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Overview Model Method Greeks & Hedging

Numerical Option Pricing

Option Pricing Problem

V (t, x) = E
Q
t,x

[

e−
∫

T

t
r(s)dsΦ(X(T ))

]
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V (t, x) = E
Q
t,x

[

e−
∫

T

t
r(s)dsΦ(X(T ))

]

Closed-form solutions exist only in a limited number of cases

Must resort to numerical methods for valuation of path-dependent,
early-exercise and exotic options, or under models with jumps

A wide range of methods have been developed

Monte Carlo and tree methods
Finite difference methods
Andersen, Andreasen (2000), Cont, Tankov (2004), Briani, Natalini, Russo
(2004), d’Halluin, Forsyth, Vetzal (2005)
Transform-based methods
Carr, Madan (1999), Raible (2000), Lewis (2001), Lord, Fang, Bervoets,
Oosterlee (2008), Jackson, Jaimungal, Surkov (2008)
Quadrature methods, Wiener-Hopf factorization, Hilbert and Laplace
transforms, Hermite and cosine expansions, etc.

4 / 29



Overview Model Method Greeks & Hedging

The Fourier Transform

A function in the space domain g(t, x) can be transformed to a function in
the frequency domain ĝ(t,ω) and vice-versa using the continuous Fourier
transform (CFT):

F [g ](t,ω) ,

∫ ∞

−∞

g(t, x)e−iω′xdx

F
−1 [ĝ ](t, x) ,

1

2π

∫ ∞

−∞

ĝ(t,ω)e iω′xdω
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F
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CFT is a linear operator that maps spatial derivatives ∂x into multiplications
in the frequency domain:

F [∂n
xg ](t,ω) = iωF

[

∂n−1
x g

]

(t,ω) = · · · = (iω)nF [g ](t,ω)
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Fourier Space Time-stepping Method

The Approach

Consider the PIDE for the option price

Transform the PIDE into ODE in Fourier space

Solve the resulting ODE analytically

Utilize FFT to efficiently switch between real and Fourier spaces
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Transform the PIDE into ODE in Fourier space

Solve the resulting ODE analytically

Utilize FFT to efficiently switch between real and Fourier spaces

The option price satisfied a PIDE

(

∂t + L
)

V (t, x) = 0

Applying Fourier transform obtain an ODE in time parameterized by ω

(

∂t + Ψ(ω)
)

F [V ](t,ω) = 0

The ODE can be solved analytically

F [V ](t,ω) = F [Φ](ω) · eΨ(ω)∆t
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FST Method - Convolution Formulation

Write expectation as a convolution of payoff and density

V (t, x) =

∫ ∞

−∞

Φ(x + y) fX(T−t)(y) dy
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Φ(x + y) fX(T−t)(y) dy

Convolution in real space corresponds to multiplication in Fourier space

F [V ](t,ω) = F [Φ](ω) · F [fX(∆t)](−ω) ,

where the characteristic function of the density is known analytically
F [fX(∆t)](−ω) = eΨ(ω)∆t

PIDE formulation allows to extend results to early-exercise problems and
regime-switching models.

In discrete space, a step backwards is computed via

FST Method

Vm−1 = FFT−1
[

FFT [Vm] · eΨ(ω)∆tm
]
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The Model under Q

The short rate r(t) is driven by d market factors Xj(t)

r(t) = X1(t) + . . .+ Xd (t) + γ(t),

where γ(t) is a deterministic function chosen to fit the currently-observed
term structure of bond prices.

9 / 29



Overview Model Method Greeks & Hedging

The Model under Q

The short rate r(t) is driven by d market factors Xj(t)

r(t) = X1(t) + . . .+ Xd (t) + γ(t),

where γ(t) is a deterministic function chosen to fit the currently-observed
term structure of bond prices.

The dynamics of Xj(t) satisfies

dXj(t) = −κjXj(t)dt + σj dWj(t) +

∫ ∞

−∞

z (µj(dz, dt) − νj(dz, dt))

with Xj(0) = 0.

9 / 29



Overview Model Method Greeks & Hedging

The Model under Q

The short rate r(t) is driven by d market factors Xj(t)

r(t) = X1(t) + . . .+ Xd (t) + γ(t),

where γ(t) is a deterministic function chosen to fit the currently-observed
term structure of bond prices.

The dynamics of Xj(t) satisfies

dXj(t) = −κjXj(t)dt + σj dWj(t) +

∫ ∞

−∞

z (µj(dz, dt) − νj(dz, dt))

with Xj(0) = 0.

