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The Option Pricing Problem

Option payoff is given by ϕ(S)

Stock price follows an exponential Lévy model:

S(t) = S(0)eµt+X (t), X (t) is a Lévy process

Generalizing PIDE for Lévy processes

{
∂tv + Lv = 0
v(T , x) = ϕ(S(0) ex)

where L is the infinitesimal generator of the Lévy process:

Lf = γ ∂x f +
σ2

2
∂xx f +

∫
R/{0}

[
f (x + y)− f (x)− y1{|y |<1}∂x f (x)

]
ν(dy)
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Finite Difference Methods for Option Pricing

Alternating Direction Implicit-FFT - Andersen and Andreasen (2000)

Implicit-Explicit (IMEX) - Cont and Tankov (2004)

IMEX Runge-Kutta - Briani, Natalini, and Russo (2004)

Fixed Point Iteration - d’Halluin, Forsyth, and Vetzal (2005)

Common Features:

Treat the integral term explicitly to avoid solving a dense system of
linear equations.

Use the Fast Fourier Transform (FFT) to speed up the computation
of the integral term (which can be regarded as a convolution)

Drawbacks:

Diffusive and integral terms are treated asymmetrically

Large jump are truncated and small jumps approximated by diffusion

Difficult to extend to higher dimensions
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Infinitesimal Generator and Characteristic Exponent

The characteristic exponent of a Lévy-Khinchin representation can be
factored from a Fourier transform of the operator (Sato 1999)

F [Lv ](τ, ω) =

{
iγω − σ2ω2

2
+

∫
[e iωx − 1− iωy1{|ω|<1}]ν(dy)

}
F [v ](τ, ω)

= ψ(ω)F [v ](τ, ω)

Model Characteristic Exponent ψ(ω)

Black-Scholes-Merton iµω − σ2ω2

2

Merton Jump-Diffusion iµω − σ2ω2

2 + λ(e iµ̃ω−σ̃2ω2/2 − 1)

Variance Gamma − 1
κ log(1− iµκω + σ2κω2

2 )

CGMY CΓ(−Y )
[
(M−iω)Y−MY + (G +iω)Y−GY

]
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Numerical Method Derivation

Apply the Fourier transform to the pricing PIDE{
∂tF [v ](t,ω) + Ψ(ω)F [v ](t,ω) = 0 ,
F [v ](T ,ω) = F [ϕ](ω)

Resulting ODE has explicit solution

F [v ](t1,ω) = F [v ](t2,ω) · e(t2−t1)Ψ(ω)

Apply the inverse Fourier transform

v(t1, x) = F−1
{
F [v ](t2,ω) · e(t2−t1)Ψ(ω)

}
(x)

Fourier Space Time-stepping (FST) method

vn−1 = FFT−1[FFT[vn] · eΨ ∆t ]
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European Call Option

N Value Change log2Ratio CPU-Time

2048 0.04261423 0.002
4096 0.04263998 0.000026 0.005
8192 0.04264641 0.000006 2.0018 0.010

16384 0.04264801 0.000002 2.0010 0.019
32768 0.04264841 0.000000 2.0011 0.038

Option: European call S = 1.0,K = 1.0,T = 0.2

Model: Kou jump-diffusion
σ = 0.2, λ = 0.2, p = 0.5, η− = 3, η+ = 2, r = 0.0

Quoted Price: 0.0426761 Almendral and Oosterlee (2005)
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American Put Option

N M Value Change log2Ratio CPU-Time

4096 512 9.22533163 0.181
8192 1024 9.22547180 0.0001402 0.958

16384 2048 9.22544621 0.0000256 2.4534 4.036
32768 4096 9.22543840 0.0000078 1.7117 21.303

Option: American put S = 90.0,K = 98.0,T = 0.25

Model: CGMY C = 0.42,G = 4.37,M = 191.2,Y = 1.0102,
r = 0.06

Quoted Price: 9.2254 Forsyth, Wan, and Wang (2006)
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American Put Option

