 1616 1341 21
Virginia 13616 13585 0
Wisconsin 9992 11961 -17

Notes: The first column contains the number of restaurants in the sample for each state (data collected in
2011). The second column is a 2010 estimate of the number of ‘eating and drinking’ places in each state
from the National Restaurant Association. The third column contains the percentage difference between
the first and second columns.

as the block group in which an individual resides. Trips to or from a restaurant represent 11.5%

of all trips, and 26% of households have at least one member going to a restaurant on their travel

day. The median trip to a restaurant is about 3 miles and lasts 10 minutes, with higher averages at

6 miles, and 15 minutes. 93% of trips to a restaurants are by privately-operated vehicle (‘car’, for

short) with almost all the remainder by foot. I take walkers into account in the welfare analysis,

but for the structural estimation of the model I restrict the sample to trips by car. I also eliminate

the small percentage of car trips taken in high-density census tracts in which more than 20% of

trips are by foot, because individuals in these areas may choose the car only for long trips, and

walk for shorter trips. Limiting the sample in this way ultimately has no effect on any of my

estimates.

About 40% of all trips to a restaurants start from home, and for the empirical analysis I

restrict the sample to these trips, whose geographical origin is known (at the block group level).

Block groups are small, which alleviates concerns about measurement error on the location of a

traveler. The median radius of block groups is approximately 0.4 miles, and it is possible to locate

individuals where they are more likely to live (the population-weighted centroid). For more than

50% of block groups in my sample, even the restaurant closest to a centroid lies outside of the

block group’s area.
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I remove multiple observations of the same trip for different household members and keep

only trips by a driver, leaving 12,000 trips to a restaurant, by a driver, from home. To estimate

the logit model, I select 7500 of these trips that are to a restaurant and immediately back home,

because trip chaining involves trade-offs beyond the scope of the model. For instance, when

a trip to a restaurant is followed by a trip to the movie, the benefits from eating close to the

movie theater affect the travel decision, and in that case a long trip does not necessarily imply a

willingness to incur travel costs to visit to a preferred restaurant.

Assembling the data

(A) A high-density urban area: East Harlem, Manhattan,
New York City, ny

(Maps data @2012 Google)

(B) A medium-density suburb in Chapel Hill, nc

(Maps data @2012 Google)

Figure 4: Google Maps with restaurants
Notes: Each panel contains a screen-shot from Google Maps resulting from the search command
‘Restaurants near [geographical location]’.28 The downward-pointing arrow indicates the location of an
individual’s population-weighted block group centroid. Each circle represents the location of a restaurant.
The markers from A to G are Google’s restaurant recommendations for the search. The scale of the map is
at the bottom left. The map in panel b is at twice the scale of that in panel a.

Figure 4 shows two maps, printed from Google Maps. On each map, a downward-pointing

arrow indicates an individual’s residence, at her block group centroid. Each circle represents

the location of a restaurant (the alphabetical markers are Google’s recommendations). In the

logit model, an individual’s restaurant choice set is the set of travel times between an individual

and each restaurant in the sample. Travel time, and not distance, is the variable relevant to

28Google Maps is available at: http://maps.google.com/.
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decision-making, because the bulk of all travel costs is value of travel time (Small and Verhoef,

2007). To compute travel time, I first calculate the linear distance between the geographical

coordinates of an individual’s home and that of a restaurant. I then multiply this linear distance

by a correction factor of 1.67, because the driving distance between any two points is longer than

the length of the shortest path connecting these points.29

Travel time, in minutes, is equal to distance times speed. My measure of speed for each trip

depends on the census tract an individual lives in, and on travel distance to the restaurant. To

obtain speed estimates, I regress the log of trip speed on the log of trip distance for the entire

nhts sample of car trips, and I include a fixed effect at the census tract level to account for speed

differences across areas.30 Measuring speed as a function of trip distance accounts for the fact

longer trips are faster, because they are taken on major urban roads or highways.31

Variable construction for reduced-form analysis

I now define variables capturing the features of the restaurant distribution, for use in the reduced-

form analysis of the determinants of trip time that I undertake in section 6 to test the logit

model of travel demand. To motivate these definitions, it is necessary to highlight three major

characteristics of the distribution of restaurants, from the perspective of an individual traveler.

To varying degrees, these features are apparent in the two maps from figure 4. The individual

in panel a lives in East Harlem, a high-density area in New York City. The individual in panel b

lives in a medium-density suburban area of Chapel Hill, North Carolina.

1. Individuals live relatively far from the closest restaurant. Most Americans, like the individual in

panel b, live in a residential suburb, at some distance from the nearest commercial outlets.

29I use a Google Maps application programming interface called Google Distance Matrix to obtain actual driving
distance for a representative sample of individual/restaurant pairs (using only the 20 restaurants closest to an
individual, which are most relevant). 1.67 is the average difference between the linear distance between two points
and the driving distance from Google Distance Matrix. Using the application to compute driving distances (or time)
from all individuals to all restaurants in my sample, while feasible, is too costly.

30See Couture, Duranton, and Turner (2012) for additional details on these regressions. Note that I drop trips in
census tracts for which I have less than 10 trips (6.6% of the sample), as the speed estimates in these areas would be
too imprecise.

31To facilitate the interpretation of the results and the manipulation of the dataset, I define speed as a characteristic
of a geographic area, and I do not let speed vary with individual characteristics. Ignoring variation in speed at the
individual level does not affect any of the main results of the paper, but prevents discussion of interesting issues. For
instance, Couture et al. (2012) find that individuals in lower income households drive slower, which must reduce their
welfare gains from variety (see Li (2012) and Handbury (2012) for estimations that take into account the link between
income and the gains from variety).
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Once the first restaurant is reached, there are many more close to it. Travel time to the

closest restaurant is therefore an important descriptive variable.

2. The number of restaurants available increases more than proportionally with distance (and time) Both

panels suggest that there are many more restaurants available between, say, 10–15 minutes

of travel from home than between 5–10 minutes. This result is a geometrical consequence

of individuals living on a plane: the area accessible at any given travel distance increases

with the square of that distance. That speed increases with travel distance compounds this

effect.

3. The number of restaurants available increases faster with distance (and time) in dense areas. In

a high-density area (e.g. panel a), restaurants locate on a dense network of major urban

roads crossing each other on the plane, and the geometrical argument above fully applies.

However, one can think of a very low-density area as a one-dimensional world, in which

restaurants locate on the town’s sole major road. For instance, one can imagine the individ-

ual in panel b driving north to the road on which all restaurants would be located (as shown

in the map’s corner however, this individual can eventually access many more restaurants

farther away). Therefore, within a given travel distance (or time) interval, in dense areas a

larger proportion of the mass of restaurants is located far from an individual.32 This feature

of the restaurant distribution is central to the interpretation of reduced-form results on the

determinants of trip time.

Figure 5 offers a visual representation of these patterns. I consider each block group in my

sample as a different observation. A large sample of block groups is representative of the national

diversity of areas, as block groups are census geographic areas covering the entire country and

designed to hold similar population (generally between 600 and 3000 people).33 For illustrative

purposes, I only keep a block group if the closest restaurant is within 5 to 10 minutes of travel

from its centroid, which is true for 27.5% of blocks in my sample. The middle line in figure

5 plots the median number of restaurants within 5 minute travel time intervals, starting from

the centroid and up to 40–45 minutes. For an individual living in these blocks, there are no

32If areas with the highest density are also part of the largest continuously populated areas, then this effect is even
stronger.

33 To simplify the dataset, my block group sample consists of 51,641 block groups in which there is at least an nhts

household, representing about 50% of the total number of block groups in the add-on states, and about 25% of the us

total.
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Figure 5: Median number of restaurants accessible within 5 minute time intervals, computed
from the centroid of all block groups for which the closest restaurant is within 5 to 10 minutes of
travel
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Notes: Medians for the full sample are computed from the centroid of all 13881 block groups in which the
closest restaurant is within 5–10 minutes of travel (out of 51641 block groups in which there is at least one
nhts household). Medians for lowest/highest density deciles are computed from the centroid of the 1388

block groups with the lowest/highest number of restaurants accessible within 45 minutes of travel.
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restaurants within 0 to 5 minutes of travel, so the closest restaurant is relatively far. Past the

first location, the number of restaurants increases rapidly with travel time; the median number

of restaurants available within 10–15 minutes of travel is 13, and within 40–45 minutes of travel

this number increases to 185. The lower and upper lines in the figure show that this increase is

even faster in block groups with the highest number of restaurants available within 45 minutes

of travel (highest density decile) and considerably smaller for block groups in the lowest density

decile.

Consistent with these patterns, I propose four measures of restaurant location that capture the

main features of an individual’s restaurant choice set.

1. Travel time to the restaurant closest from home.

2. Local density: a measure of local restaurant density passed the closest restaurant. Local

density, in restaurants per minutes, is equal to travel time to the 20th closest restaurant

minus travel time to the closest restaurant, divided by 19.

3. Global density: a measure of restaurant density for an area wide enough to encompass most

trips, but not so large as to become irrelevant to a traveler. Global density, in restaurants per

minute, is equal to the number of restaurants available within 45 minutes of travel, divided

by 45. I also limit the choice set of individuals to 45 minutes in the structural estimation.34

I experiment with 30-minute and 60-minute choice sets and obtain similar results.35 45

minutes corresponds to the 98th percentile of trip travel time.

4. Skewness: a measure of whether most of the restaurant mass is distributed close to or far

from an individual. This ratio is equal to the density of restaurants from 22.5 to 45 minutes

of travel over the density of restaurants from 0 to 22.5 minutes of travel.

Although the simplest version of my model does not allow for variation in restaurant diversity

across areas, it is also useful to compute a measure of restaurant diversity. I define diversity as

34I could define global density starting starting from the closest restaurant, to be consistent with the theory and the
measure of local density. Such a definition would lead to similar regression results and stylized facts, but would make
the variable harder to interpret.

35There is a theoretical justification for cutting the choice set. In the model of section 2, the addition of restaurants
far away from home has almost no impact on average trip time because the probability of visiting them decreases
faster than travel time increases. It is easy to show that if restaurants are uniformly distributed and infinitely dense
and if σ > 2, then t̄ converges to a finite value as the minutes of restaurants available increases to infinity. This result
implies that structural estimation of the model is possible, as otherwise empirical results would depends on how many
minutes of restaurants I keep in the choice set.
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Table 2: Mean of variables within each decile of global density

Global density Time to closest rest. Specialization Speed Pop. density
(rest. per minute) (minutes) (percent) (miles/hour) (person/sq. miles)

1.9 8.7 65 11.7 70
(0.9) (1.3) (0.3) (2)

5.1 7.1 62 12.4 161
(0.7) (0.7) (0.3) (4)

8.9 6.5 60 12.4 315
(0.6) (0.7) (0.3)) (7)

13.4 5.8 58 12.3 382
(5.35) (0.6) (0.3) (5)

20.9 5.4 58 12.2 517
(0.4) (0.8) (0.3) (8)

31.5 5.0 57 11.9 851
(0.4) (0.6) (0.3) (17)

45.4 4.6 55 11.7 1421
(0.3) (0.6) (0.3) (23)

65.9 4 55 11.2 2190
(0.2) (0.6) (0.3) (53)

93.8 3.7 54 11.4 2772
(0.2) (0.6) (0.2) (76)

174.9 3.1 56 11.1 10045
(0.2) (0.5)) (0.3) (246)

Notes: Author’s computations. Standard deviations in parentheses. Means computed over all 51641 block

groups in which there is at least one individual in my NHTS sample. The nth row of the table contains

means computed over all block groups in the nth decile of global density. The third column is speed of a
one-mile trip. The fourth column is population density at the county level.

a concept separate from that of density. For instance, an urban area containing only Pizza-style

restaurants is dense but not diverse, while a sparsely populated area containing many different

categories of restaurants is diverse but not dense.

[resume]Specialization: a measure of whether two restaurants in an area are likely to be in

the same category. It equals the share of the five most popular restaurant categories among

all restaurants available within 45 minutes of travel. The most popular categories need not

be the same in each area. This specialization index has the advantage of not being sensitive

to the arbitrary definition of smaller categories.
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Summary statistics

Table 2 contains summary statistics. Each block group in my sample is an observation. The first

column shows average global density (the number of restaurants within 45 minutes of travel)

within each decile of global density. The other columns contain averages, computed over block

groups within each decile of global density, of the following variables: travel time to the closest

restaurant, specialization, speed of a one-mile trip and population density at the county level.

There is wide variation in global density across areas; it increases by a factor 87 from the first to

the last decile. Travel time to the closest restaurant is shorter in denser areas, and it decreases

from 8.7 minutes on average within the first decile of global density to 3.1 minutes within the

last decile. However, the correlation between travel time to the closest restaurant and global

density is far from perfect, reflecting the fact many individuals live in purely residential suburbs

at varying driving distance from the same commercial or urban areas. An area’s specialization

index initially decreases with global density but stabilizes in medium to high-density areas,

meaning that restaurants in the lowest density areas are less diverse. Areas in the upper deciles

of global density experience slower traffic by about 5–10%, despite the fact higher speed (which

is measured with error) increases the distance covered in 45 minutes of travel and therefore has

a mechanically positive effect on global density. Finally, there is a strong positive relationship

between restaurant density and population density.

4. Estimation of the logit model of travel demand

With travel data containing many trips starting from the same location, one can estimate the

elasticity of substitution σ from a simple ols regression of the difference in log restaurant prices

on the difference in the log share of expenditures on these restaurants. In this case, observing

many short trips and few long trips imply that restaurants are very substitutable (σ is high)

and individuals are unwilling to incur travel costs to visit a preferred destination. In my sample

however, almost every trip originates from a different location, and no two areas offer a similar set

of available restaurants. I therefore propose a maximum likelihood estimator for σ that accounts

for the exact restaurant choice set of each traveler.

The estimation sample consists of all trips to a restaurant by a driver that are shorter than 45

minutes, start from home and are followed by a return trip home. Data on trip length is sufficient
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to estimate the model, as restaurants are only differentiated by their travel time from home, and

by a random utility shock. Let n index each trip in my sample of size N=7405. Denote the travel

time of trip n originating in area k by mnk. Recall that the choice set of an individual in area k is

Tk = {tk1, . . . ,tki, . . . ,tkIk}, the vector of travel times to all restaurants within 45 minutes of travel.

For about 15% of trips, observed trip time is shorter than my estimate of travel time to the closest

restaurant, because of measurement error.36 In these cases, I assume that a traveler’s location is

such that t1 is exactly equal to mnk, so I add mnk − tk1 to the travel time of each restaurant in Tk.