Generalizes the Hull-White model and it’s multi-factor and jump-extensions
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Option Pricing via PIDEs

The price of any traded asset satisfies the PIDE

{ (

∂t + H− (x̄ + γ(t))
)

V (t, x) = 0 ,
V (T , x) = Φ(x; T ) ,

where x̄ = x1 + . . .+ xd
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{ (

∂t + H− (x̄ + γ(t))
)

V (t, x) = 0 ,
V (T , x) = Φ(x; T ) ,

where x̄ = x1 + . . .+ xd

The Q-infinitesimal generator H of the joint processes X(t) acts on f (t, x)

Hf (x) = −(µ+κx)′ ∂xf (x)+ 1
2 ∂xf (x)′Σ ∂xf (x)+

∫

Rd

(

f (x+z)− f (x)
)

ν(dz) ,

where µ = [µ1, . . . , µd ]′, κ = diag[κ1, . . . , κd ], Σjk = σjσkρjk ,
∂xf (x) = [∂x1 f (x), . . . , ∂xd

f (x)]′, and ν(dz) is the multi-dimensional jump
measure.
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Pricing under QT

Let U(t, x) = E
QT
t,x

[

Φ(X(T ); T )
]

be the option price under the T -forward
measure. Then

V (t, x) = P(t, x; T ) · U(t, x)
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{ (

∂t + L(t)
)

U(t, x) = 0 ,
U(T , x) = Φ(x; T ) .

The QT -infinitesimal generator L(t) of the joint processes X(t) acts on
functions f (x)

L(t)f (t, x) = −
(

µ + κx + ΣB(t; T )
)′
∂xf (t, x) +

1

2
∂xf (t, x)′ Σ ∂xf (t, x)

+

∫

Rd

e−B(t;T )′z
(

f (t, x + z) − f (t, x)
)

ν(dz) .
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The PIDE in Frequency Space

Applying the Fourier transform to the pricing PIDE, obtain a PDE in
frequency space

{ (

∂t + ψ̂(t,ω) + Trκ + ω
′
κ∂ω

)

Û(t,ω) = 0 ,

Û(T ,ω) = Φ̂(ω; T ) ,

where

ψ̂(t,ω) = −iω′(µ + ΣB(t; T )) − 1
2ω

′Σω +

∫

Rd

e−B(t;T )z
(

e iω′z
− 1

)

ν(dz)
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2ω

′Σω +

∫

Rd

e−B(t;T )z
(

e iω′z
− 1

)

ν(dz)

Introduce a new coordinate system via frequency scaling

g̃(t,ω) = ĝ(t, eκ
′(t−t⋆)

ω)

The PDE reduces to an ODE in time parameterized by ω

{ (

∂t + ψ̃(t,ω) + Trκ
)

Ũ(t,ω) = 0 ,

Ũ(T ,ω) = Φ̃(ω; T )
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The PIDE in Frequency Space

Since ψ(t,ω) has no partial derivatives with respect to ω, the constant
coefficient ODE is easily solved

Ũ(t,ω) = Ũ(s,ω) · eΨ̃(t,ω;s)+Tr κ (s−t)

where

Ψ̃(t,ω; s) =

∫ s

t

ψ̃(u,ω) du
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Ũ(t,ω) = Ũ(s,ω) · eΨ̃(t,ω;s)+Tr κ (s−t)

where

Ψ̃(t,ω; s) =

∫ s

t

ψ̃(u,ω) du

The ODE solution can be expressed in terms of original coordinates
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Ũ(t,ω) = Ũ(s,ω) · eΨ̃(t,ω;s)+Tr κ (s−t)

where

Ψ̃(t,ω; s) =

∫ s

t

ψ̃(u,ω) du

The ODE solution can be expressed in terms of original coordinates

Û(t,ω) = Û(s, eκ
′(s−t)

ω) · eΨ̂(t, ω; s)+Tr κ (s−t) ,

where

Ψ̂(t,ω; s) =

∫ s

t

ψ̂(u, eκ
′(u−t)

ω) du

The propagator Ψ̂(t,ω; s) can be computed analytically for Hull-White,
Vasicek-EJ++ and G2++ models or approximated numerically for
Vasicek-GJ++ model.
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Computing Solution in Real Space

The scaled frequencies of option prices Û(s, eκ
′(s−t)

ω) pose challenges
numerically due to need of extrapolation in frequency space
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ω) pose challenges
numerically due to need of extrapolation in frequency space

Using the scaling property of Fourier transforms, the option prices in
frequency space can be obtained from the option prices in real space:

F [g ](t, eκ
′(s−t)

ω) = F [ğ ](t,ω) · e−Trκ (s−t) ,

where
ğ(t, x) , g(t, x e−κ

′(s−t))

A convenient representation for European option prices at time t, given the
value of U at time s > t

U(t, x) = F
−1

[

F
[

Ŭ
]

(s,ω) · eΨ̂(t,ω;s)
]

(x) .
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Numerical Method

irFST Method

Vm−1 = FFT−1
[

FFT
[

V̆m

]

· eΨ̂m−1,m

]

· Pm−1,m
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irFST Method

Vm−1 = FFT−1
[

FFT
[

V̆m

]

· eΨ̂m−1,m

]

· Pm−1,m

European options

V0 = FFT−1
[

FFT
[

V̆1

]

· eΨ̂0,1

]

· P0,1

Bermudan and callable options

Vm−1 = max
{

FFT−1
[

FFT
[

V̆m

]

