
Rectification of circles and quaternions

V. Timorin ∗

Consider a bundle of circles passing through 0 in 4-dimensional space. It is said to be rectifiable if there is a

germ of diffeomorphism at 0 that takes all circles from our bundle to straight lines. We will give a classification of

all rectifiable bundles of circles containing sufficiently many circles in general position. This result is surprisingly

different from those in dimensions 2 and 3 (Khovanskii and Izadi) due to a connection with the quaternionic

algebra.

Introduction

Throughout this paper, the word “circle” means a circle or a straight line. We are always assuming that

the space Rn is equipped with a fixed “standard” Euclidean inner product.

A collection of curves in Rn passing through 0 is said to be a simple bundle of curves if no two of them

are tangent at 0. A simple bundle of curves is called rectifiable if there exists a germ of diffeomorphism in

a neighborhood of the origin that sends all curves from this bundle to straight lines. Rectifiable bundles

of curves appear, for example, in Riemannian geometry — the set of geodesics passing through a given

point is rectifiable.

A. G. Khovanskii proved in [1] that a rectifiable simple bundle of more than 6 circles on plane necessarily

pass through some point different from the origin. F. A. Izadi [2] generalized Khovanskii’s arguments to

dimension 3. A rectifiable simple bundle of circles in R3 containing sufficiently many circles in general

position must pass through some other common point.

In dimension 4, this is not true. The simplest counterexample is a family of circles that are obtained

from straight lines by some complex projective transformation (with respect to some identification R4 = C2

such that the multiplication by i is an orthogonal operator).

It turns out that in dimension 4 there is a large family of transformations that round lines (i.e., take

them to circles). To construct such a family, fix a quaternionic structure on R4 compatible with the

Euclidean structure. If A and B are some affine maps, then the map x 7→ A(x)−1B(x) rounds lines (the

multiplication and the inverse are in the sense of quaternions). Such transformations will be called (left)

quaternionic fractional transformations. Right quaternionic fractional transformations AB−1 also round
∗Partially supported by RFBR 99-01-00245 and CRDF RM1-2086
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lines. Any real projective, complex projective or quaternionic projective transformation is quaternionic

fractional.

In this paper, we will prove that a rectifiable simple bundle of circles containing sufficiently many

circles in general position is the image of a bundle of straight lines under some left or right quaternionic

fractional transformation.

In arbitrary dimension, we have a purely algebraic description of rectifiable simple bundles of circles.

So the analytic problem of classification of such bundles is reduced to an algebraic problem.

The paper is organized as follows. In Section 1, for a simple rectifiable bundle of circles we establish

an algebraic condition on the second derivative of a rectifying map. This condition is formulated on the

asymptotic cone {(x, x) = 0} ⊆ C2 where (·, ·) is the complexification of the usual inner product. This

provides a simple proof of Izadi’s theorem [2]. In Section 2, we show that this algebraic condition is

not only necessary but also sufficient in a sense. Thus we obtain an algebraic description of rectifiable

simple bundles of circles. In Section 3, we review some important properties of complex and quaternionic

structures and relate them to the geometry of the asymptotic cone. In Section 4, we define quaternionic

fractional transformations and list some of their properties. Section 5 contains the main rectification result

and some its geometrical consequences.

I am grateful to A. G. Khovanskii for useful discussions.

1 Rectifiable collections of circles

The following result is true in dimensions 2 [1] and 3 [2].

Theorem 1.1 Consider a simple bundle of circles in R2 or R3 containing sufficiently many circles in

general position. If this bundle is rectifiable, then all its circles pass through a common point different

from the origin.

On plane, it is enough to take 7 circles. Theorem 1.1 means, in particular, that if a generic family of

circles can be rectified anyhow, then it can be rectified by means of some inversion. As we will see later,

this violates in dimension 4.

We need the following very simple lemma:

Lemma 1.2 Consider a polynomial map F : Rn → Rn such that F (x) is everywhere proportional to x.

Then F (x) = G(x)x for some polynomial function G : Rn → R. If F is homogeneous, then so is G.

Proof. Introduce a coordinate system (x0, . . . , xn−1). Denote by Fi the i-th component of F . Then

the proportionality condition reads as xiF0 − x0Fi = 0. In particular, F0 is divisible by x0. Denote the
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quotient by G. Then from our equation we see that Fi = Gxi. The last statement of the lemma is obvious.

¤

Extend the standard inner product (·, ·) from Rn to Cn by complex bilinearity. The locus (x, x) = 0 is

called the asymptotic cone. Denote this cone by C. The asymptotic cone describes the behavior of circles

at infinity. Namely, any nondegenerate circle (not a line) is asymptotic to C.

