Fourier Space Time-stepping Method for Option Pricing with Lévy Processes

Vladimir Surkov University of Toronto

Computational Methods in Finance Conference University of Waterloo July 27, 2007

Joint work with Ken Jackson and Sebastian Jaimungal, University of Toronto

1 Fourier Space Time-stepping method

- Infinitesimal generator and characteristic exponent
- Method derivation
- Numerical results
- 2 Extensions
 - Multi-asset options
 - Regime switching
- Indifference pricing
 - Optimal investment problems
 - Application of FST to solution of HJB equations

The Option Pricing Problem

- Option payoff is given by $\varphi(S)$
- Stock price follows an exponential Lévy model:

$$S(t)=S(0)e^{\mu t+X(t)}, \qquad \qquad X(t)$$
 is a Lévy process

The Option Pricing Problem

- Option payoff is given by $\varphi(S)$
- Stock price follows an exponential Lévy model:

$$S(t) = S(0)e^{\mu t + X(t)},$$
 $X(t)$ is a Lévy process

Generalizing PIDE for Lévy processes

$$\begin{cases} \partial_t v + \mathcal{L}v &= 0\\ v(T, x) &= \varphi(S(0) e^x) \end{cases}$$

where ${\boldsymbol{\mathcal{L}}}$ is the infinitesimal generator of the Lévy process:

$$\mathcal{L}f = \gamma \partial_{x}f + \frac{\sigma^{2}}{2} \partial_{xx}f + \int_{\mathbb{R}/\{0\}} [f(x+y) - f(x) - y \mathbb{1}_{\{|y| < 1\}} \partial_{x}f(x)] \nu(dy)$$

Finite Difference Methods for Option Pricing

- Alternating Direction Implicit-FFT Andersen and Andreasen (2000)
- Implicit-Explicit (IMEX) Cont and Tankov (2004)
- IMEX Runge-Kutta Briani, Natalini, and Russo (2004)
- Fixed Point Iteration d'Halluin, Forsyth, and Vetzal (2005)

Finite Difference Methods for Option Pricing

- Alternating Direction Implicit-FFT Andersen and Andreasen (2000)
- Implicit-Explicit (IMEX) Cont and Tankov (2004)
- IMEX Runge-Kutta Briani, Natalini, and Russo (2004)
- Fixed Point Iteration d'Halluin, Forsyth, and Vetzal (2005)

Common Features:

- Treat the integral term explicitly to avoid solving a dense system of linear equations.
- Use the Fast Fourier Transform (FFT) to speed up the computation of the integral term (which can be regarded as a convolution)

Finite Difference Methods for Option Pricing

- Alternating Direction Implicit-FFT Andersen and Andreasen (2000)
- Implicit-Explicit (IMEX) Cont and Tankov (2004)
- IMEX Runge-Kutta Briani, Natalini, and Russo (2004)
- Fixed Point Iteration d'Halluin, Forsyth, and Vetzal (2005)

Common Features:

- Treat the integral term explicitly to avoid solving a dense system of linear equations.
- Use the Fast Fourier Transform (FFT) to speed up the computation of the integral term (which can be regarded as a convolution)

Drawbacks:

- Diffusive and integral terms are treated asymmetrically
- Large jump are truncated and small jumps approximated by diffusion
- Difficult to extend to higher dimensions

Infinitesimal Generator and Characteristic Exponent

The characteristic exponent of a Lévy-Khinchin representation can be factored from a Fourier transform of the operator (Sato 1999)

$$\begin{aligned} \mathcal{F}[\mathcal{L}v](\tau,\omega) \ &= \ \left\{ i\gamma\omega - \frac{\sigma^2\omega^2}{2} + \int [e^{i\omega x} - 1 - i\omega y \mathbf{1}_{\{|\omega| < 1\}}]\nu(dy) \right\} \mathcal{F}[v](\tau,\omega) \\ &= \ \psi(\omega)\mathcal{F}[v](\tau,\omega) \end{aligned}$$

Model	Characteristic Exponent $\psi(\omega)$
Black-Scholes-Merton	$i\mu\omega - rac{\sigma^2\omega^2}{2}$
Merton Jump-Diffusion	$i\mu\omega-rac{\sigma^2\omega^2}{2}+\lambda(e^{i ilde\mu\omega- ilde\sigma^2\omega^2/2}-1)$
Variance Gamma	$-rac{1}{\kappa}\log(1-i\mu\kappa\omega+rac{\sigma^2\kappa\omega^2}{2})$
CGMY	$C\Gamma(-Y)[(M-i\omega)^{Y}-M^{Y}+(G+i\omega)^{Y}-G^{Y}]$