The average meal price is constant at p =$13, which is close to the average meal price in the

Yelp data. To set a value of travel time, I refer to Small and Verhoeff (2007) who review estimates

of the value of driving time from a large literature, and suggest a value equal to 50% of a person’s

average hourly wage. I set γ = 0.2, which corresponds to $12 per hour, or about 50% of the

average hourly wage in the United States.37

From equation (2), one can write the probability of a trip to a restaurant at travel time mnk as

a function of mnk, Tk, and the parameter σ:

prob(mn|σ,Tk) =
(p+ γ2mnk)

−σ

∑
Ik
i=1(p+ γ2tki)−σ

.

The maximum likelihood estimate is the value of σ that maximizes the probability of observing

the sample of trip times m given the choice sets T and the constants p = 13 and γ = 0.2.38 The

log-likelihood function is:

`(σ,m,T ) =
N

∑
n=1

log(prob(mnk|σ,Tk)),

and the maximum likelihood estimator is:

σ̂ = argmax
σ

`(σ,m,T ). (8)

I estimate the model by grid-search and find σ̂ = 10.5 (in column 1 of table 3, along with estimates

obtained from extensions of the model in section 7). A plot of the log-likelihood function

36Such mistakes are often small and occur for short trips to restaurants which are almost closest (e.g. someone enters
a 5 minute trip - a round-up value - and I estimate that the closest restaurant is 6 minutes away). There are larger
discrepancies in low-density areas with large block groups and imprecise measurement of t1.

37My model is consistent with the case of one decision maker, for instance the driver of the vehicle, eating a $13

meal, with a value of time of $12 per hour, and ignoring the preferences of everyone else on the trip when choosing a
restaurant. My estimate of σ however, turns out to be invariant to the case in which two or more travelers act as one,
each with exactly the same preferences, meal price and value of time as the other. That is, I verify that increasing both
meal price and value of time by the same factor has almost no effect on my estimate of σ.

38There is never a restaurant located precisely at mnk, but this does not affect estimation results. Instead of using
the probability of visiting a hypothetical restaurant at mnk for my estimation, I could use the sum of probabilities of
visiting all actual restaurants in a small range of minutes around mn and obtain almost identical results.
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Table 3: Maximum likelihood estimation of logit model of travel demand

(1) (2) (3) (4) (5) )

σ̂ 10.5 10.1 10.0 10.0 9.7
(0.2) (0.2) (0.2) (0.2) (0.2)

β̂ 0.21
(0.01)

Sorting by value of travel time X
Meal price varies with distance X
Perfect substitutability within chain X
Perfect substitutability within title X

Observations 7405 7405 7405 7405 7405

Notes: σ is the elasticity of substitution between restaurants, and β captures the strength of sorting by value
of travel time. Estimates obtained by grid-search in all columns. Standard errors in parentheses computed
using the outer-product-of-the-gradient estimator, as suggested in Berndt, Hall, Hall and Hausman (1974).

for different values of σ suggests that the function is concave for any reasonable elasticity of

substitution, and therefore that σ̂ is a global maximizer. Estimation results are robust to cutting

or expanding the number of minutes in the choice set of individuals, for instance keeping 30 or

60 minutes worth of restaurants leads to σ = 10.3 and σ = 10.5. This elasticity of substitution

between restaurants is large compared to existing estimates for consumer goods, but it is low

enough to generate much extra travel beyond the closest restaurant, and as shown in section 5,

substantial welfare gains. I am not aware of other estimates of the elasticity of substitution for

services and non-tradables like restaurants.

For a given value of σ, the model predicts the probability of a trip to each restaurant in each

area k. With these probabilities, it is easy to compute the predicted time of a trip in area k.

At σ̂ = 10.5, the model predicts that the average trip time over all trips in the sample is 13.1

minutes, which is almost equal to 12.9 minutes, the actual average trip time of all corresponding

trips in the data (45 minutes and shorter, from home with a return trip). At σ = 7.5 or σ = 15,

the model’s prediction of average trip time would be 9.9 and 16.8 respectively, both about 30

standard deviations away from data average. In other words, the maximum likelihood estimator

successfully matches the first moment of the trip time distribution. I provide additional evidence

on model fit in section 6.

An important concern is that the estimate of σ depends on the choice of value of travel time

parameter γ. In their literature review, Small and Verhoef (2007) conclude that depending on
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individual characteristics, trip purpose and traffic conditions, individual’s value of travel time

can reasonably range from 20% to 90% of gross hourly wage, with an average around 50%. The

50% average emerges from meta-analyses of hundreds of studies, and as of 2007 was the value

recommended by both the US Department of Transportation and Transport Canada. A high end

value of γ = 0.4, which is close to 100% of the average us hourly wage, leads to σ̂ = 7.1, and

correspondingly higher gains from variety. A very low value of γ = 0.1 leads to σ̂ = 17.4.39

An endogeneity problem typically arises when estimating an elasticity of substitution, due to

the unobserved relationship between higher prices and better quality. In general, an insensitivity

to price differences indicates a preference for higher quality products, not a taste for variety.40 In

my model however, price differences originate from travel costs that are plausibly unrelated to

quality differentials. The same restaurant which is located 5 minutes away from an individual is

also 25 minutes away for another individual living on the other side of town. Nevertheless, there

remain small systematic differences between restaurants that are on average close to travelers and

restaurants that are on average far, an issue that I address in the extensions of section 7, using

data from Yelp.

5. Welfare gains from density

I now turn to estimating the welfare gains from restaurant density. I first compute the variety-

adjusted restaurant price index in each area, and convert variation in the index into an average

willingness to pay for density. Next, I obtain aggregate measures of the total gains from restaurant

density in the us. Finally, I propose a pure travel cost method of evaluating the gains from

restaurant density that does not rely on structural estimation of a model.

39 Individuals who travel to a restaurant have on average higher income, so a value of γ = 0.2 may be the on low side.
Given my data, it would not be useful to allow γ to vary by income, because σ is determined by travel costs relative
to the price of a meal, and I do not observe the value of the actual meal purchased by travelers, which is likely higher
for richer people. The reduced-form results in the next section show that income only has a small effect on travel time,
which is consistent with meal price increasing about proportionally with value of time, so that using average values of
γ and p leads to representative results.

40This omitted variable bias is usually dealt with using a technique for panel data pioneered by Feenstra (1994).
Identification comes from differences across varieties in the variance of each variety’s demand and supply shock,
assuming that these shocks are independent over time.
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Welfare differences across areas

For each block group centroid in my sample, I use equation (6) to compute the variety-adjusted

restaurant price index at the maximum likelihood estimate of σ. The value of the price index at

any given location decreases with the number of nearby restaurants, and with travel speed. For

a car traveler, the mean and median restaurant price index are both equal to 10, lower than the

average price of a restaurant meal ($13) before including transport costs. There is wide variation

in the price index across areas. The index ranges from less than 7.5 in much of Manhattan41

and a few dense parts of San Francisco County with faster car travel, to values above 16 at the

99th percentile of the index, in non-metropolitan areas with little gains from variety and hefty

transport costs to reach even the closest location.42 Much of the variation in the index occurs

within metropolitan areas. In nine of the ten largest msas in my sample, someone moving from

a block groups at the 90th percentile to a block group at the 10th percentile of the price index in

that msa would experience a decrease in the index larger than 20%. The 90th to 10th percentile

differential is lowest in Miami at 14% and highest in Houston and Atlanta at 30 and 32%. These

within-msa variations in the index reflect the very localized nature of the gains from restaurant

density. Remote restaurants, that are expensive because of travel costs, have little impact on

welfare because the elasticity of substitution between restaurants is high. For instance, preventing

access to restaurants between 30 and 45 minutes of travel would reduce the average price index

by only about 2%.43 The conclusion that the gains from restaurant density are localized may

generalize to much of the consumption benefits of density, given relatively short trip times for

many other kinds of non-work trips in the nhts (e.g. medical/dental, grooming/haircut/nails,

attorney/accountant, gym/exercise/play sports, etc).

A decline in the variety-adjusted restaurant price index can translate into sizable welfare gains

for an average household. I first compute the monetary value of the gains from density in partial

equilibrium, and then from an extension of the model allowing for substitution between restau-

rants and all other goods. To convert the relative price index of equation (5) into a willingness to

41Not taking parking costs into account leads to significant underestimation of the index for a car traveler in
Manhattan and other very high density areas. However, as I show in section 8, a walker in Manhattan faces an
index close to 7.5, and still lower than that almost anywhere else in the us.

42My sample covers only 50% of the us population, but it is unlikely that areas in Chicago or Philadelphia which
are large and dense cities excluded from my sample, have a lower price index than Manhattan.

43Removing restaurants far away has a larger effect on trip time; average trip time is 14.83 minutes over all trips
from home by a driver, and it drops to 13.47 keeping only trips shorter than 45 minutes, and to 12.53 minutes keeping
only trips shorter than 30 minutes.
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pay for density, consider a move from an area k to a counterfactual area k′. From equation (4),

the expected value of the indirect utility in area k is vk = ln(ykP
−1
k ), where yk is expenditure on

restaurants in area k. Define yk′ as the value of restaurant expenditures that makes the mover

indifferent between living in area k or k′, so that yk′ is such that ln(ykP
−1
k ) = ln(yk′P

−1
k′

). Some

easy algebra leads to:

yk − yk′ = yk(1 − Pk,k′). (9)

I take expenditure shares from the Consumer Expenditure Survey (cex) 2009, in which food

away from home represents on average 5.3% of household expenditure, or $2600.44 Using these

numbers, an average household’s willingness to pay to prevent a 20% increase in the restaurant

price index is |2600*(1-1.2)|=$520 annually. In section 6, I use regression analysis to show that

most of the welfare gains from an increase in restaurant density are gains from variety, as opposed

to gains from travel time savings through shorter trips.

This simple computation may overestimate the gains from density for three reasons. First,

it does not allow for substitution between expenditures on restaurants and expenditures on all

other goods. In Appendix Appendix C, I find that a 20% increase in the price index leads to a 17%

decrease in the probability that an individual travels from home to a restaurant on any given day.

This decrease does not suggest a very large price elasticity of demand for restaurants, and most

of it is compensated by an increase in restaurant trips originating from somewhere other than

home. To measure exactly how substitution of restaurants for all other goods affect my estimates,

I specify a nested-logit model with two nests, one for restaurants and one for all other goods

(the details are in Appendix Appendix D). I set the price elasticity of demand for restaurants at

-1, consistent with a literature review by Okrent and Alston (2010) who find an average value of

-1.02 for the price elasticity of demand for food away from home. Using this model, the average

household’s willingness to pay to prevent a 20% increase in a restaurant price index drops to

about $475.45 Second, I may overestimate the gains from density because unless every passenger

on a restaurant trip has the same preference, the gains from restaurant density are lower for a

passenger who is not part of the travel decision. Assuming that only trip drivers decide what

44Unlike my index, the cex considers transport costs separately from other expenditures. Also, expenditures on food
away from home in the cex includes coffee, ice cream and snacks, which my index does not take into account.

45Okrent and Alston (2011) find an very high price elasticity of demand for full-service restaurant (close to -3),
but with much substitution to limited service restaurants, which account for a slightly larger share of restaurant
expenditures. Using a high price elasticity of demand for restaurant of -2 instead of -1, I find that for an average
household’s gains from density are lower by another 18%. This suggests that my estimates are of the same order of
magnitude for reasonable value of the price elasticity of demand for restaurants.
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restaurant to visit and benefit from density reduces total gains from density within households

by 37%.46 Third, I compute the index for trips starting exactly from home, which is true of 40%

of all restaurant trips. Other restaurant trips may originate from higher density areas, especially

the 10% of trips starting from work.

It is interesting to compare these results with those of Handbury and Weinstein (2012), who

estimate a variety-adjusted price index for tradable consumer goods (groceries) in different

metropolitan areas. They find that residents of larger cities, controlling for store amenities,

individual characteristics and differences in the number of varieties available, face a lower price

index for groceries. This price index drops by 10% from New York City to Des Moines, the

smallest city in their sample. They estimate that New York residents have access to 97,000 types

of groceries within the msa, versus 32,000 in Des Moines, leading to a 3% decrease in the price

index that is purely due to variety. While these numbers are estimated for large areas and do

not take transport costs into account, simple comparisons with my results for the restaurant

industry suggest much larger spatial welfare differentials in the non-tradable service sector. Many

residents of the New York or Los Angeles metropolitan areas have access to more than 10,000

restaurants within 45 minutes of car travel, and would face at least a 25% reduction in the price

index from moving anywhere in Des Moines, a city with faster car travel but with only 650

restaurants available within 45 minutes of travel.

Future research may demonstrate that individuals derive similar benefits from the higher

density of health providers, entertainment options and other services in the downtown cores of

metropolitan areas. Part of the explanation for the importance of non-tradables in accounting

for the consumption advantage of dense areas is the highly developed supply chains of the

major consumer-goods retailers. Thanks to the low cost of moving goods, residents of America’s

suburbs and smaller cities have access to an impressive variety of tradables. Such feat is not easily

replicated in the non-tradable service sector, which depends to a larger extent on the movement

of people. Dense urban areas still have a unique advantage in reducing transport costs between

individuals.

4663% of individuals taking trips to restaurants from home by car are identified as drivers in the nhts. Note that
this result is inconsistent with average of the nhts variable for the number of individuals on each of these trips, which
equals 2.2.
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Aggregate gains from density

I now propose three counterfactual experiments to provide measures of the aggregate gains from

restaurant density in the United States. In the first experiment, I compare the area k an individual

lives in, with a counterfactual area k′ in which only the closest restaurant is available. This

experiment attempts to isolate the part of the gains from density that is purely due to gains from

variety. It holds travel time to the closest restaurant constant, and only measures the benefits

from access to preferred destinations; from not having to always visit the same location. The first

row of table 4 contains the average value of the relative price index for this experiment, over all

trips from home by a driver. The average value of the index is about 1.5 in the first column for

the logit model, with slightly higher values in other columns containing results for the model’s

extensions of section 7. The index ranges from 1 to almost 2 in very high density areas. In

locations with the largest gains from variety, restaurant prices would have to double to make an

individual indifferent between sustaining this price increase and being forced to always visit the

closest restaurant (holding expenditures on restaurants constant). While there is much empirical

evidence to support setting the value of travel time at γ = 0.2, the welfare estimates are sensitive

to this choice. In the logit model, using γ = 0.1 leads to an average relative price index of 1.27

and using γ = 0.4 leads to 1.88.