N M Value Change log2Ratio CPU-Time

4096 512 4.42077686 0.239
8192 1024 4.42077346 0.0000034 1.198

16384 2048 4.42077259 0.0000009 1.9616 4.614
32768 4096 4.42077245 0.0000001 2.6769 20.735

Option: American put S = 10.0,K = 10.0,T = 0.25

Model: CGMY C = 1.0,G = 8.8,M = 9.2,Y = 1.8, r = 0.1
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Up-and-Out Barrier Call Option

N M Value Change log2Ratio CPU-Time

4096 512 0.25432521 0.149
8192 1024 0.25422752 0.0000977 0.669

16384 2048 0.25420350 0.0000240 2.0239 2.928
32768 4096 0.25419764 0.0000059 2.0335 15.691

Option: Up-and-Out Barrier Call
S = 100.0,K = 100.0,B = 110,T = 1.0

Model: Black-Scholes-Merton σ = 0.15, r = 0.05, q = 0.02

Closed-Form Price: 0.2541963 Hull (2005)
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Multi-asset options

Pricing PIDE

{
(∂t + L) v = 0 ,
v(T , x) = ϕ(S(0) ex)

Multi-dimensional FST method

vn−1 = FFT−1[FFT[vn] · eΨ ∆t ]

Jackson, Jaimungal and Surkov (2007) discuss application of FST to
pricing of spread, American spread and catastrophe equity put
options
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Catastrophe Equity Put (CatEPut)

In the event of large (catastrophic) losses U, the insurer receives a
put option on its own stock ϕ(S(T ), LT ) = 1LT>U (K − S(T ))+
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Catastrophe Equity Put (CatEPut)

Presence of losses drives the share value down, not an independent
jump process

S(t) = S(0) exp {−α L(t) + γ t + σWt}

L(t) =

N(t)∑
n=1

li

When losses are modeled as a Gamma r.v., characteristic exponent is

Ψ(ω1, ω2) = i γ ω1 − 1
2σ

2 ω2
1 + λ

[(
1− i(−αω1 + ω2)

v

m
)
)−m2

v − 1

]
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European CatEPut
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American CatEPut
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Regime Switching

Let K := {1, . . . ,K} denote the possible hidden states of the world,
driven by a continuous time Markov chain Zt .

The transition probability from state k at time t1 to state l at time
t2 is given by

P t1t2

kl = Q(Zt2 = l |Zt1 = k) = (exp{(t2 − t1)A})kl

where A is the Markov chain generator

Within state k , log-stock follows Lévy model k
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Regime Switching

Pricing PIDE

{ [
∂t +

(
Akk + L(k)

)]
v(x, k , t) +

∑
j 6=k Ajk v(x, j , t) = 0

v(x, k ,T ) = ϕ(S(0)ex)

FST Method

vn−1 = FFT−1[FFT[vn] · eΨ̃ ∆t ]

where

Ψ̃(ω)kl =

{
Akk + Ψ(k)(ω), k = l
Akl , k 6= l

No time-stepping required for European options
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American put option with 3 regimes

N M Value Change log2Ratio CPU-Time

4096 256 14.25029309 0.634
8192 512 14.25025450 0.0000386 4.694

16384 1024 14.25024472 0.0000098 1.9802 14.385
32768 2048 14.25024245 0.0000023 2.1119 63.443

Option: American put S = 100.0,K = 100.0,T = 1.0

Model: Merton jump-diffusion σ = 0.15, µ̃ = −0.5, σ̃ = 0.45,
r = 0.05, q = 0.02, λ ∈ [0.3, 0.5, 0.7], p = [0.2, 0.3, 0.5],
A = [−0.8, 0.6, 0.2; 0.2,−1, 0.8; 0.1, 0.3,−0.4]
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Exercise boundary for American put option with 3 regimes
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FST Method Strengths

Stable and robust, even for options with discontinuous payoffs

Easily extendable to various stochastic processes and no loss of
performance for infinite activity processes

