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Commodities - Oil, Gas, Electricity,...

Exhibit high volatilities and spikes in prices

Tend to revert to long run equilibrium prices

Many complex commodity contingent claims exist in the markets,
such as swing and interruptible options
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Henry Hub Natural Gas Prices
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UK National Grid Electricity Prices
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Existing Methods for Option Pricing

Monte Carlo and tree methods

Slow convergence and expensive in computing the Greeks

Finite difference methods

Integral term computationally expensive to handle; difficult to extend
to multi-dimensional setting
References: Andersen and Andreasen (2000), Cont and Tankov
(2004), Briani, Natalini, and Russo (2004), d’Halluin, Forsyth, and
Vetzal (2005)

Early (fast) Fourier transform methods

Limited to European options; require Fourier transform of the payoff
function
References: Carr and Madan (1999), Dempster and Hong (2000),
Raible (2000), Lewis (2001)

Current fast Fourier transform (FFT) methods

Can only be applied to Lévy processes with independent increments
References: Lord, Fang, Bervoets and Oosterlee (2007), Jackson,
Jaimungal and Surkov (2007)
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The Option Pricing Problem

Option payoff is given by ϕ(S)

The commodity spot price St = eXt is driven by mean-reverting
jump-diffusion process

dXt = κ(θ − Xt)dt + σdWt + dJt , X0 = ln S0

Option Value PIDE

{
∂tv + Lv = 0
v(T , x) = ϕ(ex)

where L is the infinitesimal generator:

Lf (x) = κ(θ − x)∂x f (x) +
1

2
σ2∂xx f (x)

+

∫
(f (x + y)− f (x)) ν(dy)
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Solving for the Characteristic Function

Let ht,x(ω,T ) , EQ[e iωXT |Ft ] be the characteristic function of the
log-stock price density under the risk-neutral measure

Assume ansatz form:

ht,x(ω,T ) = eΨT
t (ω)+ΦT

t (ω)x

Since ht,x(ω) is a martingale, it satisfies the PIDE for all x:

(∂t + L)ht,x =
(

Ψ̇T
t + Φ̇T

t x + κ(θ − x)ΦT
t +

1

2
σ2(ΦT

t )2

+

∫
(eΦT

t y − 1)ν(dy)
)

ht,x = 0

ΨT
t (ω) and ΦT

t (ω) satisfy a system of Riccati ODEs:{
Ψ̇T

t + κθΦT
t + 1

2σ
2(ΦT

t )2 +
∫

(eΦT
t y − 1)ν(dy) = 0

Φ̇T
t − κΦT

t = 0,

subject to ΨT
T (ω) = 0 and ΦT

T (ω) = iω
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Solving for the Characteristic Function (cont.)

We can solve for ΦT
t (ω) analytically:

ΦT
t (ω) = iωe−κ(T−t)

ΨT
t (ω) can then be solved:

ΨT
t (ω) = κθ

∫ T

t

ΦT
s ds +

1

2
σ2

∫ T

t

(ΦT
s )2ds +

∫ T

t

∫
(eΦT

s y − 1)ν(dy)ds

= iωθ(1−e−κ(T−t))− ω2σ2

4κ
(1−e−2κ(T−t)) +

∫ T

t

ψ̃(ωe−k(T−s))ds

where ψ̃ is the characteristic function of the jump distribution.

∫
ψ̃(ωe−ku)du can be computed explicitly in terms of an exponential

integral for double-exponential distribution (Kou model) and
numerically using quadrature for Gaussian distribution (Merton
model)
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Solving the PIDE

Expand the payoff (assume paid at t + ∆t) in a Fourier basis:

ϕ(x) = vt+∆t(x) =
1

2π

∫ ∞
−∞

e iωx F [vt+∆t ](ω) dω

Assuming no decisions (such as barrier breach or optimal exercise)
are made during the interval (t, t + ∆t]:

vt(x) =
1

2π

∫ ∞
−∞

ht,x(ω, t + ∆t) F [vt+∆t ](ω) dω

The above satisfies the PIDE and the boundary condition

Apply Fourier transform to vt(x):

F [vt ](ω) =

∫ ∞
−∞

[
1

2π

∫ ∞
−∞

eΨt+∆t
t (ω′)+Φt+∆t

t (ω′)xF [vt+∆t ](ω′)dω′
]

e−iωxdx
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Mean-Reverting FST Method

PIDE Solution in Fourier space

F [vt ](ω) = eΨt+∆t
t (ω eκ∆t)+κ∆tF [vt+∆t ](ω eκ∆t)

Since κ > 0, eκ∆t > 1, extrapolation in frequency space of F [vt+∆t ]
is required

Using the scaling property of the Fourier transform, this can be
obtained by interpolating in real space vt+∆t

Mean-Reverting FST Method

vm−1(x) = FFT−1
[
eΨ(ωeκ ∆t) · FFT[vm(x e−κ∆t)]

]