• Apply the Fourier transform to the pricing PIDE

$$\left\{\begin{array}{ll} \partial_t \mathcal{F}[v](t,\omega) + \Psi(\omega) \mathcal{F}[v](t,\omega) &= 0 \ , \\ \mathcal{F}[v](T,\omega) &= \mathcal{F}[\varphi](\omega) \end{array}\right.$$

• Apply the Fourier transform to the pricing PIDE

$$\begin{cases} \partial_t \mathcal{F}[v](t,\omega) + \Psi(\omega) \mathcal{F}[v](t,\omega) &= 0, \\ \mathcal{F}[v](\mathcal{T},\omega) &= \mathcal{F}[\varphi](\omega) \end{cases}$$

• Resulting ODE has explicit solution

$$\mathcal{F}[v](t_1,\omega) = \mathcal{F}[v](t_2,\omega) \cdot e^{(t_2-t_1)\Psi(\omega)}$$

• Apply the Fourier transform to the pricing PIDE

$$\begin{cases} \partial_t \mathcal{F}[v](t,\omega) + \Psi(\omega) \mathcal{F}[v](t,\omega) &= 0, \\ \mathcal{F}[v](\mathcal{T},\omega) &= \mathcal{F}[\varphi](\omega) \end{cases}$$

• Resulting ODE has explicit solution

$$\mathcal{F}[v](t_1,\omega) = \mathcal{F}[v](t_2,\omega) \cdot e^{(t_2-t_1)\Psi(\omega)}$$

• Apply the inverse Fourier transform

$$\mathbf{v}(t_1, \mathbf{x}) = \mathcal{F}^{-1} \left\{ \mathcal{F}[\mathbf{v}](t_2, \boldsymbol{\omega}) \cdot e^{(t_2 - t_1)\Psi(\boldsymbol{\omega})}
ight\} (\mathbf{x})$$

• Apply the Fourier transform to the pricing PIDE

$$\left\{ egin{array}{ll} \partial_t \mathcal{F}[v](t,\omega) + \Psi(\omega) \mathcal{F}[v](t,\omega) &= 0 \ , \ \mathcal{F}[v](\mathcal{T},\omega) &= \mathcal{F}[arphi](\omega) \end{array}
ight.$$

• Resulting ODE has explicit solution

$$\mathcal{F}[v](t_1,\omega) = \mathcal{F}[v](t_2,\omega) \cdot e^{(t_2-t_1)\Psi(\omega)}$$

• Apply the inverse Fourier transform

$$oldsymbol{v}(t_1, \mathbf{x}) = \mathcal{F}^{-1} \left\{ \mathcal{F}[v](t_2, oldsymbol{\omega}) \cdot e^{(t_2 - t_1) \Psi(oldsymbol{\omega})}
ight\} (\mathbf{x})$$

Fourier Space Time-stepping (FST) method

$$v^{n-1} = \mathsf{FFT}^{-1}[\mathsf{FFT}[v^n] \cdot e^{\Psi \Delta t}]$$

European Call Option

Ν	Value	Change	$\log_2 Ratio$	CPU-Time
2048	0.04261423			0.002
4096	0.04263998	0.000026		0.005
8192	0.04264641	0.000006	2.0018	0.010
16384	0.04264801	0.000002	2.0010	0.019
32768	0.04264841	0.000000	2.0011	0.038

- Option: European call S = 1.0, K = 1.0, T = 0.2
- *Model:* Kou jump-diffusion $\sigma = 0.2, \lambda = 0.2, p = 0.5, \eta_- = 3, \eta_+ = 2, r = 0.0$
- Quoted Price: 0.0426761 Almendral and Oosterlee (2005)

American Put Option

Ν	М	Value	Change	$\log_2 Ratio$	CPU-Time
4096	512	9.22533163			0.181
8192	1024	9.22547180	0.0001402		0.958
16384	2048	9.22544621	0.0000256	2.4534	4.036
32768	4096	9.22543840	0.0000078	1.7117	21.303

- Option: American put S = 90.0, K = 98.0, T = 0.25
- *Model:* CGMY *C* = 0.42, *G* = 4.37, *M* = 191.2, *Y* = 1.0102, *r* = 0.06
- Quoted Price: 9.2254 Forsyth, Wan, and Wang (2006)

American Put Option

Ν	М	Value	Change	$\log_2 Ratio$	CPU-Time
4096	512	4.42077686			0.239
8192	1024	4.42077346	0.0000034		1.198
16384	2048	4.42077259	0.0000009	1.9616	4.614
32768	4096	4.42077245	0.0000001	2.6769	20.735

• Option: American put S = 10.0, K = 10.0, T = 0.25

• *Model:* CGMY *C* = 1.0, *G* = 8.8, *M* = 9.2, *Y* = 1.8, *r* = 0.1

Up-and-Out Barrier Call Option

N	М	Value	Change	$\log_2 Ratio$	CPU-Time
4096	512	0.25432521			0.149
8192	1024	0.25422752	0.0000977		0.669
16384	2048	0.25420350	0.0000240	2.0239	2.928
32768	4096	0.25419764	0.0000059	2.0335	15.691