Let Φ : (Rn, 0) → (Rn, 0) be a germ of diffeomorphism at 0 that sends several lines passing through

the origin to circles. Suppose that the number of lines is big enough and that they are in general position.

Denote this set of lines by L. We can assume without loss of generality that d0Φ = id. To arrange this

it is enough to compose Φ with some linear transformation (namely, the inverse of d0Φ) which certainly

takes lines to lines. Let Φ = x + Φ2(x) + · · · near 0 where Φ2 denotes the second order terms.

Proposition 1.3 The quadratic map Φ2 satisfies the following relations on the asymptotic cone:

(Φ2(x), Φ2(x)) = 0, (Φ2(x), x) = 0.

This proposition means that Φ2 preserves the asymptotic cone and takes each vector x ∈ C to a vector

y ∈ C such that x and y span a subspace lying entirely in C. To give an informal explanation of this

result let us assume the following:

• The diffeomorphism Φ takes germs of all lines passing through 0 to germs of circles.

• Our diffeomorphism can be extended to a neighborhood of the origin in Cn as a local holomorphic

map.

Then Φ takes germs of complex lines to germs of some plane second degree curves that approach the

asymptotic cone at infinity.

Take a complex line L from C. We know that Φ(L) is tangent to L at 0 and asymptotic to C at

infinity. Denote by M the plane where Φ(L) lies. Then either M is contained in C or M ∩ C is a pair of

intersecting lines in M (maybe coincident). In the latter case Φ(L) must coincide with one of these lines.

Indeed, Φ(L) intersects both lines at the origin and is asymptotic to one of them. But a plane curve of

degree 2 cannot intersect its own asymptotic line. Note that L is clearly in M ∩ C, so Φ(L) = L.

In any case, L and Φ(L) span a vector subspace lying entirely in C. Hence Φ2(L) lies in this subspace.

From this the proposition follows.

The above argument can be extended to a rigorous proof but, to give a shorter proof, we will use

another idea.

Proof. Make the inversion I with respect to the origin and consider the composition I ◦ Φ. The

diffeomorphism Φ takes a line from L to a tangent circle (due to the condition d0Φ = id) and I sends

circles or lines tangent at 0 to parallel lines. Therefore, I ◦ Φ maps each line from L to a parallel line.
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Consider the Taylor series for Φ at the origin:

Φ(x) = x + Φ2(x) + Φ3(x) + · · · ,

where Φk(x) denotes the order-k terms. Fix some nonzero vector x that spans a line from L. This line

can be parameterized as {xt} where t is a parameter. Hence I ◦Φ(xt) runs over some line parallel to x as

t runs over real numbers. This means that in the expansion of I ◦Φ(xt) all terms with nonzero powers of

t are proportional (parallel) to x. We will write down some initial terms of this expansion dropping the

terms with zero power of t and those obviously parallel to x:

I ◦ Φ(xt) =
(

Φ3

(x, x)
− 2(Φ2, x)Φ2

(x, x)2

)
t+

+
(

Φ4

(x, x)
− 2(Φ2, x)Φ3

(x, x)2
− (Φ2,Φ2)Φ2 + 2(Φ3, x)Φ2

(x, x)2
+

4Φ2(x, Φ2)2

(x, x)3

)
t2 + · · ·

The terms with t and t2 must be proportional to x. The proportionality conditions are polynomial

relations in x. If they hold for sufficiently many x’s in general position, then they hold everywhere.

The coefficient with t is equal to
Φ3

(x, x)
− 2(Φ2, x)Φ2

(x, x)2
.

Therefore, the map Φ3(x, x)−2(Φ2, x)Φ2 is everywhere proportional to x. In particular, the inner product

of this map with x is identically zero on the asymptotic cone {(x, x) = 0}. This implies that (Φ2, x) = 0

on C. Hence (Φ2, x) is divisible by (x, x), and so the map

Φ3 − 2(Φ2, x)Φ2

(x, x)

is a polynomial proportional to x. By Lemma 1.2 this polynomial is divisible by x in the class of polyno-

mials. Therefore, Φ3 is a linear combination with polynomial coefficients of Φ2 and x. So it always lies in

the linear span of Φ2 and x. In particular, (Φ3, x) = 0 on C.

The term with t2 is

Φ4

(x, x)
− 2(Φ2, x)Φ3

(x, x)2
− (Φ2, Φ2)Φ2 + 2(Φ3, x)Φ2

(x, x)2
+

4Φ2(x, Φ2)2

(x, x)3
.