Without mean reversion, mrFST reduces to the standard FST
method of Jackson, Jaimungal and Surkov (2007) since ΦT

t (ω)→ iω

12 / 34
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Spot Price Model

dYt = κ (θ − Yt−) dt + dJt

Xt = BYt

S i
t = exp{X i

t } i = 1, . . . , n

n log spot-prices Xt are modeled as a linear transformation of a set
of d−fundamental market factors Yt

θ a d-dimensional vector of long-run means

κ a d × d matrix with positive eigenvalues representing the mixing
of the market factors

B a d × n matrix representing the linear transformation of the
market factors into the observed log-prices

Jt a d-dimensional Lévy process with Lévy triple (γ,C,ν)
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Flexible Framework

One factor mean-reverting model with jumps (Clewlow and
Strickland 2000):
θ = θ, κ = κ, C = σ2, B = 1, and ν(dZ) = λF (dz)

dXt = κ(θ − Xt) dt + σ dWt + dJt

Mean-reverting jump-diffusion model (Hikspoors and Jaimungal
2007) with different decay rates for the jumps and diffusion.

θ =

(
θ
0

)
κ =

(
α 0
0 β

)
C =

(
σ2 0
0 0

)
B =

(
1 1

)
and ν(dZ1 × dZ2) = λ δZ1 dF (Z2).

dY 1
t = α(θ − Y 1

t ) dt + σ dWt

dY 2
t = −βY 2

t dt + dJt

Xt = Y 1
t + Y 2

t
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Simulated Electricity Spot Prices
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Flexible Framework (cont.)

Two factor mean-reverting model (Barlow, Gusev, and Lai 2004)
with log-prices mean-revert to a stochastic long-run mean, which
itself mean-reverts to a fixed level:

θ =

(
θ
θ

)
κ =

(
α −α
0 β

)
C =

(
σ2 ρση
ρση η2

)
B =

(
1 0

)
ν(dZ) = 0

dXt = α(Yt − Xt)dt + σ dW X
t

dYt = β(θ − Yt)dt + η dW Y
t

Jump diffusion model where the diffusions are correlated, and jumps
may have codependent pieces. Noise driven by a copula to introduce
co-dependence in the innovations:

θ =

(
θ
φ

)
κ =

(
α γ
δ β

)
C =

(
σ2 ρση
ρση η2

)
B =

(
1 0
0 1

)
and ν(dZ1 × dZ2) = dC (F1(Z1),F2(Z2)) with C (u, v) a copula and
Fi (z) two marginal distribution functions.
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Simulated Energy Spot Prices
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Multi-Dimensional Mean-Reverting FST Method

PIDE Solution in Fourier Space

The discounted price vt(Yt) of a European option written on the vector

of price processes {S1
t = eX 1

t , . . . ,Sn
t = eX n

t } where Xt = BYt with
payoff function ϕ(XT ) = ϕ(BYT ) = φ(YT ) is

F [vt(Yt)] = eΨt(ω,T )+(T−t)Trκ F [φ(Yt)](eκ
′(T−t) ω)

where,

Ψt(ω,T ) =

∫ T

t

ψ(eκ
′(u−t) ω) du

ψ(ω) = iω′κθ − 1
2ω
′Cω +

∫ (
e iω′y − 1− i I{|y|<1} ω

′y
)
ν(dy)
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Multi-Dimensional Mean-Reverting FST Method

By discretizing space and frequency, prices for a full spectrum of spot
values are computed using two FFT evaluations

Vn−1(X) = FFT−1
[
eΨ0(ω,∆t)+∆tTrκ · FFT[Vn](eκ

′∆t ω)
]

(X)

The transform of the price at time-step n is required at scaled
frequencies. Using the scaling property of Fourier transforms

F [g ] (eκ
′∆t ω) = F [g̃ ] (ω) e−∆t Trκ , g̃(X) , g(X e−κ

′∆t)

these are conveniently computed from interpolated prices at time-step n:

Multi-Dimensional Mean-Reverting FST Method

Vn−1(X) = FFT−1
[
eΨ0(ω,∆t) · FFT[Ṽn](ω)

]
(X)

20 / 34
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European Option Results

N Value Change Convergence Time
order (msec.)

4096 10.47317181 5.546
8192 10.47299262 0.0001792 9.358

16384 10.47295334 0.0000393 2.1895 18.719
32768 10.47294517 0.0000082 2.2656 37.984

Option: European put S = 100,K = 105,T = 1

Model: Merton jump-diffusion with mean reversion
σ = 0.2, λ = 0.25, µ̃ = 0.3, σ̃ = 0.5, θ = 90, κ = 0.75, r = 0.05

Monte Carlo: 95% CI (10.47243025, 10.47356975) @ 114 sec.
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American Option Results

N M Value Change Convergence Time
order (sec.)