· eΨ̂m−1,m

]

· Pm−1,m ,Φm−1

}

,

where Φm−1 is the exercise value of the option at time tm−1.
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Options Prices on a Zero-bond under a G2++ model
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Option Prices under Vasicek-EJ++ model
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Bermudan Option Exercise Boundary
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Option Greeks in Fourier Space

The first-order sensitivity of option prices to changes in model parameters
can be obtained by differentiating the ODE solution with respect to the
model parameter ⋆:

∂⋆Ũ(t, ω) = ∂⋆Ũ(s, ω) · eΨ̃κ(t,ω ;s) + ∂⋆Ψ̃κ(t, ω; s) · Ũ(t, ω)

where Ψ̃κ(t, ω; s) = Ψ̃(t, ω; s) + Trκ(s − t)
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Greeks under the Q measure are then given by
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Greeks under the Q measure are then given by

∂⋆V (t, x) = ∂⋆U(t, x) · P(t, x; T ) + U(t, x) · ∂⋆P(t, x;T )

The numerical methods readily obtained by replacing CFTs by FFTs
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Dynamic Hedging

Hedging portfolio for the option V consists of B units of cash, e units of the
underlying asset S and N hedging instruments ~I with weights ~φ

Π = ~φ ·~I (t,S(t)) + eS(t) + B − V (t,S(t))
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Dynamic Hedging

Hedging portfolio for the option V consists of B units of cash, e units of the
underlying asset S and N hedging instruments ~I with weights ~φ

Π = ~φ ·~I (t,S(t)) + eS(t) + B − V (t,S(t))

The portfolio’s value remains unchanged under small movements in price

∂SΠ = ~φ · ∂S
~I (t,S(t)) + e − ∂SV (t,S(t)) = 0

Can also hedge against small movements in interest-rates, volatility, etc.

∂⋆Π = ~φ · ∂⋆
~I (t,S(t)) − ∂⋆V (t,S(t)) = 0

What about large movements?
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Static Hedging - Minimize Portfolio Variance

Minimize portfolio price variance under expected asset price movement,
Kennedy, Forsyth, Vetzal (2009):

arg min
en,~φn

ξ Etn

[

~φn · ∆~In + en∆Sn − ∆Vn

]2

+ (1 − ξ)Υn .

where Υn is the transaction cost to rebalance the portfolio:

Υn =
N

∑

k=1

[

~αk(~φk,n −
~φk,n−1)~Ik,n

]2

+
[

β(en − en−1)Sn

]2

,
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∑

k=1

[

~αk(~φk,n −
~φk,n−1)~Ik,n

]2

+
[

β(en − en−1)Sn

]2

,

Since the objective function is quadratic, the optimality requires

∂F

∂φk,n

= ξ Etn

[

(

~φ · ∆~I + e∆S − ∆V
)(

2∆Ik
)

]

+ (1 − ξ) ∂φk,n
Υn = 0

∂F

∂en

= ξ Etn

[

(

~φ · ∆~I + e∆S − ∆V
)(

2∆S
)

]

+ (1 − ξ) ∂en
Υn = 0
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Static Hedging - Minimize Price and Greeks Variance

Minimize portfolio price and Greeks variance under expected asset price
movement

arg min
en,~φn

ξ
∑

D

wD Etn

[

~φn · ∆(D~In) + en∆(DSn) − ∆(DVn)
]2

+ (1 − ξ)Υn
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Static Hedging - Minimize Price and Greeks Variance

Minimize portfolio price and Greeks variance under expected asset price
movement

arg min
en,~φn

ξ
∑

D

wD Etn

[

~φn · ∆(D~In) + en∆(DSn) − ∆(DVn)
]2

+ (1 − ξ)Υn

Since the objective function is quadratic, the optimality requires

∂F

∂φk,n

= ξ
∑

D

wD Etn

[

(

~φ · ∆(D~I ) + e∆(DS)−∆(DV )
)(

2∆(DIk)
)

]

+(1−ξ) ∂φk,n
Υn = 0

∂F

∂en

= ξ
∑

D

wD Etn

[

(

~φ · ∆(D~I ) + e∆(DS)−∆(DV )
)(

2∆(DS)
)

]

+(1−ξ) ∂en
Υn = 0
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FST Framework Summary

The Approach

Consider the PIDE for the option price

Transform the PIDE into ODE in Fourier space

Solve the resulting ODE analytically

Utilize FFT to efficiently switch between real and Fourier spaces
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The Approach

Consider the PIDE for the option price

Transform the PIDE into ODE in Fourier space

Solve the resulting ODE analytically

Utilize FFT to efficiently switch between real and Fourier spaces

Independent-increment, mean-reverting and interest-rate Lévy models are
handled generically

Option values are obtained for a range of spot prices - readily price
path-dependent options

Two FFTs per time-step are required; no time-stepping for European options
or between monitoring dates of discretely monitored options

Two extra FFTs required to compute each Greek
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Thank You!
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