Multiply this expression by (x, x)2 and restrict it to the asymptotic cone. We obtain that Φ2(Φ2,Φ2) is

parallel to x on C (note that all other terms are zero on the asymptotic cone). This means that either Φ2

is parallel to x on C or the coefficient is zero. In both cases we have (Φ2,Φ2) = 0 on C. ¤

Example. Let us construct an example of transformation that takes all lines to circles and has the

identical differential at 0. Pick up a point a ∈ Rn and consider the composition of the mirror reflection

x 7→ x− 2
(a, x)a
(a, a)
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with respect to the orthogonal complement to a and the inversion

x 7→ a +
(a, a)(x− a)
(x− a, x− a)

with center a and radius |a| (so that 0 is fixed). Denote the resulting local diffeomorphism by T a. We

have

T a(x) =
(a, a)x + (x, x)a

(a, a) + 2(a, x) + (x, x)
= x +

(x, x)a− 2(a, x)x
(a, a)

+ · · · .

In particular, the quadratic term of T a has the form

T a
2 (x) =

(x, x)a− 2(a, x)x
(a, a)

which is obviously parallel to x on the asymptotic cone.

Now let us return to the general situation: we have a local diffeomorphism Φ which rounds a sufficiently

big and sufficiently general collection L of lines passing through 0. Denote by S the corresponding set of

circles.

Proposition 1.4 Suppose that Φ2 is parallel to x on the asymptotic cone. Then all the circles from S
pass through another common point different from the origin.

To prove this, we need 2 very simple algebraic lemmas.

Lemma 1.5 Assume that a linear map Λ : Rn → Λ2Rn satisfies the condition Λ(x) ∧ x = 0 everywhere.

Then there is a vector b ∈ Rn such that Λ(x) = b ∧ x.

Proof. Introduce a coordinate system (x0, . . . , xn−1) in Rn. Let Λij(x) be the coordinates of Λ(x)

in the standard basis of Λ2Rn. These are linear functions in x. The condition Λ ∧ x = 0 can be written

in coordinates as follows:

Λijxk + Λjkxi + Λkixj = 0. (∗)

The above formula implies that Λij vanishes on the subspace xi = xj = 0. Therefore, Λij = bijxj − cijxi

where bij and cij are some numbers. Substitute this expression to (∗):

(bijxj − cijxi)xk + (bjkxk − cjkxj)xi + (bkixi − ckixk)xj = 0.

Equating the coefficient with xixj to zero we obtain bki = cjk. This implies that:

• the coefficient bki is independent of i, denote it by bk;

• the coefficient cjk is independent of j, denote it by ck;

• bk = ck.
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Now we have Λij = bixj − bjxi which means that Λ(x) = b ∧ x where b is the vector with coordinates

(b0, . . . , bn−1). ¤

Recall that a map Γ : Cn → Cn is defined over reals if it takes Rn ⊂ Cn to Rn.

Lemma 1.6 Let Γ : Cn → Cn be a vector-valued quadratic form (i.e., a homogeneous polynomial map

of second degree) defined over reals and such that Γ(x) is everywhere parallel to x on C. Then Γ has the

form Γ(x) = b(x, x) + λ(x)x where b ∈ Rn and λ is a linear functional.

Proof. Since Γ is everywhere parallel to x on the cone C, we have Γ(x) ∧ x = 0 there. Therefore,

Γ ∧ x is divisible by (x, x). Denote the quotient by Λ. It is a linear map from Rn to Λ2Rn. Moreover, we

have Λ∧x = 0 because (Γ∧x)∧x = 0. By Lemma 1.5 it follows that Λ = b∧x and hence (Γ− b(x, x))∧x

vanishes everywhere. This means that the polynomial map Γ − b(x, x) is proportional to x. By Lemma

1.2 we have Γ− b(x, x) = λ(x)x where λ is some linear function. ¤

Proof of Proposition 1.4. By Lemma 1.6 the second-order part Φ2 of a rectifying diffeomorphism

Φ has the form Φ2(x) = b(x, x) + λ(x)x where b is some vector from Rn and λ is a linear functional.

Consider a circle from S with the tangent vector x at 0. The acceleration with respect to the natural

parameter is

2
Φ2 − (Φ2,x)x

(x,x)

(x, x)
= 2

Φ2 − λ(x)x− (b, x)x
(x, x)

= 2
(

b− (b, x)x
(x, x)

)

that is the same as for the circle passing through b/(b, b). But the circle is determined by its velocity x/|x|
and acceleration (both with respect to the natural parameter). It follows that all the circles from S pass

through b/(b, b). ¤

Now we can give a simple proof of Theorem 1.1.