As before, I compute the monetary value of these gains from variety first in partial equilibrium,

and then from an extension of the model allowing for substitution between restaurants and all

other goods. For a traveler, the daily expenditures on restaurant yk are equal to meal price plus

the value of transport costs for the trip, and the welfare gains from variety is given by the absolute

value of yk(1 − Pk,k′), where Pk,k′ is the relative price index. I use the nhts sampling weights to

sum these individual gains over all trips to a restaurant by a driver (including trips not from

home and by foot) and then multiply by 365 to obtain an annual value.47

47To obtain numbers valid at the national level, I exploit features of the travel survey’s design. The nhts is
representative of travel behavior in the entire country. Each participating individual is assigned a weight, equal
to the number of Americans that he or she represents (so the weights sum up to the us population). My sample
represents around half of the us population, so I scale up these weights by a factor of about two. Using these weights,
I can compute aggregate values for travel time, expenditures on restaurants or gains from variety. In these aggregate
computations, I include all trips to a restaurant by car or foot, including trips not from home, and excluding only
the negligible fraction of trips by public transportation Whenever an individual travels by foot, I set a constant travel
speed at 15 minutes per mile to measure travel time to restaurants in her choice set (the nhts suggests 12.5 minutes,
and Google Maps usually assumes walking speed of around 20 minutes per mile). I assume that all trips start from
home, although the restaurant choice set at the true origin of some trips is not exactly the same as that of a trip starting
from home. In line with regression results in the next section, I apply a -20% correction factor to trip time for all trips
that are part of a chain, because restaurant preferences only partially explain longer trips in this case.
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Table 4: Average restaurant relative price indices

(1) (2) (3) (4) (5)

Average relative price index

Counterfactual is closest restaurant only 1.495 1.549 1.531 1.504 1.527
(0.126) (0.137) (0.141) (0.098) (0.133)

Counterfactual is 5th percentile price index 0.850 0.841 0.846 0.841 0.843
(0.099) (0.102) (0.103) (0.098) (0.101)

Counterfactual is 95th percentile price index 1.400 1.414 1.413 1.415 1.410
(0.152) (0.161) (0.173) (0.181) (0.159)

Sorting by value of travel time X
Meal price varies with distance X
Perfect substitutability within chain X
Perfect substitutability within title X

Observations 13830 13830 13830 13830 13830

Notes: Computed using all trips from home by a driver (13830 trips (including all trips in high-density
tracts and in areas with imprecise speed estimates). Standard deviations of the relative price index (not of
its mean) in parentheses. NHTS sampling weights used to compute all means and standard deviations.

Because of computing limitation, I use the counterfactual 5th and 95th percentile areas of the logit model
without sorting (column 1) to compute relative price indices in the model with sorting (column 2).

I find aggregate gains from variety of $160 billion, or about 2.7% of consumer expenditures.

Assuming that only drivers gain from variety reduces these gains by 37%48. Accounting for

substitution between restaurants and all other goods leads to a further drop of 18%, in part

because this computation requires use of cex data. That is, using the nhts travel data I compute

that individuals in 2008–09 spent $348 billion per year eating out, while according to the cex

households spent a lower 323 billion on food away from home in 2009. I conclude that there

are large gains from access to restaurants beyond the closet eating option available. The most

conservative estimate of these gains from variety is at $80 billion (25% of restaurant expenditures

and 1.4% of consumer expenditures), with an upper bound at $160 billion (50% of restaurant

expenditure and 2.7% of consumer expenditures).49

In the two other experiments, the counterfactuals are existing areas. I rank each block group

in my sample by the restaurant price index in its centroid. In the first experiment, I compare the

block group an individual lives in to a denser counterfactual block group at the 5th percentile

48I assume that as with car travelers, 63% of walkers are decision makers.
49I compute total consumer expenditures from the cex as average annual household expenditure ($49,056) times

total number of households (120,847,000). Household expenditures do not include the value of travel time, and adding
it would make a small difference in the percentage that I estimate. For instance if I assume that each household drives
2 hours per day, valued at $12 per hour, and add this travel costs to household expenditures, $100 billion drops from
representing 1.68% of total expenditures to representing only 1.43%.
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price index. The average value of the relative price index is equal to 0.85 (row 2 of table 4). In the

second experiment, I compare the area an individual lives in to a lower density counterfactual

area at the 95th percentile price index. In this case the average relative price indices is between

1.40 (row 3 of table 4). I conclude that the gains to individuals from moving into the densest

areas are small relative to their losses from moving into the lowest density areas. Note that only

a part of the welfare gains from moving out of very low density areas are gains from variety.

In the countryside, even the closest restaurants are located far from travelers, which necessarily

generates welfare losses from longer trip times.50

A pure travel costs method

A simple method of assessing the magnitude of the gains from variety in the restaurant industry

is to compute the cost of all travel passed the nearest destination that would satisfy the objective

of a trip. If, on his way to his preferred restaurant, an individual incurs $2 in transport costs

beyond the closest available location, then the value of access to a variety of destinations must

be at least $2. This computation, which does not require the structural estimation of a model,

provides a lower bound for the (gross) aggregate gains from variety.

I first compute the difference between actual trip time and travel time to the closest restaurant

for all trips to a restaurants.51 Summing up this difference over all trips using nhts weights and

multiplying by 365 days per year, I find that Americans spend about 5.6 billion hours traveling

beyond the restaurant closest to their home. At $12 per hour, this travel time is worth nearly $67

billion dollars; a direct estimate of the minimum amount that Americans are willing to pay every

year to eat at a restaurant that they prefer. This implies that individuals acquire the net gains

from variety, that I estimate at $80–160 billion, through an investment in travel time of $67 billion.

This sizable return on travel (more than 100%) must be given due consideration when designing

tax policies to reduce private travel.

It is also instructive to consider non-structural evidence that the gains from variety are greater

in denser areas. I rank each trip in my sample by global density in the location it originates

from. The median number of restaurants passed before reaching destination is 14 within the first

50I provide more precise results on the relationship between density and trip time in the next section, but note that
the median length of a trip to a restaurant is 10 minutes and that most individuals living in block groups at the 5th

percentile of the index do not have access to any restaurants within 10 minutes of travel.
51As before, I assume that an individual travels to the closest restaurant whenever time to the closest restaurant is

larger than trip time due to measurement error.
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decile of global density, and rises steadily up to 89 in the last, denser decile (means are larger

than medians). These numbers strongly suggest that travelers in dense areas visit, on average,

destinations closer to their ideal. These computations also hint at the reduced-form regression

results of the next section on the determinants of trip time: if the number of restaurants passed

on each trip increases with density, then raising density will not lead to a large reduction in trip

time.

6. Testing the model: Reduced-form regressions on the determinants of trip time

In this section I test the logit model of travel demand. Of particular interest is the prediction that

if individuals benefit from density by visiting preferred destinations, as the model’s structural

estimates of the gains from density implicitly assume, then increasing restaurant density should

have little impact on travel time. First, I show how to compute the predicted value of average trip

time for each traveler in my sample. I then run reduced-form regressions of trip time on measures

of restaurant location using both predicted and actual trip time as a dependent variable. If these

two sets of regressions generate similar coefficients, then the model accurately predicts the effect

of measures of restaurant density on trip time.52 I also propose an instrumental variable strategy,

to investigate omitted variable issues. In Appendix Appendix C, I present complementary results

on the determinants of the probability of making a restaurant trip.53 Of course, the regressions on

the determinant of trip time in this section are also interesting in their own rights, for instance the

relationship between travel and the built environment is crucial when evaluating urban renewal

schemes designed to reduce vehicle miles traveled.

A simulated trip dataset

Before the regression analysis, it is instructive to visually compare the distribution of trip times in

the data with a distribution of simulated trip times generated by the model. The model predicts

the probability of traveling to any given restaurant from each location, given the set of travel

52Note that variation in restaurant density across areas is not what identifies the parameter of the model (see
Proposition 2), so that the model does not necessarily match the effect of density on trip time across areas. Therefore,
the regression coefficients that I report do not depend on the particular value of the elasticity of substitution that I use
to obtain predicted value (except for the constant term).

53Other studies find that the socio-economic characteristics of individuals, as opposed to the built environment, are
the main determinants of the number and types of trips that they take. I confirm this finding and find that income is
by far the most important predictor of whether an individual eats out, with rich people having a considerably higher
probability of traveling to a restaurant.
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Figure 6: Distribution of trip times, actual and simulated data
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Notes: Sample of 7303 trips less than 45 minutes, by a driver, from home and followed by a return trip.
The y-axis represents a time interval around the values indicated. This interval is 0 to 7.5 minutes for 5

minutes trip, 42.5 to 45 minutes for 45 minutes trip, and otherwise x− 2.5 to x+ 2.5 for a x minutes trip.
Simulated data obtained using the maximum likelihood estimate of σ̂ = 10.5.

times to all restaurants and an estimate of the elasticity of substitution. To obtain a simulated trip

dataset, I draw a trip time for each driver in the sample (round-trips from home, shorter than 45

minutes), using the probability distribution given by the model. For a given estimate of σ, this

simulated dataset is a sample of trip times that the travel survey could have collected if the logit

model had generated the data.

Figure 6 shows the proportion of trips within 5 minute time intervals from 0–5 to 40–45

minutes, in both simulated and actual data. The logit model does remarkably well in matching

the distribution of trip times, considering that only one parameter (σ) is estimated to fit the data.

The proportion of 5-minute trips is almost the same as that of more expensive 10-minute trips

because many travelers do not have any restaurants available within 5 minutes of travel from

home.

OLS regressions using trip time predicted by the logit model

Knowing the probability of a trip of each length in an area k, I can compute t̄nk, the model’s

prediction of expected trip time for each trip n in the sample. I now run ols regressions using

t̄nk as a dependent variable. These regressions on the determinants of average predicted trip time

reveal the impact that measures of restaurant location would have on trip time if the model were

true (the propositions of section 2 are informative, but only valid for hypothetical restaurants
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Table 5: The determinants of trip times, predictions from the logit model

(1) (2) (3) (4) (5)

log Predicted average trip time (t̄)

log Global density 0.103a 0.144a 0.135a 0.220a

(0.004) (0.002) (0.003) (0.003)

log Skewness 0.113a 0.022a -0.055a

(0.004) (0.003) (0.003)

log Time to closest rest. 0.485a 0.468a 0.540a

(0.006) (0.007) (0.006)

log Local density -0.230a

(0.003)

Observations 7406 7397 7406 7397 7397
R2 0.12 0.15 0.65 0.65 0.80

Notes: OLS regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c:
significant at 1%, 5%, 10%.

distributions). The estimating equation is:

log(t̄nk) = α+ β1lock + εk, (10)

where lock represents measures of restaurant density in area k (travel time to closest restaurant,

global density, local density, and skewness). I estimate this equation on a sample of 7406

observations, indexed by n, and corresponding to each actual trip to a restaurant by a driver,

from home and back and shorter than 45 minutes. Table 5 contains the regression results.

All the coefficients in table 5 are elasticities.54 The four measures of restaurant location are

correlated with one another, so the coefficient on each variable is sensitive to the inclusion of

the others. The predicted effect of global density on trip time is positive, with an elasticity

ranging from 0.10 in column 1 when the variable enters alone, to 0.22 in column 5 when all

variables are included. This corresponds to trips about 2 to 4 minutes longer than average in the

densest decile of global density. According to Proposition 2 and 3, the effect of global density on

trip time, controlling for time to the closest restaurant, would be about zero if restaurants were

uniformly distributed. So Proposition 1 implies that this positive coefficient is due to the larger

share of the restaurant mass located far from home in dense areas (see section 3 for a precise

discussion). In column 2 the skewness of the restaurant distribution enters the regression alone,

and its coefficient is positive at 0.11, so the model predicts that trips are longer in areas with a

54I also run regressions (results not shown) using dummy variables for the deciles of global and local density, and
in which travel time to the closest restaurant and my measure of skewness of the restaurant distribution enter linearly.
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disproportionately large number of restaurant far from home. This ratio of density close and far

from home, however, is a coarse measure of location and its effect is reduced or negative when

global and local density enter the regression. Unlike the effect of global density, the effect local

density is negative (elasticity of -0.23, in column 5). High density close to home implies relatively

lower density far from home, hence the shorter predicted trip times. The effect of time to the

closest restaurant is harder to interpret as an elasticity, but its linear effect is close to 1 at about

1.2.55 So the model predicts that an individual living 15 minutes away from the closest restaurant

on average makes a trip about 5 minutes shorter than that of another individual who lives 20

minutes away from the closest restaurant. These four measures of restaurant location capture

most but not all of the features of the distribution of restaurants that are relevant to the model.

The R2 of the regression with global density as the only regressor is 0.12, adding a measure of

skewness does not make much difference, adding time to the closest restaurant increases R2 to

0.65 and adding local density increases R2 to 0.80.56

OLS regressions using actual trip time

For regressions on the determinants of actual trip time, I keep the sample of 11900 trips to a

restaurant from home, by a driver. I verify that keeping only the 7406 trips followed by a return

home and shorter than 45 minutes (to match the regressions on predicted average trip time) leads

to similar results. The estimating equation is:

log(mnk) = α+ β1lock + β2divk + β3Xn + β4Zn + εnk. (11)

Each observation n is a trip. The dependent variable mnk is travel time of a trip in minutes. lock

represents measures of restaurant location in the area k from which trip n originates. divk is a

control for restaurant diversity, for instance the specialization index. Xn is a vector of individual

characteristics for the driver of trip n, such as age, gender, education, and income (I omit to index

individuals, who rarely take more than one trip to a restaurant on their travel day). Zn is a vector

of trip characteristics, including for instance the number of individuals on the trip, the start time,

55Proposition 3 predicts an coefficient equal to 1. The effect of time to the closest restaurant in the regression of table
5 is probably overestimated, as it is the only variable that measure the exact location of a restaurant (other variables
are proxies), and it captures other features of the distribution.