Can be applied to multi-dimensional and regime-switching problems
in a natural manner

Computationally efficient

Computational cost is O(MNlogN) while the error is O(∆x2 + ∆t2)
European options priced in a single time-step
Bermudan style options do not require time-stepping between
monitoring dates

20 / 32



FST method Extensions Indifference pricing Optimal investment problems Application of FST to HJB

Indifference Pricing

In incomplete markets (non-traded assets, transaction costs,
portfolio constraints, etc.) perfect replication is impossible

Investor can still maximize the expected utility of wealth through
dynamic trading

The price of a claim is the initial wealth forgone so that the investor
is no worse off in expected utility terms at maturity

The framework incorporates wealth dependence, non-linear pricing
and risk-aversion
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The Modelling Framework

Utility function is a strictly increasing and concave function ranking
investor’s preferences of wealth

Popular choices include CRRA model U(x) = x1−γ

1−γ or CARA model

U(x) = 1− 1
γ e−γx

An economic agent over a fixed-time horizon attempts to optimally
allocate his investment between risky (St) and risk-free (Bt) assets

dSt = µStdt + σStdWt

dXt = πtXt
dSt

St
+ (1− πt)Xt

dBt

Bt

= (πt(µ− r) + r)Xtdt + πtσXtdWt

where πt is the share of wealth allocated in stocks
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Two Optimal Control Problems

Investor maximizes the expected utility of wealth at time horizon T ,
given initial wealth x at t:

V 0(t, x) = sup
πt

E [U(Xπ
T |Xt = x)]

In addition to initial endowment x , investor receives k derivative
contracts with payoff C (ST ):

V k(t, x , s) = sup
πt

E [U(Xπ
T + k · C (ST )|Xt = x ,St = s)]

Indifference Pricing Principle

Indifference buy price pk
buy (s) and sell price pk

sell(s) satisfy

V 0(t, x) = V k(t, x − pk
buy (s), s) V 0(t, x) = V−k(t, x + pk

sell(s), s)
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Optimal Investment Problem

Optimal value HJB equation{
∂tV

0(t, x) + sup
πt

{AπV 0(t, x)} = 0

V 0(T , x) = U(x)

where

Aπ = (πt(µ− r) + r)x∂x +
1

2
π2

t σ
2x2∂xx

Example:
CARA utility γ = 0.8; GBM µ = 0.1, σ = 0.2, r = 0.04
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Optimal Expected Utility
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Optimal Investment Problem with Option

Optimal value 2D HJB equation{
∂tV

k(t, x , s) + sup
πt

{AπV k(t, x , s)} = 0

V k(T , x , s) = U(x + k · C (s))

where

Aπ = (πt(µ− r) + r)x∂x +
1

2
π2

t σ
2x2∂xx + µs∂s +

1

2
σ2ss∂ss + πσ2xs∂xs

Example continued:
European put K = 2, T = 5; k = 2
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Optimal Expected Utility (t=5)
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Optimal Expected Utility (t=0)

28 / 32



FST method Extensions Indifference pricing Optimal investment problems Application of FST to HJB

Indifference Buy Price
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Application of FST to solution of HJB equations

General Approach:

Fix πt(x) over the time-step [t1, t2] and solve the resulting PIDE

Iterate to converge to the optimal policy

Optimization Algorithm 1: Fix πt(x) = πt over the entire space

F [Aπ] has an analytic form and the resulting ODE can be solved
explicitly (just like in option pricing)

Inefficient if optimal policy is uniformly distributed in space

Optimization Algorithm 2: Let πt(x) vary in space

F [Aπ] involves convolutions of F [Aπ] and F [π(x)], F [π2(x)]

Can apply a policy iteration approach of Wang and Forsyth (2006)

Working in Fourier space we can solve an Integral HJB
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Future Work

Exotic, multi-asset options

Mean reverting processes in energy markets

HJB equations arising from optimal control problems

Efficient policy iteration algorithm
Optimal control with jump-diffusions
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Thank You!

http://128.100.73.155/fst/
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