Proof of Theorem 1.1. In dimensions 2 and 3 the asymptotic cone does not contain any plane.

Therefore, Φ2 must be parallel to x everywhere on the cone. Now Proposition 1.4 is applicable. ¤

Example. In dimension 4, the statement of Theorem 1.1 does not hold. To construct a counterex-

ample, introduce a complex structure on R4 and identify R4 with C2 by means of this complex structure.

Consider any complex projective transformation Φ preserving the origin. It takes complex lines to complex

lines, and on each line it induces a projective transformation. On the other hand, a complex projective

transformation of a complex line takes real lines to circles. Therefore Φ takes real lines to circles (note that

each real line belongs to exactly one complex line). Thus we get a rectifiable family of circles (through 0).

But these circles do not pass through a common point different from the origin since different complex

lines meet only at the origin.

Theorem 1.1 fails in dimension 4 by the following simple reason. The asymptotic cone now contains

many planes, so there is no reason anymore for Φ2(x) to be everywhere parallel to x on C.
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2 Algebraic criteria for rectification

We are going to prove now that the conditions on Φ2 stated in Proposition 1.3 are not only necessary but

also sufficient in a sense.

Proposition 2.1 If a vector-valued quadratic form Γ : Cn → Cn defined over reals satisfies the conditions

(x, Γ(x)) = (Γ(x),Γ(x)) = 0 on the asymptotic cone, then there exists a germ of diffeomorphism Φ :

(Rn, 0) → (Rn, 0) that rounds lines passing through the origin and such that d0Φ = id, Φ2 = Γ, i.e.,

Φ = x + Γ up to third-order terms.

Proof. Let us introduce the following notation:

λ =
(Γ, x)
(x, x)

, µ =
(Γ, Γ)
(x, x)

.

We know that λ and µ are polynomials in x (λ is a linear functional and µ is a quadratic form).

First assume that λ = 0 (i.e., (Γ, x) = 0 everywhere). Let us look for a diffeomorphism Φ of the form

Φ(x) = x + Γ(x)f(x) where f is some smooth function that is equal to 1 at 0. We want Φ to take all lines

(passing through 0) to circles. Denote by I the inversion with center at 0 and radius 1. Then the germ of

diffeomorphism

I ◦ Φ =
x + Γf

(x + Γf, x + Γf)
=

1
(x, x)

x + Γf

1 + µf2

sends a neighborhood of 0 to a neighborhood of ∞ and is supposed to take each line (passing through 0)

to a parallel line. For that it suffices to require that f/(1+µf2) = 1. Indeed, under the latter requirement

we have

I ◦ Φ(xt) = t−1 x

(x, x)(1 + µf(xt)2)
+

Γ
(x, x)

,

and the right-hand side has the form “something parallel to x plus a term independent of t” which means

that I ◦ Φ(xt) runs over a line parallel to x as t runs over reals. Solving the corresponding quadratic

equation on f , we obtain

f =
1−√1− 4µ

2µ
.

We see that f is a smooth analytic function near 0 such that f(0) = 1 as we wanted.

Now suppose that λ 6= 0. Let us look for a diffeomorphism Φ of the form Φ = T a ◦ Ψ where Ψ is

some other local diffeomorphism at 0. If Ψ takes all lines passing through 0 to circles, then the same is

true for Φ. We will try to kill λ by choosing an appropriate center a. For the second-order terms we have

Φ2 = Ψ2 + T a
2 . So it suffices to take a such that λ(x) = −(a, x)/(a, a). Now (Ψ2, x) = 0 everywhere, so

we reduced our problem to the previous case (λ = 0) which is done. ¤
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Consider a simple bundle S of circles passing through 0 such that in each direction there goes a unique

circle from S. Such bundle is called complete. Now we can give a description of complete rectifiable

bundles of circles in pure algebraic terms.

Theorem 2.2 Complete rectifiable bundles of circles in Rn are in one-to-one correspondence with

quadratic homogeneous maps Γ : Cn → Cn defined over reals and satisfying the conditions (x, Γ(x)) =

(Γ(x), Γ(x)) = 0 on the asymptotic cone, modulo maps of the form x 7→ λ(x)x where λ are linear func-

tionals.

Proof. To each complete rectifiable bundle S of circles assign the quadratic part Φ2 of any rectifying

diffeomorphism Φ. We know that any quadratic homogeneous map Φ2 defined over reals and satisfying

Proposition 1.3 can be obtained in this way. Let us see to what extend the quadratic map Φ2 is unique.

We saw already that for each circle from S it is enough to know the acceleration at 0 with respect to the

natural parameter. The acceleration of the circle with the tangent vector x is equal to

w(Φ2) = 2
Φ2 − (Φ2,x)x

(x,x)

(x, x)
.