56Regressions on a dataset of simulated trips (instead of predicted average trip time) leads to similar coefficients but
much lower R2 (which would drop from 0.8 to 0.2 in the regression of column 4). The lower R2 in regressions on
simulated trip time reflects the randomness inherent in the logit model of travel demand; the model cannot accurately
predict the length of any single trips, as destinations close and far are equally likely to receive a large idiosyncratic
shock.
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Table 6: The determinants of trip time

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Trip time to restaurant

log Global density -0.015b 0.010c -0.015b 0.033a 0.040a 0.033a 0.030a 0.007 -0.002
(0.006) (0.006) (0.006) (0.008) (0.009) (0.008) (0.008) (0.009) (0.017)

log Skewness 0.060a 0.016b -0.01 0.014c 0.018b 0.015b 0.007
(0.006) (0.007) (0.009) (0.007) (0.007) (0.007) (0.009)

log Time to closest rest. 0.237a 0.188a 0.231a 0.244a 0.231a 0.220a 0.210a 0.203a

(0.013) (0.013) (0.014) (0.017) (0.014) (0.014) (0.014) (0.017)

log Local density -0.130a -0.112a -0.130a -0.129a -0.132a -0.145a

(0.011) (0.013) (0.012) (0.011) (0.011) (0.013)

log Specialization -0.290a -0.079
(0.087) (0.25)

Controls

Individual characteristics X X X X
Trip characteristics X X X
MSA fixed-effects X

Sample

Round-trips only X

Observations 11865 11865 11828 11814 7397 10846 10659 10331 8759
R2 0.0006 0.032 0.040 0.051 0.041 0.063 0.157 0.158 0.157

Notes: Regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c: significant
at 1%, 5%, 10%. Dependent variable is trip time to restaurant in all columns. Individual characteristics
include 17 dummies for household income, 4 dummies for education, household size, 6 dummies for age, a
dummy for gender, a dummy if black and a dummy for worker’s status. Trip characteristics include 5
dummies for each peak hour (7-8am, 8-9am, 15-16pm, 16-17pm, 17-18pm), a dummy for trips followed by
a return trip home, a dummy for trips on week-end, the number of children on the trip, the number of
adults on the trip, the number of non-household members on the trip, the log time spent at destination, the
log speed of a one mile trip in the driver’s census tract, and the the log of gas price in the driver’s region on
the week the trip was taken. The sample size is lower than that in table 4, because here I eliminate trips in
census tracts with more than 20% walking trips, or in which travel speed has to be estimated at the county
level. In the ‘Round-trips only’ row, I limit the sample to trips to a restaurant which are immediately
followed by a return trip home.

the time spent at destination, a dummy for whether the trip is followed by a return trip back

home, and travel speed in area k. The regression results are presented in table 6.

Columns 1–5 present regression results with only measures of restaurant location as controls.

Column 5 excludes all trips not followed by a return home – which barely affects the coefficients

– and so is directly comparable to column 5 of table 5. The effect of global density on trip time

is close to zero in each regression, meaning that the number of restaurants available within 45

minutes of travel has little impact on trip time. That increasing global density fails to reduce
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trip time in the data corroborate the intuition behind the model, that substituting among travel

destinations is cheap in dense areas, so individuals often gain from density by visiting preferred

location. However, this zero effect does not match the model’s prediction of a positive effect, and

this discrepancy casts doubts on the logit model’s strong assumptions. If the iia does not hold for

instance, then additional restaurants eventually become redundant and the mass of restaurants

far from home in dense area may exert little attraction on a traveler. The model’s extensions

address these issues.

The elasticity of trip time with respect to travel time to the closest restaurant is large and

positive, ranging from 0.2 to 0.25 depending on the regression, but it is smaller than predicted. If

time to the closest restaurant entered linearly, it would have an effect of about 0.5.57

The elasticity of trip time with respect to skewness is 0.06 in column 3, in a regression also

including time to the closest restaurant and global density as controls. That is, individuals take

shorter trips if the mass of restaurant within 45 minutes is disproportionately located close to

home. Most of the effect of skewness disappears when controlling for local density in column

4. Local density has the predicted negative effect on trip time (elasticity of -0.13), so travelers

with a high density of restaurant close to home (passed the closest restaurant) make shorter trips.

Proposition 1 can explain the estimation results in column 4, in which global density a small

but positive effect and local density has a negative effect: for individuals living in areas with the

highest density of restaurants close to home, the density of restaurant far from home is necessarily

lower in relative terms.58 A general conclusion is that while increasing the level of density over a

large area has little effect of trip time, the decision of how far to travel strongly depends on the

distribution of restaurants in space.

57Some of this discrepancy is due to measurement error. The linear effect of distance to the first restaurant on trip
distance is larger, between 0.6 and 0.9, as distance does not suffer from measurement error in speed and trip distance
seems to be entered more precisely in the travel data. The distance to the first restaurant is itself measured with
error, because the location of each individual is only known at the block group level. If this error is more likely to
be negative, because individuals in large unpopulated blocks live closer to commercial centers than my measure of
block centroid suggests, then my estimate is biased downward. By replacing time to the closest restaurant with trip
time whenever the latter is smaller, as I do to estimate the model, I obtain linear coefficients of about 1. I conclude
that travel time to the first restaurant has a large and positive effect on trip time, and that even more precise data may
confirm the theoretical prediction of a proportional effect.

58The variables for local density and time to the closest restaurant are a measure of what Ewing and Cervero (2010)
call ‘destination accessibility’ in their meta-analysis. It is often measured as distance to downtown in studies on the
determinants of vehicle miles traveled, and it has a robust negative effect on travel. My model suggests that this finding
should be understood in relative, not absolute terms. That is, individuals living downtown make shorter trips in part
because there are much less options farther out, and increasing suburban restaurant density could have a positive
effect on trip length in the city center. Kockelman (2001) also shows that individuals substitute destinations close for
destinations far, by estimating a demand system in which individuals can choose between different travel zones.
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In column 6, I add individual characteristics to the regression. These additional controls do

not affect the coefficients on measures of restaurant location, and have little explanatory power.

The lowest income households (less than $20,000 per year) take trips about 10% shorter than the

highest income households (more than $100,000 per year), but this effect is no longer significant

when controlling for trip characteristics. There is no difference in trip time for families with

income between $20,000 and $100,000. Education has very little impact. Trip time increases with

age, as driver’s in their 20s and 30s take trip about 20% shorter than those of drivers 75 and

older. Members of larger households take slightly shorter trips, and this effect is entirely due to

children, as additional adult members have a small positive effect. Blacks take trips 10 to 15%

longer.59 Female drivers take trips about 2% shorter, but the result is at the margin of significance.

Worker status has no significant effect on trip time. Given that the maximum likelihood estimator

of the elasticity of substitution essentially matches the mean of the trip time distribution, these

ols regression results suggest small differences in σ across groups of individuals with different

characteristics. In this paper however, I only estimate σ for the whole sample, and focus on

geographical differences in the welfare gains from variety.

Controls for trip characteristics, included in column 7, have more explanatory power but also

do not affect coefficients on measures of restaurant location. Trips not followed by a return home

are 20% longer, consistent with the idea that individuals undertake a trip chain based on their

preferences for two or more objectives, not just eating. Doubling the time spent at destination

increases travel time by 12%. Trips during the morning peak are slightly shorter, perhaps because

breakfast is a standardized and inexpensive meal. Trips during the evening peak - worse in terms

of traffic - are almost 15% longer. The dummy for week-end trips is not significant. Traveling with

children has no impact on trip time, but each additional adult on a trip increases its length by 9%.

Whether or not the passengers are household members has no effect on trip time. This relatively

small but positive impact of each passengers on trip time may be due to sharing of gasoline costs,

but it can also denote joint decision making by individuals with different preferences maximizing

an objective function. A discrete-choice model relaxing the assumption of a single decision maker,

59In a regression of trip distance on measures of density in restaurant per miles and individual characteristics, a
black dummy has almost no effect. The reason is, shorter trips for blacks are mostly due to slower driving speed.
Similarly, more than half of the age effect disappears in regression with trip distance as the dependent variable, and
the poorest households make trips that are 30% shorter in units of distance (instead of 10% shorter in units of time),
consistent with Couture et al. (2012) who find that driving speed increases with income. Recall that the measures of
density in restaurant per minutes do not account for variation in driving speed at the individual level.
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which implies that passengers should not affect trip time, may be a better fit for the data, and

could be an avenue for future research. The elasticity of gasoline price on trip time is about

0.03, at the margin of significance.60 Increasing travel speed in the area in which a trip originates

slightly reduces trip time.61

In column 8, I add the specialization index, a measure of restaurant diversity, as a control.

High specialization of restaurant categories in an area has a small negative effect on trip time.

In a regression of trip time on 9 dummies for the deciles of specialization and other measures of

restaurant location, I find that trip time is about 1 minute shorter in the 5 deciles with highest

specialization, a result not robust to the inclusion of individual and trip characteristics. Trip time

does not change from low to medium levels of restaurant specialization. Including specialization

decreases the effect of global density from 0.03 to 0, so the effect of global density on trip time

would be smaller if restaurants were not more diverse in dense areas. The correlation between

specialization and global density (and other measures of location) mean that this effect is hard

to estimate precisely, and can be due in part to multicollinearity. In the logit model, restaurant

diversity is constant across areas, but the idea that individuals would travel less if destinations

were identical is at the core of any model with substitutable destinations. The nested-logit model

of section 7 can explain this small but positive effect of restaurant diversity on trip time.

In column 9, I add Metropolitan Statistical Areas (msa fixed-effects and exclude trips in non-

msa areas. Results are similar, except for the effect of specialization which becomes insignificant,

probably because most restaurants within 45 minutes of travel from home are also within msa

boundaries, and because specialization only has a sizable impact in low diversity, generally out-

of-msa areas.

To summarize, the logit model describes the first-order features of the data, but there is a

sizable discrepancy between the actual and predicted effect of the number of restaurants within 45

minutes of travel (global density) on trip time. I offer three explanations. First, remote restaurants

may be close substitutes to options available closer from home, so the mass of restaurants far from

home in dense area exert little attraction on a traveler. Two extensions of the model in section 7

60This variable, from the nhts, is equal to the retail price of gasoline as provided by the us Energy Information
Administration on the Monday closest to an individual travel day. The prices vary across 5 Petroleum Administration
for Defense Districts (East Coast, Gulf Coast, Midwest, Rockies, West Coast (plus Alaska and Hawai)).

61Regressions on the model’s predicted average trip time (in which all variables in Xn and Zn should have no effect)
also show a negative coefficient, so that most of the effect that I estimate can be due to the correlation of speed with
measures of restaurant location (indeed, speed has a positive effect in regressions on trip distance).
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relax the iia property of the logit model. Second, measurement error biases ols estimates towards

zero. Third, omitted variables can bias the coefficient on global density. An instrumental variable

strategy alleviates both measurement error and omitted variable biases.

IV regressions

If individuals sort into areas based on γ or σ, then ols coefficients are biased because of a

correlation between the error term of equation (11) and measures of restaurant location. For

instance, Proposition 4 suggests that individuals with high value of travel time make shorter trips.

Therefore, sorting of high value of travel time individuals into dense areas could explain why the

model overestimates trip length in areas with high global density. In this case, an instrumented

coefficient on global density would be more positive, and closer to the model’s prediction. The

reverse happens if individuals with marginal preferences or pronounced tastes for variety sort

into dense areas; with sorting on σ an instrumented coefficient on global density would be even

more negative.62

An instrument zk for global density in area k must satisfy two criteria. First,

it must be relevant, i.e. correlated with global density conditional on other controls:

corr(global_densityk, zk|controls) 6= 0. Second, the instrument must be exogenous, i.e. uncorre-

lated with the error term: corr(εnk, zk|controls) = 0. I instrument global density with the growth

in population density from 2000 to 2007, in the county in which an individual lives. Crucially, I

am able to select a sample of individuals - old, married, homeowners - very unlikely to move out

of county in any given year.

The population data come from the 2000 Census and from the 5-year estimates of the 2009

American Community Survey (the last acs using the 2000 Census geography). The 5-year

estimates provide an average county population count over the years 2005, 2006, 2007, 2008m and

2009, from a 1/8 sample of the population. I use this average as a measure of county population

in 2007. County areas are from the Missouri Data Center’s MABLE Geocorr2K database, and

population density for each county is population count over area. The growth in population

density from 2000 to 2007 is the ratio of the log density in 2007 to that in 2000.

62Endogenous restaurant supply can also lead to a positive relationship between σ and restaurant density. In a
model with exogenous, uniform and continuous density of individuals with the same σ, the density of restaurants in
a free-entry equilibrium increases with σ. I present a richer version of this model is Appendix Appendix D.
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While counties vary in size, they are the census geographic units that most closely match an

area accessible through 45 minutes of travel.63 Current county population density is a strong

predictor of restaurant global density (table 2). More important, growth in county population

density in the 2000s explains variations in the level of restaurant global density in 2011, especially

if one controls for initial county population density in 2000.64 So the instrument is relevant.

The instrument fails the exogeneity requirement if individuals sort into densely populated

areas based on characteristics that affect trip time. Using growth to instrument a level is an

important step towards satisfying the exogeneity condition. I can control for the initial level of

population density in 2000, and people probably seldom choose to reside in an area based on an

accurate prediction of its density growth prospect a few years hence. Therefore, the main threat

to the exogeneity condition comes from individuals who moved between 2000 and 2007 into areas

whose population densities were high because of recent growth. In this case, sorting occurs on

the instrument. This is a particular concern because 15.4% of Americans surveyed by the 2009

acs had changed residence over the previous year, according to Ihrke, Faber, and Koerber (2011).

To remedy this, the identification strategy relies on creating a sample of individuals with a low

probability of moving out of county in any given year. The moving rate of individuals aged 45

and older is about 7%, with only a 3% chance each year of moving out of county. Homeowners

have a 6.7% moving rate, almost five times smaller than that of renters. Married individual also

have a lower than average moving rate at 9.9%. Keeping in mind that older individuals are also

more likely to be married and to own a home, suppose that 2.5% of married homeowner 55 years

and older, that I keep in my sample, randomly move out of county every year.65 Then more than

80% of these travelers that I observe in 2008 and early 2009 lived in the same county in 2000. That

is, the iv regressions are informative, but the results should be treated with caution.

Table 7 contains the two-stage least squares (tsls) estimation results. The estimates in columns

1–4 are for the full sample, and those in columns 5–8 are for the sample of individuals with a low

probability of moving. In each column, the elasticity of trip time with respect to global density

63The median county in my sample has a radius of about 38 miles, while 45 minutes of driving usually covers about
25-30 miles in distance.

64The instrument is marginally weak if a control for initial population density is not included, for instance in columns
1 and 5 of table 7.

