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Models in Equity Markets
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Merton/Kou jump-diffusion

Exponential Lévy models - Variance Gamma, Carr-Geman-Madan-Yor
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Numerical Methods for Option Pricing

Monte-Carlo methods
Tree methods
Finite difference methods

Alternating Direction Implicit-FFT - Andersen and Andreasen (2000)

Implicit-Explicit (IMEX) - Cont and Tankov (2004)

IMEX Runge-Kutta - Briani, Natalini, and Russo (2004)

Fixed Point Iteration - d’Halluin, Forsyth, and Vetzal (2005)

Quadrature methods

Reiner (2001)

QUAD - Andricopoulos, Widdicks, Duck, and Newton (2003)

Q-FFT - O‘Sullivan (2005)

Transform-based methods

Carr and Madan (1999)

Raible (2000)

Lewis (2001)
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Motivation for Research

Develop a framework for numerical pricing of financial derivatives in various
markets that ranks high in

Precision, speed and convergence

Efficient handling of path-independent and discretely monitored derivatives

Ability to handle path-dependent and multi-asset derivatives

Generic handling of various spot-price models

Utilization of multi-core architectures

The Approach

Derive the PIDE for the option price

Transform the PIDE into ODE in Fourier space and solve the ODE

Utilize FFT to efficiently compute Fourier transforms

4 / 23



Introduction FST greekFST Summary Fourier Space Time-stepping Method

Pricing Framework

The Model

S(t) = S(0) eX(t)

where X(t) is a Lévy process with characteristic triplet (γ,Σ,ν).

The discount-adjusted and log-transformed price process
v(t,X(t)) , e−r(T−t)V (t,S(0)eX(t)) satisfies a PIDE{

(∂t + L) v(t, x) = 0 ,
v(T , x) = ϕ(S(0) ex) ,

where L is the infinitesimal generator of the Lévy process:

Lg(x) =
(
γ′∂x + 1

2 ∂
′
xΣ∂x

)
g(x)+

∫ (
g(x+y)−g(x)−1{|y|<1}y

′∂xg(x)
)
ν(dy).
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Pricing Framework in Fourier Space

Applying the Fourier transform to the infinitesimal generator L of X(t) allows
the characteristic exponent Ψ(ω) to be factored out:

F [Lv ](t,ω) = Ψ(ω)F [v ](t,ω) ,

where

Ψ(ω) = iγ′ω − 1
2 ω
′Σω +

∫ (
e iω′y − 1− i1{|y|<1}ω

′y
)
ν(dy) .

The PIDE is therefore transformed into a d-parameter family of ODEs
parameterized by ω:{

∂tF [v ](t,ω) + Ψ(ω)F [v ](t,ω) = 0 ,
F [v ](T ,ω) = F [ϕ](ω) .
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Pricing Framework in Fourier Space

Given the value of F [v ](t,ω) at time t2 ≤ T , the system is easily solved to
find the value at time t1 < t2:

F [v ](t1,ω) = F [v ](t2,ω) · eΨ(ω)(t2−t1) .

Taking the inverse transform leads to the final result

v(t1, x) = F−1
[
F [v ](t2,ω) · eΨ(ω)(t2−t1)

]
(x) .

In discrete space, a step backwards is computed via

FST Method - Jackson, Jaimungal, Surkov 2008

vm−1 = FFT−1
[
FFT [vm] · eΨ( · )∆tm

]
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American Put Option Results with Penalty Method

N M Value Change log2(Ratio) Time (s)

2048 128 9.22478538 0.027
4096 256 9.22523484 0.0004495 0.109
8192 512 9.22538196 0.0001471 1.6114 0.451

16384 1024 9.22542478 0.0000428 1.7808 1.869
32768 2048 9.22543516 0.0000104 2.0444 8.195

Option: American put option S = 90.0,K = 98.0,T = 0.25

Model: CGMY model C = 0.42,G = 4.37,M = 191.2,Y = 1.0102, r = 0.06

Convergence: 2 in space and 2 in time

Reference price: 9.2254803 from Forsyth, Wan and Wang 2007
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FST Methods Characteristics

All exponential Lévy models, and path-dependent and multi-asset options
handled are generically

Two FFTs per time-step are required

No time-stepping for European options or between monitoring dates of
discretely monitored options

Second order convergence in space and second order convergence in time for
American options with penalty method

Extendable to computation of the Greeks
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The Greeks & Sensitivities

The Greeks (option price sensitivities) play a paramount role in risk
management

Options can be immunized from gains or losses by taking offsetting position
in the underlying asset, with the position determined by the Greeks