But the above expression does not determine Φ2. It is easy to see that if Φ2 and Φ′2 differ by λ(x)x where

λ is a linear functional, then w(Φ2) = w(Φ′2) so the corresponding families are the same. Indeed, it follows

from the observation that Φ2 − (Φ2, x)x/(x, x) is just the projection of Φ2 to the orthogonal complement

of x. Vice versa, if w(Φ2) = w(Φ′2), then Φ2 −Φ′2 is everywhere parallel to x (since the projections to the

orthogonal complement coincide). Hence Φ2 − Φ′2 = λ(x)x where λ is a linear functional. ¤

Example. In dimension 4, the condition (x, Γ(x)) = (Γ(x), Γ(x)) = 0 on C can be interpreted in

terms of algebraic geometry as follows. Denote by Q the projectivization of the asymptotic cone. This is

a nondegenerate quadratic surface in CP3. Each point of Q belongs to 2 straight lines lying entirely in Q.

To describe all lines in Q it is convenient to identify Q with the image of the Segre embedding

CP1 × CP1 → CP3, ([u0 : u1], [v0 : v1]) 7→ [u0v0 : u0v1 : v0u1 : u1v1]

(recall that any nondegenerate quadratic surface in CP3 can be mapped to any other by a complex

projective transformation). Under this embedding, each horizontal line CP1 × {p} and each vertical line

{p}×CP1 get mapped to straight lines. Hence we have 2 families of lines in Q such that every point of Q

belongs to a unique line from each family. These families of lines are called generating families of lines.

For each generating family of lines in Q there is the corresponding generating family of planes in C. So

the cone C is covered by 2 generating families of planes, and every line in C belongs to exactly one plane

from each generating family.
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The conditions (x, Γ(x)) = (Γ(x),Γ(x)) = 0 on the asymptotic cone are equivalent to the following

statement: the subspace spanned by x and Γ(x) lies entirely in C. This means that Γ takes x to another

point of some line or plane lying entirely in C. The map Γ is homogeneous. Therefore, it gives rise to a

map from γ : CP3 → CP3 preserving the projectivization Q of the asymptotic cone C. We know that for

each point q ∈ Q there is a line lying entirely in Q and containing both q and its image γ(q). We will

deduce from this that Γ preserves at least one of the generating families of lines in Q (maybe both), i.e.,

takes each line from some generating family to itself. Indeed, being an algebraic map, γ cannot “switch”

from one generating family to the other. Below is a formal proof of this statement.

Lemma 2.3 The map γ preserves at least one generating family of lines in Q.

Proof. The surface Q is isomorphic to CP1 × CP1 via the Segre map. Hence γ can be given by 2

algebraic maps

X : (x, y) ∈ CP1 × CP1 7→ X(x, y) ∈ CP1,

Y : (x, y) ∈ CP1 × CP1 7→ Y (x, y) ∈ CP1.

We know that for each point (x, y) ∈ CP1 × CP1 we have X(x, y) = x or Y (x, y) = y. Therefore, Q

is the union of 2 algebraic subsets defined by the equations X(x, y) = x and Y (x, y) = y. Since Q is

irreducible, at least one of our equations is satisfied identically, which means that γ preserves at least one

of the generating families of lines in Q. ¤

Now we can deduce the following:

Proposition 2.4 Polynomial homogeneous maps Γ : C4 → C4 satisfying the conditions (x, Γ(x)) =

(Γ(x), Γ(x)) = 0 on the asymptotic cone preserve some generating family of planes in C.

3 Complex and quaternionic structures

From now on we will work in 4-dimensional space R4. This section reviews not only well-known classical

facts about complex and quaternionic structures, but also their relation to the geometry of the asymptotic

cone C.

Recall that a complex structure in R4 is a linear operator I : R4 → R4 such that I2 = −1. We will

always assume that the complex structure I is compatible with the Euclidean structure, i.e., I preserves

the inner product. A complex structure clearly defines an action of C on R4 via linear conformal maps.

From the definition it follows immediately that I must be skew-symmetric, i.e., (x, Iy) = −(Ix, y) for all

x, y ∈ R4. In particular, (Ix, x) = 0. Since the operator I is defined over reals and I2 = −1, it should

have eigenvalues i and −i, both with multiplicity 2.
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Note that I preserves the asymptotic cone C (being an orthogonal operator). In particular, all eigen-

vectors of I belong to C. We know that (Ix, x) = 0 everywhere and in particular on C. From the

conditions (x, x) = (Ix, Ix) = (Ix, x) = 0 on C it follows that the subspace spanned by x and Ix lies

entirely in C. Hence I preserves one of the generating families of planes in C.