65I keep individuals 55 years and older instead of 45 years and older because a 45-year-old in 2008 was 37 in 2000.
I observe both age and homeownership status in the nhts and I select individuals living in households with two or
more members to proxy for marital status. This selection still leaves a significant fraction of my nhts sample of trips
(around 40%).
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Table 7: The determinants of trip time, with instrument for global density

(1) (2) (3) (4) (5) (6) (7) (8) )

Trip time to restaurant

log Global density 0.102c 0.089b 0.083c 0.120c 0.239b 0.200a 0.161b 0.230b

(0.055) (0.043) (0.047) (0.063) (0.102) (0.072) (0.069) (0.10)

log Time to closest rest. 0.269a 0.229a 0.213a 0.261a 0.353a 0.249a 0.224a 0.271a

(0.039) (0.019) (0.017) (0.023) (0.076) (0.029) (0.025) (0.037)

log Skewness 0.016 0.027b 0.031a -0.023 -0.033 -0.002 0.012 -0.059c

(0.021) (0.013) (0.012) (0.02) (0.038) (0.021) (0.015) (0.031)

log Local density -0.17a -0.210a

(0.022) (0.036)

log Specialization -0.065 0.171
(0.139) (0.228)

Controls

log County pop. density in ’00 X X X X X X
Individual characteristics X X X X
Trip characteristics X X X X

Instrument

∆ log County pop. density ’00-07 X X X X X X X X

Samples

Full sample X X X X
Low probability of moving X X X X

Observations 11811 11811 10652 10322 5520 5520 4977 4815
First-stage stat. 14 33 30 17 11 30 29 14

Notes: Regressions with a constant in all columns. Robust standard errors, clustered at the county level in
parentheses. a, b, c: significant at 1%, 5%, 10%. Dependent variable is trip time to restaurant in all columns.
Individual characteristics include 17 dummies for household income, 4 dummies for education, household
size, 6 dummies for age, a dummy for gender, a dummy if black and a dummy for worker’s status. Trip
characteristics include 5 dummies for each peak hour (7-8am, 8-9am, 15-16pm, 16-17pm, 17-18pm), a
dummy for whether the trip was followed by a return trip home, a dummy for trips on week-end, the
number of children on the trip, the number of adults on the trip, the number of non-household members
on the trip, the log time spent at destination, the log speed of a one-mile trip in the driver’s census tract
and the log of gas price in the driver’s region on the week the trip was taken. The sample with a low
probability of moving consists of all homeowners 55 years and older living in an household with at least 2
members. The first-stage F statistics are cluster-robust.

is positive and significantly larger than any of the ols elasticities. This result is consistent with

the sorting of individuals with high value of travel time, who are predicted to make shorter trips,

into dense areas. The elasticities are about 0.10 in columns 1–4 and are twice as large in columns

5–8, suggesting that sample selection is important for identification. For the iv regressions on the

sample of individuals with a low probability of moving, one cannot reject that the effect of global
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density on trip time is the same as that predicted by the model. The result is robust to removing

the control for population density in 2000 (column 5) and to adding controls for individual and

trip characteristics (column 7–8). The regression with all controls, in column 8, generates results

remarkably similar to those obtained from predicted trip time data in column 5 of table 5. The

iv strategy probably mitigates the impact of measurement error, as it moves all coefficients on

measures of restaurant location away from 0 and towards the model’s prediction.66

Where do welfare gains from density come from?

Regressions analysis can also distinguish the share of the consumption value of density that is

due to gains from variety from the share that is due to savings on travel costs on each trip. To

approximate these shares, I run regressions of trip time on 9 dummies for the deciles of the

variety-adjusted restaurant price index Pk.67 I exclude the dummy for the first decile, to obtain

the average increase in travel time within each upper decile. Within its first decile, the price

index is on average equal to 8.68, and within the second decile it equals 9.17 with a round-trip

on average 0.46 minutes longer. There is a $0.49 difference in the two indices and a $0.092 saving

on transport costs, so I attribute 19% of the gains from density to travel time savings for an

individual in the second decile moving to the first decile. An individual living in the last decile

faces an index equal to 13.23 and makes round-trips 10.6 minutes longer, so 46% of his welfare

gains from moving to the first decile are due to shorter trips. The same exercise for other deciles

leads to a share of travel costs savings in the gains from density that is generally lower than 50%.

Note that iv regressions suggest that part of the reason for shorter trips in dense areas is the

sorting of individuals with high value of time, and that extensions of the models (section 7) lead

to gains from variety that are slightly larger. I conclude that the gains from density are mostly

66The idea that individuals with high value of travel time sort into dense areas is intuitive, but it is only a prediction
of the model subject to some caveats. When computing welfare gains, I can confirm that the gains from moving into
areas with the highest global density is larger for individuals with higher value of travel time, as is their loss from
moving into areas with the lowest global density. In theory however, assuming a uniform density and a fix position
for the closest and farthest restaurant, the gains from increasing density are higher for low value of time individuals.
The opposite result arises in the data because areas with high global density also have more restaurants very close
from home. Clearly, the variables for local density and travel time to the closest restaurant are also endogenous.
However, the instrument (even if defined at the census tract instead of at the county-level) is much weaker for these
variables, and these iv regressions are sensitive to the set of controls and often lead to unreasonable values. Of course,
another explanation for why the instrument works better in large areas is that individuals do not only sort into an
area based on how close the nearest few restaurants are, but also take into account the location of many other kinds of
destinations.

67I use the sample of all round-trips to a restaurant from home by a driver, and include trip and individual
characteristics.

43



gains from being able to visit a destination that one prefers, but that there are also benefits from

shorter trips.

Regression using additional restaurant characteristics from Yelp

I now use information from Yelp to include additional measures of restaurant characteristics

into the regression in equation (11). I only have Yelp data for 23% of restaurants, all in the 20

largest msas in my sample. I restrict the sample to trips in areas for which I have Yelp data

on at least 50% of restaurants within 45 minutes of travel. This leaves 1531 trips, out of 11884

in the original sample. I compute 7 new variables: mean price, mean ratings, mean number of

reviews, mean ease of parking, mean need for reservation, mean attire and mean ambience for

all restaurants within 45 minutes of travel. I run a different regression for each new variable.68

Most of these variables have no significant effect on trip time, except for the mean number of Yelp

reviews which has a small positive impact. Mean attire and ambience have a negative, marginally

significant effect on trip time (for these two variables, often missing on Yelp, a high mean implies

a more upscale environment).

For all 7 of these measures of restaurant characteristics, the standard deviation and the mean in

a given area are highly correlated, so including standard deviations in the regression as measures

of restaurant diversity leads to similar result. I experiment with using the ratio of a variable’s

mean for restaurants from 0 to 22.5 minutes of travel to its mean for restaurants from 22.5 to 45

minutes and do not find significant results. Regressions on means computed for the 100 closest

restaurants predicts shorter trips if the local area contains expensive, upscale restaurants in which

reservations are more likely to be required.

Finally, note that there is a small positive correlation between mean price and global density.

However, controlling for price differences across areas did not reconcile the data with the logit

model’s prediction on the effect of global density. Similarly, estimating a logit model in which

meal prices vary by area leads to almost the same result as if meal prices were constant. Average

Yelp quality ratings, however, do not vary systematically with density levels, and display little

geographic variation.69 Of course, Yelp ratings often originate from local residents and are not

68With this sample, the coefficients on density global is more negative (about -0.05) and that on time to the closest
restaurant is smaller than in regressions on the full sample. Areas with a majority of restaurants on Yelp are not
randomly selected, and I only collected Yelp data in the largest msas, which may differ from the average area.

69Berry and Waldfogel (2010) also do not find evidence that average restaurant quality increases with market size.
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necessarily comparable across areas. More precise data on price and quality ratings may confirm

or infirm these results.

7. Extensions of the logit model

In this section, I estimate four extensions of the basic logit model of travel demand. First, I allow

sorting into dense areas by value of travel time, in line with the iv regression results. Second,

I let meal prices vary with travel time from home, to deal with a potential source of bias in

my estimates. The last two extensions relax the iia property of the logit model and introduce

restaurant diversity into the model. When the iia does not hold, restaurants become redundant

and many of the restaurants far from home in dense areas exert little attraction on an individual,

because they are similar to restaurants available closer to home. This could explain why the ols

effect of global density on trip time is smaller than what the logit model predicts.

Sorting by value of time

iv regressions indicate that individuals who choose to live in high restaurant density areas make

shorter trips, and Proposition 4 suggests that sorting by value of travel time can explain that

result. Hence, I estimate an extension of the basic logit model in which an individual’s value of

travel time γ varies with global density in area k. Denote the value of travel time for the driver of

trip n in area k by γnk, with γ̄ the geometric mean of γ over all n. To be consistent with previous

estimation, I set γ̄ = 0.2. I parameterize γnk as:

γnk(β,Tk) = γ̄

(

global_density

global_densityk

)−β

, (12)

where global_density is the geometric mean of global density. β captures the strength of the

relationship between γnk and global density. If β > 0, then individuals living at above average

density levels have higher values of travel time. One can use equation (12) to verify that γ̄ is

indeed the geometric mean of γnk, i.e. that γ̄ = (∏N
n=1 γnk)

1/N .70 As in section 4, the probability

of a trip to a restaurant at travel time mnk is:

prob(mnk|σ,β,Tk) =
(p+ 2γnk(β,Tk)mnk)

−σ

∑
Ik
i=1 (p+ 2γnk(β,Tk)tki)

−σ
,

70The geometric mean is always smaller than the arithmetic mean, but in this case the arithmetic mean of γnk that I
obtain after estimating the model is almost identical to γ̄.
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the log-likelihood function is:

`(σ,β,m,T ) =
N

∑
n=1

log(prob(mnk|σ,β,Tk)),

and the maximum likelihood estimator is:

(σ̂,β̂) = argmax
σ,β

`(σ,β,m,T ). (13)

I find σ̂ =10.1 and β̂ = 0.21 (in column 2 of table 3). A plot of the log-likelihood function

suggests that it is concave for any reasonable values of the parameters and a likelihood ratio

test easily rejects the model without sorting in favor of the model with sorting by value of time.

Recall that the model without sorting predicts the iv regression results of a positive effect of

global density. Consistent with this, re-estimating equation (10) for the model with sorting shows

that it correctly predicts the ols regression results of a near zero effect of global density on trip

time.

The elasticity of substitution σ is slightly lower in the model with sorting, because the low share

of trips to remote restaurants in dense areas is explained by the positive relationship between

global density and value of time, not by higher substitutability between restaurants. This lower

elasticity of substitution implies marginally higher gains from variety in the model with sorting,

for instance the aggregate gains from being able to visit restaurants other than the closest one

increase by 9%.

β̂ = 0.21 implies large but not implausible variation in value of travel time. For instance the

10th percentile of γnk is at γ = 0.14 and the 90th percentile is at γ = 0.28. This estimate of β

is almost certainly biased upward, because γ also captures variation in trip time that may be

attributable to restaurants becoming redundant, or to measurement error. I am not aware of

other value of travel time estimates that vary with measures of restaurant density in the home

area. Abrantes and Wardman (2011), in a meta-analysis of 140 recent studies for the United

Kingdom, run regressions of value of travel time estimates on various explanatory variables.

They find that value of travel time is 27% larger in London and the South East of England (which

is more densely populated) but do not uncover any other spatial or density effects. However,

they find strong evidence that value of travel time is higher, by 70%, in congested traffic. Given

that car travel speed is lower in dense areas, congestion aversion could also explain, without any

sorting, why a model with higher value of travel time in dense areas fits the data better.
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Letting average meal price vary with travel time from home

Estimates of the elasticity of substitution between restaurants are biased if the characteristics of

restaurants close to home differ systematically from those of restaurants far from home.

I use data from Yelp to compute average characteristics of restaurants that vary with travel

time. I place each restaurant in the choice set of a traveler in a five minutes time bin, from

0–5 to 40–45 minutes. There are not enough restaurants on Yelp in each time bin to compute

measures that vary both by travel time and by areas, so I compute an average that varies only

with travel time. To do so I create a set of all restaurants 0–5 minutes away from any individual.

Then I compute the mean of Yelp variables over all restaurants in this set, with some restaurants

double-counted if they are within 5 minutes of travel from more than one individual. I repeat the

process for restaurants 5–10 minutes away, and so on. Locations on average far from home have

the same average quality ratings, but are pricier, have more reviews, a more upscale ambience and

attire, and are more likely to require a reservation. The average price of a restaurant within 0–5

minutes of travel from home is $12.56, which increases to $13.33 for restaurants 40–45 minutes

away.71 Parking is also harder in restaurants far from home; 22% of restaurants within 40–45

minutes of travel have street parking only, up from 15% of restaurants 0–5 minutes from home.

One interpretation of these results is that a majority of travelers live in medium density suburbs,

relatively far from restaurants in high-density areas which tend to be slightly more expensive and

upscale, and less likely to have a private lot for parking.

To assess the sensitivity of my results to these spatial variations in restaurant characteristics,

I re-estimate the logit model, but with meal price in each time bin equal to its average value.

For instance, I set the price of each restaurant 0–5 minutes from home at $12.56. Given that

restaurants farther from home are not only more expensive (making them less attractive), but

also more upscale (making them more attractive), an estimate in which only meal price varies is a

lower bound for the downward bias on σ caused by the correlation between meal price and travel

time. I find σ = 10.0 (column 3 of table 3). This elasticity of substitution is lower than that in the

model with constant meal prices, because to some extent the lower share of trips to restaurants

71I also find that restaurants far from home are less likely to be part of restaurant chains, and the next extension
takes it into account. The specialization index also does not vary with travel time, but my methodology is imperfect
in this case, as it could be that restaurants close to any given individual are usually of the same category, but that
categories differ enough across areas to lead to a low average specialization. The nested-logit extension takes the exact
category of each restaurant into account.
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farther away is explained by price differences, not by high substitutability. In turn this lower

elasticity leads to aggregate gains from restaurant variety about 5% larger.

Redundant chain restaurants

According to a census of all commercial restaurants conducted by the npd group in the Fall 2010,

there are 267,499 chain restaurants in the us, representing 46% of the total.72 Two restaurants

in the same chain are never exactly the same, but it must be true that two McDonald’s are

highly substitutable with one another, so a model in which restaurants in the same chain are

perfectly substitutable may be a better representation of reality. This is perhaps the simplest way

to relax the logit assumption that all restaurants are equally substitutable (iia property) and to

introduce restaurant diversity into the model. Intuitively, areas consisting mostly of repeated

chain restaurants have low diversity, and the model is now flexible enough to take this into

account. A model with perfectly substitutable chains could also predict the small effect of global

density on trip time better than the logit model, because some of the thousands of restaurants far

away from home in dense areas necessarily belong to chains available closer from home, and as

such exert no attraction on a traveler.