Function f 1st Derivative ∂f
∂S 2nd Derivative ∂2f

∂S2

Price V Delta ∂V
∂S Gamma ∂2V

∂S2

Vega ∂V
∂σ Vanna ∂2V

∂σ∂S Zomma ∂3V
∂σ∂S2

Theta ∂V
∂t Charm − ∂2V

∂t∂S Color − ∂3V
∂t∂S2

Rho ∂V
∂r Rhonna∗ ∂2V

∂r∂S Rhomma∗ ∂3V
∂r∂S2

Volga ∂2V
∂σ2 Ultima ∂3V

∂σ2∂S Volamma∗ ∂4V
∂σ2∂S2
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The Greeks & Sensitivities

Other parameter sensitivities are valuable in model calibration
Jump arrival rate ∂V

∂λ , jump mean ∂V
∂µ̃ , and jump volatility ∂V

∂Σ̃

The Approach

Derive the PIDE for the Greeks / sensitivities

Solve the PIDE by transforming into ODE in Fourier space

Use FFT to efficiently compute Fourier transforms

Notes:

Fourier transforms of 1st and 2nd derivatives are easily computed from the
Fourier transform of the function (without solving a new PIDE)

For calculation of jump paramer sensitivities, it is convenient to transform the
option pricing PIDE into ODE first and then differentiate to obtain an ODE
for the Fourier transform of sensitivities.

11 / 23



Introduction FST greekFST Summary Fourier Space Time-stepping Method for Greeks

The Greeks & Sensitivities

Other parameter sensitivities are valuable in model calibration
Jump arrival rate ∂V

∂λ , jump mean ∂V
∂µ̃ , and jump volatility ∂V

∂Σ̃

The Approach

Derive the PIDE for the Greeks / sensitivities

Solve the PIDE by transforming into ODE in Fourier space

Use FFT to efficiently compute Fourier transforms

Notes:

Fourier transforms of 1st and 2nd derivatives are easily computed from the
Fourier transform of the function (without solving a new PIDE)

For calculation of jump paramer sensitivities, it is convenient to transform the
option pricing PIDE into ODE first and then differentiate to obtain an ODE
for the Fourier transform of sensitivities.

11 / 23



Introduction FST greekFST Summary Fourier Space Time-stepping Method for Greeks

Delta and Gamma

The Fourier transform of Delta (or any 1st derivative) and Gammma (or any 2nd

derivative) can be computed from the Fourier transform of option (function)
values via scaling:

Delta

∂Sk
v(t, x) = ∂xk

v(t, x) e−xk = F−1 [(iωk)F [v ](t,ω)](x) e−xk

∆k,m−1 = FFT−1
[
iωk · FFT [vm] · eΨ( · )∆tm

]
· e−xk

Gamma

∂2
S2

k
v(t, x) =

(
∂x2

k
− ∂xk

)
v(t, x) e−2xk

= F−1
[
−(iωk + ω2

k)F [v ](t,ω)
]
(x) e−2xk

Γk,m−1 = FFT−1
[
−(iωk + ω2

k) · FFT [vm] · eΨ( · )∆tm
]
· e−2xk
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Delta and Gamma Values and Errors
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Vega

Applying derivative with respect to σk to the pricing PIDE, a PIDE satisfied
by Vega is obtained:

∂σk
{(∂t + L) v(t, x)} = (∂t + L) ∂σk

v(t, x) +Hσk
v(t, x) = 0 ,

where Hσk
= (∂σk

γ)′∂x + ∂′x(∂σk
Σ)∂x

Applying the Fourier transform to the Vega PIDE, an ODE with a source
term is obtained. It is solved explicitly:

∂σk
v(t, x) = (T − t)F−1 [F [Hσk

](ω) · F [v ](t,ω)](x)

∇k,m−1 = ∆tmFFT−1
[
F [Hσk

](ω) · FFT [vm] · eΨ( · )∆tm
]

For example, in the one dimensional case, F [Hσk
](ω) = −(iω + ω2)σ
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Vega Values and Errors

70 85 100 115 130

5

10

15

20

25

Stock Price (S)

V
a
l
u
e

 

 

Call
Put

70 85 100 115 130

10
−6

10
−5

10
−4

10
−3

Stock Price (S)
A

b
so

lu
te

 E
rr

o
r

 

 

N=4096
N=8192
N=16384
N=32768

European option K = 100,T = 0.5

Merton jump-diffusion model σ = 0.15, r = 0.05, q = 0.02, λ = 0.1,
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Volga

Applying the mixed derivative with respect to σk and σl to the pricing PIDE,
a PIDE satisfied by the mixed Volga is obtained:

∂2
σkσl
{(∂t + L) v(t, x)} = (∂t + L) ∂2

σk
v(t, x) +Hσkσl

v(t, x) = 0 ,

where Hσkσl
= ∂′x(∂2

σkσl
Σ)∂x.

Applying the Fourier transform to the mixed Volga PIDE yields an ODE with
a source term, which can be solved explicitly:

∂σkσl
v(t, x) = (T − t)F−1 [F [Hσkσl

](ω) · F [v ](t,ω)](x) .