On the other hand, the complex structure I defines a canonical orientation on R4. Let us recall the

definition. Take 2 vectors x, y ∈ R4 in general position. By definition, the canonical orientation is the

orientation of the basis x, y, Ix, Iy. This orientation is well-defined (i.e., independent of the choice of x

and y) because the set of degenerate pairs (x, y) (such that x, y, Ix, Iy are linearly dependent) has real

codimension 2 in the space R8 of all pairs. So we can always avoid this set going from any nondegenerate

pair to any other. In fact, the degeneracy locus consists of all pairs x, y that are linearly dependent over

C, so it is a complex hypersurface.

Proposition 3.1 The space of all complex structures on R4 has 2 connected components. Complex struc-

tures from the same component preserve the same generating family of planes in C and provide the same

canonical orientation.

A connected component to which a complex structure I belongs will be called the orientation of I.

Note that the orientation of I has nothing to do with det(I) which is always equal to 1 — any complex

structure preserves orientation of the ambient space.

Now let us pass to quaternionic structures. A quaternionic structure on R4 is a choice of 3 linear

operators I, J,K : R4 → R4 such that

I2 = J2 = K2 = −1,

IJ = −JI = K, JK = −KJ = I, KI = −IK = J.

In particular, the operators I, J,K are complex structures. We will assume that they are compatible with

the inner product. A quaternionic structure gives rise to an action of the skew-field H of quaternions on

R4 via linear conformal maps. This action is called the quaternionic multiplication.

Lemma 3.2 Let (I, J,K) be any quaternionic structure on R4. Then all 3 complex structures I, J,K

have the same orientation. Therefore, quaternionic multiplication preserves one of the generating families

of planes in the asymptotic cone.

Proof. Let us prove, for example, that I and J provide the same canonical orientation. Take any

vector e ∈ R4. It is enough to show that the bases (e,Ke, Ie, IKe) and (e,Ke, Je, JKe) have the same

orientation. But IKe = −Je and JKe = Ie, so the statement becomes obvious. ¤
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Let a ∈ H be a quaternion. It gives rise to the operator of multiplication A : x 7→ ax. If a =

a0 + a1i + a2j + a3k, then the corresponding operator is A = a0 + a1I + a2J + a3K. We know that

the operator A satisfies the conditions (x,Ax) = (Ax,Ax) on C. In particular, both forms (Ax,Ax) and

(Ax, x) are divisible by (x, x). We can write down the quotients explicitly.

Lemma 3.3 If A is the operator of multiplication by a quaternion a ∈ H (with respect to some quater-

nionic structure on R4), then

(Ax,Ax) = (a, a)(x, x), (Ax, x) = Re(a)(x, x).

In particular, these forms are independent of the choice of a quaternionic structure.

Proof. This is a very simple computation based on the fact that (x, Ix) = (x, Jx) = (x,Kx) = 0 for

all x ∈ R4. ¤

Let us summarize some properties of quaternionic structures that are of particular importance for us.

These properties follow directly from what we saw already.

Proposition 3.4 The set of all quaternionic structures in R4 has 2 connected components. Each compo-

nent corresponds to a certain orientation of 3 complex structures involved. Quaternionic multiplications

with respect to quaternionic structures from the same component preserve the same generating family of

planes in C. Different components correspond to different families of generating planes.

We will say that quaternionic structures from the same connected component have the same orien-

tation. Note that the orientation of a quaternionic structure has nothing to do with determinants of

quaternionic multiplications. Quaternionic multiplications (with respect to any quaternionic structure)

always preserve the orientation of the ambient space.

Example. Identify R4 with H. Denote by I, J,K the operators of left multiplication by i, j, k respec-

tively. The structure (I, J,K) is called the left quaternionic structure on H. If we take right multiplication

instead of left multiplication, then we get the right quaternionic structure. Left and right quaternionic

structures on H have different orientations.

Let us introduce some notions. We say that a linear operator is almost orthogonal if it has the form

const ·A where A is an orthogonal operator. Analogously, an operator is almost skew-symmetric if it has

the form const + A where A is skew-symmetric.