To estimate this model, I code the 50 largest restaurant chains in my data, which represent 23%

of all restaurants in the sample, and are likely to be occur more than once within 45 minutes of

travel. Because travel is costly, a restaurant that is perfectly substitutable with another restaurant

closer from home is never visited. To understand what this implies, suppose that an individual’s

choice set in the logit model is Tk = {tk1, . . . ,tkIk}. If restaurants located at tk5, tk9 and tk104

are all Subway restaurants, then the choice set if chains are perfectly substitutable becomes T ′
k =

{tk1, . . . ,tkIk} \ {tk9,tk104}. Similarly, I eliminate all repeat restaurants in the other 49 largest

chains. Estimation is then exactly as in the logit model, with the estimator given by equation (8),

but with a choice set T ′
k containing no repeat chain restaurants. I find σ̂ = 10.0 (column 4 of table

3).

In an alternative specification, I assume that restaurants with the same Google Places title

are perfectly substitutable. This likely eliminates almost all repeat chain restaurants (54% of the

restaurants in my sample are part of a group of two or more restaurants with the same title) but

leads to more errors, as some restaurants with the same title are not part of the same chain, and

72See http://www.npd.com/press/releases/press_110124.html for the press release.
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many restaurant chains have entries on Google Places with inaccurately spelled or shortened title.

In this case, I find σ̂ = 9.7 (column 5 of table 3)

The elasticity of substitution is lower when restaurants are perfectly substitutable within

chains. The reason is, the logit model attributes the low share of trips to remote restaurants to

high substitutability between restaurants in general, instead of just assuming that some of these

restaurants are perfectly substitutable with eating options closer from home. The two extensions

above generate predictions that are only slightly closer to the data; when I eliminate repeat titles

I obtain a predicted effect of global density on trip time one percentage point closer to its actual

effect. The aggregate gains from variety are only marginally larger than those from the model

without redundant chains.73 Perfect substitutability within chains barely changes the welfare

estimates because the percentage of restaurants that are part of a chain is larger in low-density

areas. Contrary to an intuition that would be correct if restaurants were randomly distributed,

repeat restaurants are less common in dense areas.

Nested-logit model

In a nested-logit model, individuals first choose a category of restaurants (e.g. Pizza, Chinese or

Burger) and then decide which restaurant to visit within that category. The iia property of the

logit model does not hold, because restaurants within the same category are more substitutable.

To solve the demand-side of the model, I adapt the strategy in Sheu (2011), who proves that a

nested-logit model can generate the same choice probabilities as a nested-ces model. To recover

unobserved taste parameters for each category of restaurants in each area, I derive an equilibrium

condition on the supply-side, assuming zero profits and free-entry of restaurants.

There are 85 categories of restaurants, indexed by c.74 There is an exogenous distribution of

tastes for restaurant categories that is specific to each area k, and a parameter bkc captures the

73The flip side of this result is that in reduced-form regressions, controls for the percentage of chain restaurants
(or the percentage of repeat chains or repeat titles) do not have a significant effect on trip time and do not affect the
coefficient on global density.

74The categories, and their percentage share, are listed in Appendix Appendix E. The category is ‘undefined’ for
17% of restaurants, usually smaller independent places serving standard fares. I code all other restaurants into 84

categories (using information from Google Places), that closely match the categories that Yelp distinguishes on its
website.
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taste for category c in area k.75 Let i index the number Ikc of restaurants in category c within 45

minutes of travel in area k. Travel time to restaurant i in category c in area k is tkci minutes. Meal

price is constant and the same within each category, so the total price of eating at restaurant i is

pkci = p+ 2γtkci.
76 As before, each restaurant receives a type I extreme value idiosyncratic shock

εkci with scale parameter 1/(σ− 1), but now each restaurant also receives a category-specific type

I extreme value idiosyncratic shock ςkc with scale parameter 1/(1 − µ). An individual’s budget

constraint is pkcirkci = y, where yk is expenditures on restaurants in area k, and rkci is the number

of trips to the chosen restaurant i. The utility from choosing restaurant i from category c in area

k is:

ukci = ln
(

b
1/(σ−1)
kc rkci

)

+ εkci + ςkc,

and the indirect utility is:

vkci = ln(yk) +
1

σ − 1
ln(bkc)− ln(pkci) + εkci + ςkc.

The traveler first solves the optimization problem within each restaurant category, exactly as in

section 2, and then chooses the category that maximizes his expected utility. The probability

of a trip of length tkci, given the set of travel times Tk = {Tk1, . . . ,Tkc, . . . ,Tk85}, where Tkc =

{tkc1, . . . ,tkci, . . . ,tkcIkc}, is:

prob(tkci|Tk) =
bkcPkcp

−σ
kci

∑
85
c=1 bkcP

σ−µ
kc ∑

Ikc
i=1 p

−σ
kci

(14)

where Pkc =
(

∑
Ikc
i=1 p

1−σ
kci

)1/(1−σ)
(see Sheu (2011) for a proof). It is easy to show that σ is

an elasticity of substitution within categories and that µ is an elasticity of substitution across

categories. One expects σ > µ if an individual cares more about restaurant category than about

the particular restaurant that she visits within a category (e.g. she wants to eat Sushi, regardless

of the exact restaurant).

Equation (14) is not suitable for estimation because area-specific taste parameters are unob-

served.77 If these tastes for categories are exogenous, in equilibrium they should affect the share

75Schiff (2012) shows that even if preferences are identical everywhere, in a free-entry model densely populated areas
feature more categories of restaurants because they contain enough people with marginal tastes to make restaurants
of the least popular categories profitable. This argument is intuitive, but it alone cannot account for the wide range of
restaurant diversity that I measure in areas at the same density level. For instance, some areas in Texas contain a vast
majority of Mexican restaurants, which likely reflects a special taste for this category in these areas.

76Constant meal price across categories is an equilibrium result that depends on assuming constant meal costs.
77Estimating the model without taste parameters for categories means that marginal and arbitrarily defined restau-

rant categories (e.g. a ‘soup’ category is defined on Yelp) exert an implausibly large attraction on travelers.
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of restaurants of each category in an area. To obtain an expression of this relationship, I introduce

restaurant supply into the model. The details are in Appendix Appendix D (I assume free-entry

and use a continuous version of the model with uniform density to obtain an analytical result).

Denote by dkc the uniform density of restaurants of type c in area k. In equilibrium, for any two

categories c and c′:

dkc

dkc′
=

(

bkc

bkc′

) σ−1
σ−µ

. (15)

The relative density of restaurants in these two categories depends on relative tastes in an

intuitive way. If individuals care little about variety in restaurant categories (i.e. if σ ≈ µ), then

in equilibrium there are infinitely more restaurants of the preferred restaurant category. As σ

becomes larger than µ, relative restaurant density tends to a reflection of relative tastes.

I now estimate the parameters σ and µ. Let n index each trip in the sample. The choice set of

a traveler in area k is Tk. I compute the density ratio in equation (15) as a ratio of the number of

restaurants within 45 minutes of travel in each category:

dkc/dkc′ = Ikc/Ikc′ . (16)

After normalizing bk1 = 1, I plug equation (16) into equation (15) to obtain an expression for each

unobservable taste parameter bkc as a function of Ikc and Ik1, which are observable. Substituting

bkc into equation (14) results in an expression for the probability of visiting each restaurant that

depends only on the parameters σ and µ, and on the restaurant choice set Tk:

prob(tkci|σ,µ,Tk) =

(

Ikc
Ik1

)
σ−µ
σ−1

Pkc(p+ 2γtkci)
−σ

∑
85
c=1

(

Ikc
Ik1

)
σ−µ
σ−1

P
σ−µ
kc ∑

Ikc
i=1(p+ 2γtkci)−σ

. (17)

Without data on the exact restaurant choice of a traveler, equation (17) is less amenable to

estimation by maximum likelihood than the equivalent equation from the logit model, because

travel time is no longer the only source of observed heterogeneity among restaurants. Denote

travel time for trip n by mnk. To estimate the model, let Rnk(mnk) be a set of restaurants at travel

time ‘close’ to actual trip time mnk. With a slight abuse of notation, let i index all restaurants in

Rnk, so the log-likelihood function is:

`(σ,µ,m,T ) =
N

∑
n=1

log

(

∑
i∈Rnk(mnk)

prob(mnk|σ,µ,Tk)

)

,

and the maximum likelihood estimator is:

(σ̂,µ̂) = argmax
σ,µ

`(σ,µ,m,T ). (18)
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The estimates are sensitive to the exact definition of the set Rkn, in particular as it affects the

probability weight that the estimator places on the shortest trips. As an example, define Rnk as

the set of all restaurants within 5 minutes of mn. In this case, if the closest restaurant is 9 minutes

from home and mnk = 30, then Rkn is the set of all restaurants from 25 to 35 minutes of travel.

Now suppose that mnk = 10. If I use a rule forcing Rkn to contain 10 minutes of restaurants – in

the example Rkn would then be the set of all restaurants from 9 to 19 minutes – I find σ̂ = 11.3

and µ̂ = 2.2. However, if I use another rule such that the 10 minute time bin is always symmetric

around mkn – in the example Rnk would be the set of all restaurants between 5 and 15 minutes –

I find σ̂ = 11.2 and µ̂ = 5.2.78 I conclude that I cannot, using only data on the distribution of trip

times, provide robust estimates of the nested-logit’s parameters.

If the difference between σ and µ is large, then additional restaurants rapidly become redun-

dant. There is little need for long trips in dense areas because travelers care mostly for restaurant

categories, of which there are relatively few. In regressions on the model’s predicted average trip

time, the effect of global density on trip time is about 50% closer to that observed in the data if σ̂

= 11.3 and µ̂ = 2.2, and 20% closer if σ̂ = 11.2 and µ̂ = 5.2.

Unlike the logit model, the nested-logit predicts the effect of restaurant diversity on travel. In

a nested-logit model, the accumulation of restaurants far from home is unattractive if it consists

of restaurants in repeated categories. If all restaurants in an area are in different categories, then

predicted trip times are large because the elasticity of substitution between restaurants is low

(equal to µ, the elasticity across categories). The reverse is true if all restaurants are in the same

category, because in this case the elasticity of substitution, σ, is high. This important feature of

the model is consistent with the data, although the effect of the specialization index on trip time

78This second rule places more weight on short trips, which increases the value of µ towards that of σ. The reason
is, if µ = σ the model predicts that the closest restaurant is visited with highest probability, while if µ < σ individuals
may visit with highest probability a restaurant from a preferred category, not necessarily the closest. Because of
measurement error on travel time to the closest restaurant, I have to assume that whenever travel time to the closest
restaurant is lower than trip time, the two are equal. This arbitrary assumption means that there are many trips to
exactly the closest restaurant in my sample, which provide false evidence that µ = σ. For this reason, it is preferable to
define Rnk in a way that does not put too much probability weight on the shortest trips, and I have more confidence
in the estimates σ̂ = 11.2 and µ̂ = 2.2.
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predicted by the nested-logit model is smaller than that observed in the data.79

I also compute a variety-adjusted restaurant price index from the nested-logit model. Using σ̂

= 11.2 and µ̂ = 5.2, I obtain values of the price index close to those in the logit model. Performing

the last two counterfactual experiments of section 5 with σ̂ = 11.3 and µ̂ = 2.3, I find an average

relative price index of Pk′,k = 1.69 with counterfactuals at the 95th percentile of global density, and

of Pk′,k = 0.77 with counterfactuals at the 5th percentile.80 Hence, spatial variation in diversity

can exacerbate welfare differences across areas if individuals care much about access to a variety

of categories. Only further research, ideally with new data on restaurant choice, can refine this

finding.

8. Discussion: Accessibility

The variety-adjusted price index Pk is also a travel accessibility index. The index has the advan-

tage of great geographical coverage, ease of interpretation, and a basis in precise microgeographic

data, in the context of restaurant accessibility. It allows for variation in travel speed across areas,

and places less weight on remote locations. I therefore use it to provide tentative numerical

answers to some fundamental questions on the links between transportation technology and

urban form, and on the trade-offs between different spatial organizations of society. I present

numbers for the basic logit model.

As already mentioned, the median value of the index, at about 10, is significantly lower than

the average price of a restaurant meal ($13) before including transport costs. This result supports

the argument in Glaeser and Kahn (2004), that the suburban lifestyle shared by a majority of

Americans offers good accessibility through fast car travel. These authors also argue that the

79The predicted effect is small because the number of categories is dwarfed by the number of restaurants available.
The difference bewteen the actual and predicted effect could also arise because specialization captures something
else in the data that is not controlled for. Or individual travelers may, on each trip, only make a decision based on,
or be aware of, a subset of all available restaurants. Note however that when computing welfare gains, the mass of
restaurants beyond 30 minutes of travel has essentially no impact on welfare and that there is no need for an individual
to have perfect information on thousands of remote restaurants for my estimates to be valid. It is easy to estimate a
version of the logit model in which restaurants farther away from an individual are known (i.e. part of his choice set)
with smaller probability (which is parameterized such that 100% of restaurants at 0 minute from home are known,
and the probability of knowing restaurants farther away decreases with travel time). The estimation results are not
precise but in the model that best fits the data, individuals know only about 69% of restaurants 45 minutes away. This
is not large enough to have any effect on estimated welfare gains. I also estimate, by simulated maximum likelihood, a
model in which the scale of the type I extreme value distribution of the error term decreases with distance, and obtain
similar results.

80To make comparisons easier, I assume that the distribution of restaurant categories in the counterfactual area
depends on the taste for categories of the individual forced to move. Also, I cannot compute price indices for the
experiment in which the counterfactual area consists only of the restaurant closest to home, because it violates the
assumption that the distribution of restaurant categories is a reflection of tastes for categories.
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automobile is the leading cause of urban sprawl in the United States. While it is difficult to

establish a causal relationship - for instance Meyer, Kain, and Wohl (1965) argue that decen-

tralization predates the automobile - undeniably the current spatial configuration of Americans

hardly makes sense without rapid private transportation.81 Yet most Americans do have at least

one restaurant within walking distance; the median walking time to the closest restaurant is

about 11 minutes, with a much larger mean at 22 minutes (the corresponding numbers by car are

4.2 and 5.3 minutes). The gains from variety when traveling on foot, however, are considerably

smaller. If travelers have to walk, the median value of the index increases to 14.5, with a mean at

about 18.82 There are strong complementarities between car transportation and suburban living,

but in high-density urban areas with slow car travel, the price index when traveling by car and

by foot are much closer. This explains why 65% of Manhattanites walk to a restaurant.