- Option: Up-and-Out Barrier Call S = 100.0, K = 100.0, B = 110, T = 1.0
- Model: Black-Scholes-Merton $\sigma = 0.15, r = 0.05, q = 0.02$
- Closed-Form Price: 0.2541963 Hull (2005)

Multi-asset options

Pricing PIDE

$$\left(\begin{array}{cc} \left(\partial_t + \mathcal{L} \right) \mathbf{v} &= 0 \\ \mathbf{v}(T, \mathbf{x}) &= \varphi(\mathbf{S}(0) \, e^{\mathbf{x}}) \end{array} \right)$$

Multi-asset options

Pricing PIDE

$$\left(\begin{array}{cc} \left(\partial_t + \mathcal{L} \right) v &= 0 \\ v(T, \mathbf{x}) &= \varphi(\mathbf{S}(0) e^{\mathbf{x}}) \end{array} \right.$$

Multi-dimensional FST method

$$\mathbf{v}^{n-1} = \mathsf{FFT}^{-1}[\mathsf{FFT}[\mathbf{v}^n] \cdot e^{\mathbf{\Psi}\,\Delta t}]$$

Multi-asset options

Pricing PIDE

$$\left(\begin{array}{cc} \left(\partial_t + \mathcal{L} \right) v &= 0 \\ v(T, \mathbf{x}) &= \varphi(\mathbf{S}(0) e^{\mathbf{x}}) \end{array} \right.$$

Multi-dimensional FST method

$$\mathbf{v}^{n-1} = \mathsf{FFT}^{-1}[\mathsf{FFT}[\mathbf{v}^n] \cdot e^{\mathbf{\Psi} \, \Delta t}]$$

 Jackson, Jaimungal and Surkov (2007) discuss application of FST to pricing of spread, American spread and catastrophe equity put options

Catastrophe Equity Put (CatEPut)

In the event of large (catastrophic) losses U, the insurer receives a put option on its own stock φ(S(T), L_T) = 1_{L_T>U} (K − S(T))₊

Catastrophe Equity Put (CatEPut)

• Presence of losses drives the share value down, not an independent jump process

$$S(t) = S(0) \exp \{-\alpha L(t) + \gamma t + \sigma W_t\}$$

$$L(t) = \sum_{n=1}^{N(t)} l_i$$

Catastrophe Equity Put (CatEPut)

• Presence of losses drives the share value down, not an independent jump process

$$S(t) = S(0) \exp \{-\alpha L(t) + \gamma t + \sigma W_t\}$$

$$L(t) = \sum_{n=1}^{N(t)} l_i$$

• When losses are modeled as a Gamma r.v., characteristic exponent is

$$\Psi(\omega_1,\omega_2)=i\gamma\,\omega_1-\tfrac{1}{2}\sigma^2\,\omega_1^2+\lambda\left[\left(1-i(-\alpha\omega_1+\omega_2)\frac{v}{m})\right)^{-\frac{m^2}{v}}-1\right]$$

European CatEPut

American CatEPut

Regime Switching

- Let K := {1,..., K} denote the possible hidden states of the world, driven by a continuous time Markov chain Z_t.
- The transition probability from state k at time t₁ to state l at time t₂ is given by

$$P_{kl}^{t_1t_2} = \mathbb{Q}(Z_{t_2} = l | Z_{t_1} = k) = (\exp\{(t_2 - t_1)\mathbf{A}\})_{kl}$$

where \mathbf{A} is the Markov chain generator

• Within state k, log-stock follows Lévy model k

Regime Switching

Pricing PIDE

$$\begin{cases} \left[\partial_t + \left(A_{kk} + \mathcal{L}^{(k)}\right)\right] v(\mathbf{x}, k, t) + \sum_{j \neq k} A_{jk} v(\mathbf{x}, j, t) &= 0\\ v(\mathbf{x}, k, T) &= \varphi(\mathbf{S}(0)e^{\mathbf{x}}) \end{cases}$$

Regime Switching

Pricing PIDE

$$\begin{cases} \left[\partial_t + \left(A_{kk} + \mathcal{L}^{(k)}\right)\right] v(\mathbf{x}, k, t) + \sum_{j \neq k} A_{jk} v(\mathbf{x}, j, t) &= 0\\ v(\mathbf{x}, k, T) &= \varphi(\mathbf{S}(0)e^{\mathbf{x}}) \end{cases}$$

FST Method

$$v^{n-1} = \mathsf{FFT}^{-1}[\mathsf{FFT}[v^n] \cdot e^{\widetilde{\Psi} \Delta t}]$$

where

$$\widetilde{\Psi}(\omega)_{kl} = \left\{ egin{array}{cc} A_{kk} + \Psi^{(k)}(\omega), & k = l \ A_{kl}, & k
eq l \end{array}
ight.$$