Proposition 3.5 A linear operator A : R4 → R4 is the multiplication by a quaternion (with respect to

some quaternionic structure on R4) if and only if it is almost orthogonal and almost skew-symmetric. The

property of being a quaternionic multiplication depends only on the orientation of a quaternionic structure,

not on a structure itself.
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Proof. A quaternionic multiplication is clearly almost orthogonal and almost skew-symmetric. If

follows from Lemma 3.3. Now consider an almost orthogonal and almost skew-symmetric operator A and

present it by a matrix in some orthonormal basis. Denote by a0, a1, a2, a3 the entries of the first column

of A. Since A is almost skew-symmetric, it has the form



a0 −a1 −a2 −a3

a1 a0 α β
a2 −α a0 γ
a3 −β −γ a0


 .

The columns must be orthogonal and have the same length. From the corresponding equations we obtain

that either α = a3, β = −a2, γ = a1 or α = −a3, β = a2, γ = −a1. The first case corresponds to the left

multiplication by a = a0 + a1i + a2j + a3k with respect to the standard quaternionic structure (assigned

to the given basis). The second case corresponds to the right multiplication by a. No matter what

orthonormal basis we chose. Thus the second statement follows. ¤

4 Quaternionic fractional transformations

Let us identify R4 with the skew-field H of quaternions. Consider 2 affine maps A,B : R4 → R4. The

map B−1A (the multiplication and the inverse are in the sense of quaternions) is called a (left) fractional

quaternionic transformation provided that it is defined and one-to-one at least in some open subset of R4.

A right quaternionic fractional transformation is a local transformation of the form AB−1 where A and

B are some affine maps.

Example 1. Any real projective transformation is quaternionic fractional. This corresponds to the

case when B takes real values only.

Example 2. Any complex projective transformation is quaternionic fractional. This happens if B

takes complex values only and both A and B are complex linear (i.e., commute with the multiplication

by i).

Example 3. Consider a map of the form x 7→ (xa + b)−1(xc + d) where a, b, c, d are quaternions. We

are assuming that the denominator is not proportional to the numerator (in particular, the denominator

is not identically zero). This map is called a (left) quaternionic projective transformation. Any quater-

nionic projective transformation is clearly quaternionic fractional. Note that each quaternionic projective

transformation takes all lines to circles. Indeed, we have

(xa + b)−1(xc + d) = (xa + b)−1((xa + b)α + β) = α + (xa + b)−1β

where α = a−1c, β = d − bα. Hence a quaternionic projective transformation is a composition of a

dilatation, reflected inversion and a translation. This composition obviously rounds lines.
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Proposition 4.1 Any quaternionic fractional transformation rounds lines (to be more precise: it takes

germs of lines to germs of circles).

Proof. Consider a line L in R4. Let t be a linear parameter on L. If A and B are some affine maps,

then their restrictions to L are at + b and ct + d respectively. So on the line L the transformation A−1B

coincides with the quaternionic projective transformation x 7→ (ax + b)−1(cx + d). But the latter rounds

lines. ¤

Remark. Note that a fractional quaternionic transformation can be described geometrically as follows.

Consider an arbitrary embedding of R4 to H2 = R8 as a real affine subspace. A fractional quaternionic

transformation is the composition of this embedding and a projection to some quaternionic line (from the

origin). There are two types of projections — left and right. The left projection of a point p ∈ H2 to a left

quaternionic line L is the intersection of L with the left quaternionic line passing through 0 and p (if L is

parallel to this line, then the projection of p is not defined). Similarly, we can define the right projection

to a right quaternionic line.

5 Rectification at a point

In this section, we will prove the following theorem:

Theorem 5.1 Consider a simple bundle of circles in R4 containing sufficiently many circles in general

position. If this bundle is rectifiable, then there exists a left or right quaternionic fractional transformation

T such that T−1 sends all these circles to straight lines.

Denote the given set of circles by S. Let Φ be a local diffeomorphism such that d0Φ = id and

Φ−1 rectifies all circles from S. Then by Proposition 1.3 the quadratic term Φ2 satisfies the relations

(Φ2, x) = (Φ2,Φ2) = 0 on the asymptotic cone. This means that Φ2 preserves one of the generating

families of planes in C.

Lemma 5.2 There exists a linear operator A : R4 → R4 such that Φ2(x) = A(x)x or Φ2(x) = xA(x)

where the product is in the sense of quaternions.

Proof. Fix an identification R4 = H. Extend the operators I, J and K of left multiplication by

i, j and k respectively to C4 by complex linearity. Note that the operator I is quite different from the

multiplication by
√−1 in C4. By Proposition 3.4 the left quaternionic multiplication preserves one of

the generating families of planes in C. Assume that Φ2 preserves the same family. Otherwise we should

consider the right multiplication instead of the left multiplication.
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Recall that the quaternionic conjugation is the map

x = x0 + x1i + x2j + x3k 7→ x̄ = x0 − x1i− x2j − x3k.