In fact, the lowest price index, or equivalently the highest level of accessibility, belongs to

areas with the slowest car travel. Faster travel speed mechanically decreases the price index, but

the correlation between speed and the index is still positive (the rank correlation is 0.22, but

would certainly be much stronger without measurement error on speed). Raising the density

of destinations, of population and of the street network reduces travel speed, but not enough to

annihilate the benefits from greater access to destinations. Indeed, a few areas in New York City

have both the lowest car travel speed and the lowest price index. A walker in these high-density

areas faces a lower price index than car driver in 95% of all block groups.

9. Conclusion

This paper shows how to estimate the consumption value of density by combining travel data

with microgeographic data on local businesses. Individuals’ substitution patterns among travel

destinations reveal gains from urban density that are large but localized. These gains originate

in part from shorter trip times, but mostly arise because increased choice in denser areas allows

individuals to visit destinations that they prefer. The consumption benefits of density that I

estimate in the restaurant industry demonstrate that cities, and downtown cores in particular,

enjoy a sizable advantage in non-tradable service provision. Using a similar methodology, one

81Public transportation is not an option in many suburbs, and its use to eat out is negligible.
82These numbers depend on a relatively brisk walking pace of 15 minutes per mile, and I do not account for higher

value of travel time by foot (preference for cars), which makes walking an even less attractive option. I also do not
account for the price of downtown parking fees, which increases the costs of driving into some of the highest density
areas.

54



could expand the scope of the variety-adjusted restaurant price index to other trip purposes in the

nhts, for instance to trips for medical or dental care. Ultimately, the canonical model of spatial

equilibrium (Rosen, 1979, Roback, 1982) implies that positive amenities translate into higher land

rents. Investigating the capitalization of greater access to goods and services into real estate

prices, at fine spatial scales, could be a productive area for future research.
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Appendix A. Proofs

Proof of proposition 1

Recall that:

t̄k =
∑

Ik
i=1(p+ 2γtki)

−σtki

∑
Ik
i=1(p+ 2γtki)−σ

.

I drop the subscript k for simplicity. Denote the numerator of t̄ by y and its denominator by x, so

that t̄ = y/x. Suppose that we add a restaurant at exactly t̄, with travel time ti = y/x. To show

that t̄ doesn’t change, one needs to show that:

y

x
=

y+ (p+ 2γti)−σti

x+ (p+ 2γti)−σ
.

This equation reduces to ti = y/x, which is true by assumption. To prove the second part of the

proposition, that adding a restaurant at travel time ti > y/x increases t̄ just note that:

y

x
<

y + (p+ 2γti)−σti

x+ (p+ 2γti)−σ
,

whenever ti > y/x. The reverse inequality is true assuming ti < y/x.

Proof of proposition 2

Let density be uniform and t be travel time between each restaurant. The total number of

restaurants in an area is equal to I = M/t, where M is the number of minutes required to

travel through the entire area (e.g. a country). Travel time to restaurant i is ti = ti.

To prove the proposition that limt→0+ t̄ > 0, I show that the total probability of visiting

restaurants indexed from I/2 to I stays larger than 0 as t → 0+. The probability of a trip to

restaurant i is:

probi =
(p+ 2γti)−σ

∑
M/t
i=1 (p+ 2γti)−σ

,

so the sum of the probabilities of visiting restaurants indexed from I/2 to I is:

∑
M/2t
i=1 (p+ 2γ(t(i+ I/2)))−σ

∑
M/t
i=1 (p+ 2γ(ti)−σ

=
∑

M/2t
i=1 (p+ 2γ(ti+M/2))−σ

∑
M/t
i=1 (p+ 2γti)−σ

, (a1)
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where I substituted for I = M/t. Equation (a1) becomes a definite integral as t → 0+. To see

this, define xi = ti so that ∆x = t and multiply both the numerator and denominator of equation

(a1) by ∆x = t, to obtain the following (lower) Riemann sum:

∑
M/2∆x
i=1 (p+ 2γ(xi +M/2))−σ∆x

∑
M/∆x
i=1 (p+ 2γxi)−σ∆x

.

By assumption, p > 0, γ > 0, xi > 0 and σ > 1, so each element (p+ 2γxi)−σ or (p+ 2γ(xi +

M/2))−σ is bounded and continuous, and therefore:

lim
∆x→0+

∑
M/2∆x
i=1 (p+ 2γ(xi +M/2))−σ∆x

∑
M/∆x
i=1 (p+ 2γxi)−σ∆x

=

∫M/2
0 (p+ 2γ(x+M/2))−σdx

∫M

0 (p+ 2γx)−σdx
.

Note that taking a limit as ∆x tends to 0+ is equivalent to taking a limit as t tends to 0+. Both

integrals in the previous equation are easy to solve and lead to finite results, showing that the

probability of visiting restaurants far from home is larger than 0 as t → 0+. I conclude that

limt→0+ t̄ > 0, which completes the proof.83

Proof of proposition 3

As shown in the text, as σ tends to infinity the probability of visiting the closest restaurant

becomes infinitely larger than that of visiting any other restaurants, so t̄ becomes equal to travel

time to the closest restaurant. Therefore, adding x minutes of travel to each restaurant (and in

particular to the closest one) increases expected trip time by x minutes. t̄ is continuous with

respect to σ (which is always larger than 1), so this result must hold approximately for σ large

enough.

Proof of proposition 4

To prove that ∂t̄
∂σ

< 0, I show that as σ increases, for any two pairs of restaurants there is a

decrease in the ratio of the probability of visiting the restaurant that is farther over the probability

of visiting the restaurant that is closer. That is, for any given ti > tj , it is true that:

∂
(

probi
probj

)

∂σ
=

∂
(

p+2γti
p+2γtj

)−σ

∂σ
= −

(

p+ 2γti
p+ 2γtj

)−σ

ln

(

p+ 2γti
p+ 2γtj

)

< 0.

83As an aside, note that t̄ is a weighted average of all ti, with the weight (probability of a trip) decreasing with ti. So
it is immediate that t̄ < tI for all t > 0, as the probability of visiting any other restaurant is larger than that of visiting
restaurant I . Also, it is easy to prove that if the closest restaurant is assumed to be located at t1, then the proposition
becomes limt→0+ t̄ > t1.
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Similarly, it must be true that ∂t̄
∂γ

< 0, because for any ti > tj :

∂
(

p+2γti
p+2γtj

)−σ

∂γ
= −σ

(

p+ 2γti
p+ 2γtj

)−σ−1 (2ti(p+ 2γtj)− 2tj(p+ 2γti)

(p+ 2γtj)2

)

< 0.

Finally, it must be true that ∂t̄
∂p

> 0, because for any ti > tj :

∂
(

p+2γti
p+2γtj

)−σ

∂p
= −σ

(

p+ 2γti
p+ 2γtj

)−σ−1 (1(p+ 2γtj)− 1(p+ 2γti)

(p+ 2γtj)2

)

> 0.

Appendix B. Adding a nest for all other goods

To provide welfare results that account for substitution between restaurants and all other goods,

I specify a nested-logit model with one nest for restaurants and one nest for all other goods. The

linear utility specification is similar to that in the nested-logit model of Section 7, and generates

choice probabilities which can easily be interpreted in terms of expenditure shares. An individual

first solves the maximization problem within the nest for restaurants (exactly as in the logit

model of Section 2) and within the nest for all other goods. Then he solves the aggregate utility

maximization problem by choosing expenditure shares on restaurants and on all other goods.

Denote the quantity of the restaurant good purchased in area k by Rk, the quantity of all other

goods by Gk, the price index for restaurant (from equation 6) by PRk and the price index for

all other goods by PGk. Solving the aggregate utility maximization problem leads to R/G =

(PR/PG)−ν , where ν is the elasticity of substitution between restaurants and all other goods.

Denote the price elasticity of demand for restaurant by εR, such that (∂R/∂PR)(PR/R) = εR. It

is straightforward to show that ε = −ν, so that ε = −1 corresponds to the limiting case ν = 1.84

The aggregate relative price index between area k and k′ is:

Ak,k′ =
(P 1−ν

Rk′
+ P 1−ν

Gk′
)1/(1−ν)

(P 1−ν
Rk + P 1−ν

Gk )1/(1−ν)
.

As shown in Sato (1976) and Vartia (1976), one can express the relative price index above in terms

of expenditure shares. For instance if sRk′ is the expenditure share on restaurants in area k′, then:

Ak,k′ =

(

PGk′

PGk

)wGk′
(

PRk′

PRk

)wRk′

,

where:

wRk′ =
(sRk′ − sRk)/(ln(sRk′)− ln(sRk))

(sRk′ − sRk)/(ln(sRk′)− ln(sRk)) + (sGk′ − sGk)/(ln(sGk′)− ln(sGk))
.

84It is standard to assume ν > 1, but the welfare estimates are not sensitive to using ε = −1.02, the price elasticity of
demand for food away from home suggested by Okrent and Alston (2010) meta-analysis, instead of ε = −1.
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I assume that the price index for all other goods is constant across areas, so that PGk = PGk′ . As

the price elasticity of demand for restaurants equals -1, the expenditure share on restaurants is

constant, so that sRk = sRk′ for any areas k and k′. If sRk′ is arbitrarily close to sRk, then we can

find wRk′ as:

lim
sRk→sRk′

wRk′ = sRk′ .

With data on expenditure shares, it is now possible to compute the aggregate relative price

index and measure the average household’s willingness to pay to prevent a 20% increase in the

restaurant price index. The 2009 cex suggests that food away from home, that I take as a proxy for

restaurants, accounts for 5.3%, of total expenditures, so I set sRk′ = 0.053. The aggregate relative

price index becomes Ak,k′ =
(

PRk′

PRk

)wRk′

=
(

PRk′

PRk

)wRk′

= 1.20.053 = 1.0097. Average total household

expenditures in the cex 2009 is about $49,000, so for an average household the willingness to pay

to prevent a 20% increase in the restaurant price index is the absolute value of 49,000(1-1,0097),

which equals $475.

Appendix C. The determinants of the probability of making a restaurant trip.

Regressions on the determinants of the probability of making a restaurant trip can tell us about

the importance of substitution between restaurants and all other goods, and about the distribution

of the gains from density across different types of households. The sample for these regressions

consists of all individuals in the nhts for the 15 states that I use in my analysis, i.e. of 250,309

individuals 5 years and older. Each individual in the sample is an observation, indexed by j. I

create two dummy variables for use as dependent variables. The variable Dall
j is equal to one if

an individual took at least one trip to a restaurant, by any mode and starting from any origin,

on his travel day. The variable Dhome
j is equal to one if an individual took at least one trip to a

restaurant from home, by any mode, on his travel day.85 I specify a linear probability model with

either Dall
j or Dhome

j as a dependent variable.86 The estimating equation is:

Dorigin
j = α+ β1lock + β2divk + β3Xj + εjk origin ∈ {all,home}, (c1)

85Only 11% of the individuals who take at least one trip to a restaurant on their travel day take more than one trip,
and my analysis ignores the possibility that individuals travel more than once to a restaurant on their travel day.

86 I verify that the average marginal effects from a probit model generate almost the same coefficients.
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where lock represents measures of restaurant location in the area k and individual j lives in, divk

is a control for restaurant diversity and Xj is a vector of individual characteristics for individual

j such as age, gender, education, and income.

The regression results are in table 8. The dependent variable in the regressions of columns 1-3

is the dummy for any trip to a restaurant from all origins, and in columns 4-6 it is a dummy for

any trip to a restaurant from home. To interpret the coefficients, note that the probability that an

individual visits a restaurant on any given day (the mean of Dall
j ) is 0.2, while the probability

that an individual visits a restaurant from home (the mean of Dhome
j ) is 0.08. Also, recall that

the measures of restaurant locations are computed starting from home. In column 1, the log of

global density enters alone with a coefficient of 0.0056, so that doubling the number of restaurant

within 45 minutes of travel increases the probability of at least on trip to a restaurant on any

given day by about 0.0056 percentage point from a 0.2 percent basis i.e. by 2.8%. Similarly, the

coefficient on global density of 0.004 in column 4 is equivalent to a 5% increase in the probability

of at least one trip from home. The coefficient on global density becomes smaller or negative

when adding controls for other measures of restaurant location (time to the closest restaurant,

local density, skewness of the restaurant distribution) and specialization in columns 2-3 and 5-6

(in columns 3 and 6 I also add individual characteristics). Generally, the measures of restaurant

location in the home area have only small effects on the probability of making a trip to a restaurant

from any origin, but larger, more robust effects on the probability of a trip that originates directly

from home. For instance, travel time to the closest restaurant has a small and positive effect on the

probability of a trip from any origin, but it has the expected large negative effect on the probability

of a trip from home. Doubling travel time to the closest restaurant decreases the probability that

an individual takes at least one trip to a restaurant from home on any given day by 7.5%, a

result robust to controling for individual characteristics. In section 6 individual characteristics

were not important predictors of trip time, but they have much more explanatory power over the

probability of a trip. Income is the main determinant of the probability of visiting a restaurant on

any given day. Compared with individuals with median income ($45,000 to $55,000), individuals

in the top income bracket (larger than $100,000) are 15% more likely to visit at least one restaurant

on any given day. Individuals in the lowest income bracket (less than $20,000) are 35% less likely

to visit at least one restaurant than individuals in households with median income. These results

suggest that high income household have a significantly higher willingness to pay for restaurant
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density.

Regression using the variety-adjusted price index as a regressor

It is also useful to evaluate the impact of the variety-adjusted price index at home (which can

be thought of as a measure of density with a microeconomic foundation) on the probability of

a trip to a restaurant. The sample and estimating equation are exactly as in equation (c1), but

now the only measures of restaurant location are 9 dummies for each decile of Pk, the restaurant

price index from the logit model in the area k individual j lives in. I find that within the 9 lowest

deciles of Pk there is only negligible variation in the probability of a trip to a restaurant from

any origin, and individuals in the 10th decile are 10% less likely to visit at least one restaurant on

any given day. However, changes in the price index have a larger impact on the probability of a

trip from home. Individuals living in areas within the median decile of the price index (average

price index equals to 10.0) are 11% less likely to travel to at least one restaurant from home than

individuals living in areas within the lowest decile of the price index (average price index equals

to 8.7). Individuals living in areas within the highest decile of the price index (average price index

equals to 13.8) are 33% less likely to make at least one trip from home than individuals living

in areas within the median decile. These numbers imply, for instance, that a 20% increase in the

variety-adjusted restaurant price index leads to an approximately 17% decrease in the probability

that an individual makes at least one trip to a restaurant from home on his travel day, and that

most of this decrease is compensated by an increase in trips with an origin other than home.