∇k,l,m−1 = ∆tmFFT−1
[
F [Hσkσl

](ω) · FFT [vm] · eΨ( · )∆tm
]
,

where the F [Hσkσl
](ω) term can be computed analytically.

For example, in the case of 2D BSM model, F [Hσkσl
](ω) = −ρω1ω2.

If k = l the solution of the Volga ODE depends on the solution to the Vega

ODE. F
[
Hσ2

k

]
(ω) can still be computed analytically. For example, in the

case of the BSM model F
[
Hσ2

k

]
(ω) = −(iω + ω2)∆tm + (iω + ω2)2σ2∆t2

m.

16 / 23



Introduction FST greekFST Summary Fourier Space Time-stepping Method for Greeks

Volga

Applying the mixed derivative with respect to σk and σl to the pricing PIDE,
a PIDE satisfied by the mixed Volga is obtained:

∂2
σkσl
{(∂t + L) v(t, x)} = (∂t + L) ∂2

σk
v(t, x) +Hσkσl

v(t, x) = 0 ,

where Hσkσl
= ∂′x(∂2

σkσl
Σ)∂x.

Applying the Fourier transform to the mixed Volga PIDE yields an ODE with
a source term, which can be solved explicitly:

∂σkσl
v(t, x) = (T − t)F−1 [F [Hσkσl

](ω) · F [v ](t,ω)](x) .

∇k,l,m−1 = ∆tmFFT−1
[
F [Hσkσl

](ω) · FFT [vm] · eΨ( · )∆tm
]
,

where the F [Hσkσl
](ω) term can be computed analytically.

For example, in the case of 2D BSM model, F [Hσkσl
](ω) = −ρω1ω2.

If k = l the solution of the Volga ODE depends on the solution to the Vega

ODE. F
[
Hσ2

k

]
(ω) can still be computed analytically. For example, in the

case of the BSM model F
[
Hσ2

k

]
(ω) = −(iω + ω2)∆tm + (iω + ω2)2σ2∆t2

m.
16 / 23



Introduction FST greekFST Summary Fourier Space Time-stepping Method for Greeks

Volga Values and Errors
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Digital option K = 100,T = 1.2

Black-Scholes-Merton model σ = 0.2, q = 0.01
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Theta and Rho

Rearranging the pricing PIDE

∂tv(t, x) = −Lv(t, x) = F−1 [−Ψ(ω) · F [v ](t,ω)](x)

Θm−1 = FFT−1
[
−Ψ(ω) · FFT [vm] · eΨ( · )∆tm

]

Applying derivative with respect to r to the pricing PIDE:

∂r {(∂t + L) v(t, x)} = (∂t + L) ∂rv(t, x) +Hrv(t, x) = 0 ,

where Hr = (∂rγ)′∂x.

The Rho PIDE can be solved explicitly in Fourier space:

∂rv(t, x) = (T − t)F−1 [F [Hr ](ω) · F [v ](t,ω)](x)

Pm−1 = ∆tmFFT−1
[
F [Hr ](ω) · FFT [vm] · eΨ( · )∆tm

]
For example, in the case of the BSM model F [Hr ](ω) = iω.
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Theta and Rho Values and Errors
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European option K = 100,T = 0.46575
Black-Scholes-Merton model σ = 0.25, q = 0.01
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Jump Sensitivities

The pricing ODE in Fourier space can be written as(
∂t + D̂(ω) + Ĵ (ω)

)
v(t,ω) = 0 .

Differentiating the ODE w.r.t. each model parameter ?, an ODEs with a
source term is obtained. It is solved explicitly:(
∂t + D̂(ω) + Ĵ (ω)

)
F [v?](t,ω) + (D̂?(ω) + Ĵ?(ω))F [v ](t,ω) = 0

The greekFST method is

v?,m−1 = ∆tmFFT−1
[
(D̂?(ω) + Ĵ?(ω)) · FFT [vm] · eΨ( · )∆tm

]
For example, under the Merton jump-diffusion model D̂(ω) = iγ′ω− 1

2ω
′Σω

and Ĵ (ω) = λ(e iµ̃′ω− 1
2ω

′Σ̃ω − 1)
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Jump Lambda Values and Errors
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Merton jump-diffusion model σ = 0.15, r = 0.05, q = 0.02, λ = 0.1,
µ̃ = −1.08, σ̃ = 0.4
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Fourier Space Time-stepping Framework Summary

Stable and robust, even for options with discontinuous payoffs

Easily extendable to various stochastic processes and no loss of performance
for infinite activity processes

Can be applied to multi-dimensional mean-reverting and regime-switching
problems in a natural manner

Computationally efficient

Computational cost is O(MNlogN) while the error is O(∆x2 + ∆t2)
European options priced in a single time-step
Bermudan style options do not require time-stepping between monitoring dates

Option Greeks can be readily computed

Price and k Greeks require k + 2 FFT evaluations

American options do not require solving new PIDE

22 / 23



Introduction FST greekFST Summary

Thank You
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