4096 256 12.23654432 0.107
8192 512 12.23592062 0.0006237 0.432

16384 1024 12.23559075 0.0003299 0.9190 2.214
32768 2048 12.23542014 0.0001706 0.9511 9.546

Option: American put S = 100,K = 105,T = 1

Model: Merton jump-diffusion with mean reversion
σ = 0.2, λ = 0.25, µ̃ = 0.3, σ̃ = 0.5, θ = 90, κ = 0.75, r = 0.05

Monte Carlo: 95% CI (12.2330185, 12.2361035) @ 53 min.
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Discrete Barrier Option Results

N Value Change Convergence Time
order (sec.)

4096 3.05084502 0.842
8192 3.05259256 0.0017475 1.712

16384 3.05298286 0.0003903 2.1626 3.777
32768 3.05308576 0.0001029 1.9234 12.369

Option: Down-and-out barrier put S = 100,K = 105,T = 1,
B = 85,R = 2.5 with hourly monitoring

Model: Merton jump-diffusion with mean reversion
σ = 0.2, λ = 0.25, µ̃ = 0.3, σ̃ = 0.5, θ = 90, κ = 0.75, r = 0.05

Monte Carlo: 95% CI (3.04777486, 3.05662484) @ 19.1 min.
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Spread Option Results

N Value Change Convergence Time
order (sec.)

512 20.40021368 0.717
1024 20.39217503 0.0080386 3.945
2048 20.39000196 0.0021731 1.8872 20.362
4096 20.38935935 0.0006426 1.7577 80.414

Option: European spread call S1 = 100,S2 = 100,K = 3.5,T = 1

Model: 2D Kou jump-diffusion with mean reversion and copula
σ1 = 0.2, λ1 = 0.75, p1 = 0.45, η1+ = 0.25, η1− = 0.125, θ1 = 92, κ1 = 0.5,

σ2 = 0.3, λ2 = 0.5, p2 = 0.55, η2+ = 0.3, η2− = 0.2, θ2 = 110, κ2 = 0.75

ρ = 0.7, r = 0.05

λc = 0.5, µ̂c1 = −0.1, σ̂c1 = 0.2, µ̂c2 = 0.075, σ̂c2 = 0.15, ρc = 0.7

Monte Carlo: 95% CI (20.378096, 20.431361) @ 35 minutes
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American Spread Option Results

N M Value Change Convergence Time
order (sec.)

512 64 23.55544302 4.1
1024 128 23.50622121 0.0492218 40.7
2048 256 23.48240921 0.0238120 1.0476 353.4

Option: American spread call S1 = 100,S2 = 100,K = 3.5,T = 1

Model: 2D Kou jump-diffusion with mean reversion and copula
σ1 = 0.2, λ1 = 0.75, p1 = 0.45, η1+ = 0.25, η1− = 0.125, θ1 = 92, κ1 = 0.5,

σ2 = 0.3, λ2 = 0.5, p2 = 0.55, η2+ = 0.3, η2− = 0.2, θ2 = 110, κ2 = 0.75

ρ = 0.7, r = 0.05

λc = 0.5, µ̂c1 = −0.1, σ̂c1 = 0.2, µ̂c2 = 0.075, σ̂c2 = 0.15, ρc = 0.7
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Overview

Common in electricity and natural gas markets

Provides constrained flexibility with respect to volume and timing of
energy delivery

Two components: a pure forward agreement and a swing option

Example: Simple Swing Option

The holder agrees to buy 100MWh at a cost of $45/MWh over a period
of 1 month. At the start of each hour, the holder has the right to
increase power consumption to 110MW for that hour (swing up) or
decrease to 90MW (swing down) at the same cost. The total number of
swings is limited to 50.
The swing component is the right to change consumption at holder’s
choosing.

For overview of swing options and their valuation see Ware (2007)
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Pricing

At each swing opportunity, a choice to exercise q swing “options” for
immediate cashflow Υ must be made:

Dynamic Programming Equation

vtm (x ,Q) = max
q

{
Υtm (x , q) + e−r∆tE[vtm+1 (x ,Q + q)]

}
where the expectation is readily computed using the mrFST method

The available choices are to do nothing q = 0, swing up q > 0 or
swing down q < 0

The amount of swings may be bounded |Qtm | ≤ Q where
Qtm =

∑m
j=1 qtj or Qtm =

∑
|qtj |

The cashflow function Υt(x , q) may include a penalty term to
enforce additional limits on Q or may be as simple as
Υt(x , q) = q(ex − K )
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Results

Option: Swing S = 100,K = 100,T = 2,−3 ≤ Q ≤ 5
Model: Kou jump-diffusion with mean reversion
σ = 0.3, λ = 0.7, p = 0.45, η+ = 0.25, η− = 0.2, θ = 90, r = 0.05
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mrFST Method

Naturally applied to

Path-dependent options with discontinuous/irregular payoffs
Multi-dimensional problems
Exotic options such as swing

Computationally efficient

2 FFTs required to obtain option values computed for a range of
spots
European options priced in a single time-step
Bermudan style options do not require time-stepping between
monitoring dates
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Thank You

Questions?
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