Appendix D. Nested model with supply-side

In this appendix, I derive dkc
dkc′

=
(

bkc
bkc′

) σ−1
σ−µ

an expression relating relative tastes for restaurant

categories to the relative densities of restaurant in these categories. A model with a discrete

number of restaurants and consumers who optimally choose their location would be analytically

intractable, and cumbersome to estimate numerically. I therefore simplify the model by assuming

that an infinity of restaurants and consumers are uniformly distributed on the line. This generates

the intuitive, analytical expression above, which is based on theory but derived from slightly

different assumptions that those underlying the model that I estimate.

Recall that the discrete version of the nested-ces model leads to exactly the same outcomes as

a nested-logit model. So I solve a nested-ces model, but with subutilities (within-nest) defined
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Table 8: Determinants of the probability of a trip

(1) (2) (3) (4) (5) (6)

Dummy, trip to restaurant from: ALL ALL ALL HOME HOME HOME

log Global density 0.0056a 0.0026b -0.0017a 0.0013c 0.040a 0.0008
(0.0006) (0.0011) (0.0013) (0.0005) (0.0008) (0.009)

log Skewness -0.0060a -0.0036a -0.0049a -0.0047a

(0.0009) (0.0010) (0.006) (0.007)

log Time to closest rest. 0.0050b 0.0011 -0.0050a -0.0059a

(0.0017) (0.019) (0.0012) (0.0013)

log Local density 0.0056a 0.0039b 0.0058a 0.0051a

(0.0014) (0.0017) (0.0010) (0.0011)

log Specialization -0.0751a -0.0396a -0.0434a -0.0273a

(0.0107) (0.0124) (0.0074) (0.0273)

Controls

Individual characteristics X X

Observations 250309 240029 188126 250309 240029 188126
R2 0.0003 0.0010 0.013 0.0004 0.0017 0.0087

Notes: OLS regressions with a constant in all columns. Robust standard errors in parentheses. a, b, c:
significant at 1%, 5%, 10%. In columns 1-3 the dependent variables is a dummy for whether an individual
traveled at least once to a restaurant on his NHTS travel day, and in columns 4-6 the dependant variable is a
dummy for whether an individual traveled at least once to a restaurant, from home, on his NHTS travel
day. On any given day, the probability of at least one restaurant trip from any origin is 0.2 and the
probability of at least one restaurant trip from home is 0.08. Individual characteristics include 17 dummies
for household income, 4 dummies for education, household size, 6 dummies for age, a dummy for gender,
a dummy for black, and a dummy for worker’s status.

over a continuous set of restaurants, and aggregate utility defined over a discrete number of

categories. I consider a linear city of infinite length, with a continuous and uniform distribution

of consumers, indexed by j. An exogenous parameter ds captures the density of consumers on

the line.87 Each consumer’s value of travel time is γ > 0. Each restaurant meal is produced

with fixed costs F and marginal cost mc, and there there is free entry into the restaurant market.

There are C restaurant categories, indexed by c, and an infinity of restaurants in each category,

uniformly located on the real line, and indexed by i.88 The density of restaurant in each category,

drc , is endogenous.

The subutility of consumer j within category c is:

Qjc = 2
∫ ∞

0

(

qjc(i)
σ−1
σ

) σ
σ−1

, (d1)

87Strictly speaking ds cannot be a density or a parameter in a probability density function, because the uniform
distribution is not defined on the real line. This does not pose any technical challenges however, and ds will capture
density in an intuitive sense.

88I use the same index i for each category, as there can be no possible confusion.
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where qjc(i) is the number of trips (or meals) to restaurant i in category c, pjc(i) is the price

of that restaurant, including transport costs, and σ > 2 is the elasticity of substitution within

categories. A factor 2 multiplies the integral because consumers have access to restaurants on

both sides of their location (I make this precise when computing aggregate demand for each

restaurant). The aggregate utility of a consumer j is:

Uj =
C

∑
c=1

(

b1/µ
c Q

µ−1
µ

jc

)
µ

µ−1

, (d2)

where bc is an exogenous taste parameter for category c, and µ > 2 is an elasticity of substitution

across categories. Maximizing the subutility in equation (d1) subject to the budget constraint
∫ ∞

0 2pjc(i)qjc(i)di = yjc, where yjc is consumer j’s expenditures on restaurants in category c, I

obtain a standard ces demand function:

qjc(i) =
pjc(i)−σyjc

P 1−σ
jc

, (d3)

where:

Pjc = 2

(

∫ ∞

0
pjc(i)

1−σdi

) 1
1−σ

(d4)

is a ces price aggregator.

Maximizing the aggregate utility in equation (d2) subject to the budget constraint

∑
C
c=1 PjcQjc = E, where E is aggregate expenditures on restaurants. I obtain the demand function

for the composite restaurant good:

Qjc =
bcP

−µ
jc E

P
1−µ
j

, (d5)

where:

Pj =
C

∑
c=1

(

bcP
1−µ
jc

) 1
1−µ

(d6)

is a price aggregator.

A property of the price aggregator in equation (d4) is that PjcQjc = yjc, so that ∑
C
c=1 PjcQjc =

∑
C
c=1 yjc, and ∑

C
c=1 yjc = E, as it should. To find an expression for the demand of each

consumer for each restaurant as a function only of restaurant prices and total expenditures,

I first substitute yjc = PjcQjc into equation (d3), and then I substitute the demand for the

composite restaurant good in category c by consumer j (equation d5) into the demand for each

restaurant i (equation d3). I obtain the demand for restaurant i′ in category c′ by consumer j as
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qjc′(i
′) =

Ebc′pjc′ (i
′)−σP

σ−µ

jc′

P
1−µ
j

, which can also be written as:

qjc′(i
′) =

Ebc′pjc′(i
′)−σ

(

2
∫ ∞

0 pjc′(i)
1−σdi

)

σ−µ
1−σ

∑
C
c=1 bc

(

2
∫ ∞

0 pjc(i)1−σdi
)

1−µ
1−σ

. (d7)

I now find the aggregate demand for each restaurant. Consider the price of restaurant i in

category c. A consumer living exactly at restaurant i’s location pays only the meal price pmeal
ci . I

assign index j = 0 to this consumer, so that p0c(i) = pmeal
ci , and I define the price of restaurant i

for each consumer j as pjc(i) = pmeal
ci + 2γ j

ds
. One can think of consumer j as living at distance

j
ds

from restaurant i, with ds capturing the density of individuals on the line.89 Now consider

restaurant prices again, but this time from the perspective of a consumer (say consumer j ′). I

assign an index i = 0 to a restaurant located exactly where consumer j ′ lives, so its price is

pj ′c(0) = pmeal
c0 . Generally the price of restaurant i is pj ′c(i) = pmeal

ci + 2γ i
drc

, where drc is a measure

of restaurant density.90 I can rewrite the demand for restaurant i′ in category c′ by consumer j as:

qjc′(i
′) =

Ebc′
(

pmeal
c′i′ + 2γ j

ds

)−σ
(

2
∫ ∞

0

(

pmeal
c′i + 2γ i

dr
c′

)1−σ

di

)
σ−µ
1−σ

∑
C
c=1 bc

(

2
∫ ∞

0

(

pmeal
ci + 2γ i

drc

)1−σ

di

)
1−µ
1−σ

. (d8)

To obtain the aggregate demand for restaurant i′ in category c′, I integrate equation (d8) over

all consumers from location j = 0 to j = ∞, and multiply by 2 to account for the presence of

consumers on both sides of restaurants i′. I obtain:

qc′i′ =

Ebc′

(

2
∫ ∞

0

(

pmeal
c′i′ + 2γ j

ds

)−σ

dj

)(

2
∫ ∞

0

(

pmeal
c′i + 2γ i

dr
c′

)1−σ

di

)
σ−µ
1−σ

∑
C
c=1 bc

(

2
∫ ∞

0

(

pmeal
ci + 2γ i

drc

)1−σ

di

)
1−µ
1−σ

. (d9)

The profit-maximization problem of restaurant i′ in category c′ is:

max
pmeal
c′i′

qc′i′(p
meal
c′i′ −mc)− F . (d10)

To simply the expression for qc′i′ , I solve the first integral in the numerator of equation (d9):

∫ ∞

0

(

pmeal
c′i′ + 2γ

j

ds

)−σ

dj =
ds(pmeal

c′i′ )1−σ

2γ(σ− 1)
,

89I could define an index for consumers on the right of restaurant i and an index for consumers on its left, but the
results are clearer keeping only one index j.

90Note that there are restaurants on both sides of consumer j ′, which is why I multiplied the ces subutility by 2 in
equation (d1).
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and I replace everything that does not depend on the choice variable pmeal
c′i′ by a constant X, so

that qc′i′ = X(pmeal
c′i′ )1−σ and the profit maximization problem becomes:

max
pmeal
c′i′

X(pmeal
c′i′ )1−σ(pmeal

c′i′ −mc)− F ,

which has a maximum91 at:

pmeal
c′i′ =

(1 − σ)mc

2 − σ
. (d11)

I now use a free-entry condition to derive an expression for the relationship between exogenous

tastes bc and restaurant density drc in each category. From equation (d11), meal prices are constant

across categories, so in a zero-profit equilibrium it must be that qc′′i′′ = qc′i′ for any categories

c and c′ (profits do not vary within category by construction). Solving both integrals in the

numerator of equation (d9), aggregate demand for restaurant i′ in category c′ becomes:

qc′i′ =

Ebc′

(

2ds(pmeal
c′i′

)(1−σ)

2γ(σ−1)

)(

2dr
c′
(pmeal

c′i′
)(2−σ)

2γ(σ−2)

)
σ−µ
1−σ

∑
C
c=1 bc

(

2
∫ ∞

0

(

pmeal
ci + 2γ i

drc

)1−σ

di

)
1−µ
1−σ

,

and I can write qc′i′ = qc′′i′′ as:

bc′

(

2drc′p
meal
c′ (i′)(2−σ)

2γ(σ− 2)

)
σ−µ
1−σ

= bc′′

(

2drc′′p
meal
c′′ (i′′)(2−σ)

2γ(σ− 2)

)
σ−µ
1−σ

which further reduces to:

drc′

dr
c′′

=

(

bc′

bc′′

) σ−1
σ−µ

,

the condition that I use to estimate the nested-logit model in section 7. Note that in the main text

the r superscript is omitted, and there is an additional area specific index k.92

91To see that pmeal
c′i′

= (1−σ)mc

2−σ
is a maximum for pmeal

c′i′
≥ 0, note that term X(pmeal

c′i′
)1−σ(pmeal

c′i′
−mc) tends to

negative infinity as pmeal
c′i′

→ 0, tends to 0 as pmeal
c′i′

→ ∞, and has a positive value for all σ > 2 at its only stationary

point pmeal
c′i′

= (1−σ)mc

2−σ
.

92Setting profits to zero, it is possible to obtain an expression for the density of restaurants in each category:

dr
c′
=

Eds(σ− 2)

F (σ− 1)2

(

1 + ∑
C
c=1

(

b
c′

bc

) 1−σ

σ−µ

) .

If there is only one category, this expression reduces to:

dr =
Eds(σ − 2)

F (σ− 1)2
,

and it is straightforward to show that ∂dr

∂σ
< 0 for σ > 2 . This relationship between restaurant density and the

elasticity of substitution is a potential source of endogeneity bias in my estimates of σ.
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Appendix E. List of restaurant categories

Table 9 lists the restaurant categories defining the 85 nests in the nested-logit model, and their

percentage share in the restaurant sample. The definition of categories is that from Yelp.com

at the time of data collection. I use regular expressions to match each Google Places restaurant

category to a closely related Yelp category. Almost 17% of restaurants on Google Places have

category ‘undefined’, almost always because there was no information on the category of these

restaurants on Google. These places are generally independent restaurants serving standard

fares, and they are usually not on Yelp. Unsurprisingly, the definition of very small categories

is almost irrelevant, so consolidating the 85 categories into 30 (for instance by merging Halal,

Persian\Iranian, Middle Eastern, Moroccan and Turkish) or even 8 categories has little impact on

the estimation results.
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Table 9: Restaurant categories and percentage share

Category Percentage Share (%) Category Percentage Share (%)

Undefined 16.7 Cajun\Creole .02
Pizza 13.3 Ethiopian 0.02
Mexican 9.3 African 0.02
American 9.1 Filipino 0.01
Burger 7.5 Persian\Iranian 0.01
Chinese 6.3 Turkish 0.01
Sandwich 5.2 Peruvian 0.01
Cafe 4.1 Soup 0.01
Deli 3.6 British 0.01
Pub 3.6 Fondue 0.01
Seafood 2.8 Tapas 0.009
Italian 2.6 Portuguese 0.008
Chicken 2.4 Hawaiian 0.008
Barbecue 2.3 Mongolian 0.008
Steak 1.7 Southern 0.008
Japanese 1.7 Modern European 0.006
Thai 1.0 Halal 0.006
Diner 0.8 Russian 0.006
Fast 0.7 Pakistani 0.006
French 0.6 Polish 0.005
Indian 0.6 Moroccan 0.005
Greek 0.5 Afghan 0.004
Breakfast 0.4 Argentine 0.003
Vietnamese 0.4 Live\Raw 0.003
Brewery 0.3 Gastropubs 0.003
Sushi 0.3 Belgian 0.003
Hot Dog 0.2 Tex-Mex 0.002
Buffet 0.2 Malaysian 0.002
Asian Fusion 0.2 Cheesesteak 0.002
Korean 0.2 Gluten-Free 0.002
Mediterranean 0.1 Taiwanese 0.002
Irish 0.1 Crepe 0.001
Spanish 0.1 Burmese 0.001
Vegetarian 0.1 Carribean 0.001
Soul Food 0.1 Indonesian 0.0009
Middle Eastern 0.09 Hungarian 0.0009
Latin American 0.06 Cambodian 0.0009
German 0.05 Basque 0.0007
Cuban 0.05 Himalayan\Nepalese 0.0005
Vegan 0.03 Scandinavian 0.0002
Fish & Chips 0.02 Ukrainian 0.0002
Kosher 0.02 Singaporean 0.0002
Brazilian 0.02

Notes: To accommodate differences in the Yelp and Google Places terminology, I make the following modifications to
the original set of Yelp categories: I merge the ‘New American’ and ‘Traditional American’ categories in a single
‘American’ category, I drop the category ‘Food Stand’, I divide the Brewery\Grill & Pub category into two categories:
‘Brewery’ and ‘Pub’, and I merge the ‘Tapas Bar’ and ‘Small Plates Tapas’ categories into a single ‘Tapas’ category.
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