We can extend this map to C4 by complex linearity. Note that i is now a vector from R4, not a complex

number. Let us multiply Φ2 by x̄ in the sense of quaternions. Note that

Φ2x̄ = (Φ2, x) + (Φ2, Ix)i + (Φ2, Jx)j + (Φ2,Kx)k.

But this expression is zero on the cone C since Φ2, x, Ix, Jx and Kx lie on the same plane belonging to

C. Therefore, Φ2x̄ is divisible by (x, x). The quotient is a linear map A. Since x̄/(x, x) = x−1, we have

Φ2x
−1 = A(x), i.e., Φ2(x) = A(x)x. ¤

Now we can prove Theorem 5.1 and even more precise statement:

Theorem 5.3 Under assumptions of Theorem 5.1 the family of circles can be obtained from the family

of their tangent lines by one of the transformations x 7→ (1−A(x))−1x or x 7→ x(1−A(x))−1 where A is

some linear operator. This answer does not depend on the choice of a quaternionic structure.

Proof. Note that both transformations have the identical derivative at 0 and their second-order

terms are A(x)x and xA(x) respectively. These transformations are quaternionic fractional so they round

lines. The corresponding families of circles passing through 0 are determined by the second-order terms.

But by Lemma 5.2 the quadratic maps A(x)x and xA(x) are the only possible second-order terms of

transformations that round lines. ¤

For a complete rectifiable bundle S of circles there is a transformation of the form x 7→ (1−A(x))−1x

or x 7→ x(1 − A(x))−1 that takes the family of all lines passing through 0 to S. To fix the idea, assume

that this is the left transformation Φ : x 7→ (1−A(x))−1x.

Proposition 5.4 The center of the circle from S with the tangent vector x at 0 is − 1
2 (Im A(x))−1x. This

point can be infinite which means that the corresponding circle is a straight line.

Proof. We know that the acceleration with respect to the natural parameter is

w(x) = 2
Φ2 − (Φ2,x)x

(x,x)

(x, x)
.

Therefore the center is located in the point

w

(w, w)
=

1
2

Φ2
(x,x) − (Φ2,x)x

(x,x)2

(Φ2,Φ2)
(x,x)2 − (Φ2,x)2

(x,x)3

.

By Lemma 3.3 we have (Φ2, Φ2) = (A,A)(x, x) and (Φ2, x) = (Re A)(x, x). Simplifying the above expres-

sion we get the following formula for the center:

1
2

(
A− Re A

(A,A)− (Re A)2

)
x =

1
2

Im(A)
(Im A, ImA)

x = −1
2
(Im A)−1x.

14



¤

The previous proposition has the following geometric corollary:

Corollary 5.5 The family S contains at least one line. The union of all straight lines from S is a vector

subspace of R4.

Remark. We see that the set of all complete rectifiable families of circles passing through 0 is

naturally identified with the union of 2 affine spaces of dimension 12 (=dimension of all possible Im A(x)).

The intersection of these components has dimension 4 and consists of all families rectifiable by means

of inversions (i.e., of families whose circles meet at a point different from 0 — this happens if Im A is

independent of x). The two components can be distinguished by the “orientation”.

We can describe an affine structure on each component in geometric terms. Namely, take any 2 circles

S1 and S2 tangent at 0. After an inversion, they become parallel lines. For two parallel lines L1 and L2

we can take their barycentric combination

L = λL1 + (1− λ)L2 = {λx + (1− λ)y| x ∈ L1, y ∈ L2}, λ ∈ R.

Make the inversion again. The line L goes to a circle S. Put by definition S = λS1 + (1− λ)S2. Now we

can take barycentric combinations of complete bundles of circles. Namely, let the circle of the new bundle

passing through 0 in direction x be S = λS1 + (1− λ)S2 where S1 and S2 are circles from the old bundles

going from 0 in direction x. It turns out that if two rectifiable bundles have the same “orientation”, then

their barycentric combinations are also rectifiable.

Remark. We used Theorem 5.1 to classify all Kähler metrics in an open subset of C2 whose geodesics

are circles. All such metrics are locally equivalent (by means of a complex projective transformation and

multiplication by a constant factor) to Fubini metrics (i.e. to Fubini-Study metric on CP2 restricted to

an affine chart, to the complex hyperbolic metric in the unit ball model or to the Euclidean metric). A

proof of this statement is to appear in a separate paper.

Open question. How many complete rectifiable simple bundles of circles are there? We saw that in

Rn the space of all complete rectifiable bundles of circles passing through 0 is finite-dimensional. What is

its dimension (as a function of n)? Is there an explicit geometric description of such bundles in dimensions

> 4?
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