• No time-stepping required for European options

American put option with 3 regimes

Ν	М	Value	Change	$\log_2 Ratio$	CPU-Time
4096	256	14.25029309			0.634
8192	512	14.25025450	0.0000386		4.694
16384	1024	14.25024472	0.0000098	1.9802	14.385
32768	2048	14.25024245	0.0000023	2.1119	63.443

- Option: American put S = 100.0, K = 100.0, T = 1.0
- *Model:* Merton jump-diffusion $\sigma = 0.15$, $\tilde{\mu} = -0.5$, $\tilde{\sigma} = 0.45$, r = 0.05, q = 0.02, $\lambda \in [0.3, 0.5, 0.7]$, p = [0.2, 0.3, 0.5], A = [-0.8, 0.6, 0.2; 0.2, -1, 0.8; 0.1, 0.3, -0.4]

Exercise boundary for American put option with 3 regimes

FST Method Strengths

- Stable and robust, even for options with discontinuous payoffs
- Easily extendable to various stochastic processes and no loss of performance for infinite activity processes
- Can be applied to multi-dimensional and regime-switching problems in a natural manner
- Computationally efficient
 - Computational cost is O(MNlogN) while the error is $O(\Delta x^2 + \Delta t^2)$
 - European options priced in a single time-step
 - Bermudan style options do not require time-stepping between monitoring dates

Indifference Pricing

- In incomplete markets (non-traded assets, transaction costs, portfolio constraints, etc.) perfect replication is impossible
- Investor can still maximize the expected utility of wealth through dynamic trading
- The price of a claim is the initial wealth forgone so that the investor is no worse off in expected utility terms at maturity
- The framework incorporates wealth dependence, non-linear pricing and risk-aversion

The Modelling Framework

Utility function is a strictly increasing and concave function ranking investor's preferences of wealth
 Popular choices include CRRA model U(x) = x^{1-γ}/(1-γ) or CARA model
 U(x) = 1 - 1/2 e^{-γx}

The Modelling Framework

- Utility function is a strictly increasing and concave function ranking investor's preferences of wealth Popular choices include CRRA model $U(x) = \frac{x^{1-\gamma}}{1-\gamma}$ or CARA model $U(x) = 1 - \frac{1}{\gamma}e^{-\gamma x}$
- An economic agent over a fixed-time horizon attempts to optimally allocate his investment between risky (*S*_t) and risk-free (*B*_t) assets

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

$$dX_t = \pi_t X_t \frac{dS_t}{S_t} + (1 - \pi_t) X_t \frac{dB_t}{B_t}$$

$$= (\pi_t (\mu - r) + r) X_t dt + \pi_t \sigma X_t dW_t$$

where π_t is the share of wealth allocated in stocks

Two Optimal Control Problems

• Investor maximizes the expected utility of wealth at time horizon *T*, given initial wealth *x* at *t*:

$$V^0(t,x) = \sup_{\pi_t} E\left[U(X_T^{\pi}|X_t=x)\right]$$

Two Optimal Control Problems

• Investor maximizes the expected utility of wealth at time horizon *T*, given initial wealth *x* at *t*:

$$V^0(t,x) = \sup_{\pi_t} E\left[U(X_T^{\pi}|X_t=x)\right]$$

 In addition to initial endowment x, investor receives k derivative contracts with payoff C(S_T):

$$V^{k}(t, x, s) = \sup_{\pi_{t}} E\left[U(X_{T}^{\pi} + k \cdot C(S_{T})|X_{t} = x, S_{t} = s)\right]$$

Two Optimal Control Problems

• Investor maximizes the expected utility of wealth at time horizon *T*, given initial wealth *x* at *t*:

$$V^0(t,x) = \sup_{\pi_t} E\left[U(X^{\pi}_T|X_t=x)\right]$$

 In addition to initial endowment x, investor receives k derivative contracts with payoff C(S_T):

$$V^{k}(t,x,s) = \sup_{\pi_{t}} E\left[U(X_{T}^{\pi} + k \cdot C(S_{T})|X_{t} = x, S_{t} = s)\right]$$

Indifference Pricing Principle

Indifference buy price $p_{buy}^k(s)$ and sell price $p_{sell}^k(s)$ satisfy

$$V^{0}(t,x) = V^{k}(t,x-p_{buy}^{k}(s),s)$$
 $V^{0}(t,x) = V^{-k}(t,x+p_{sell}^{k}(s),s)$

Optimal Investment Problem

Optimal value HJB equation

$$\begin{cases} \partial_t V^0(t,x) + \sup_{\pi_t} \{\mathcal{A}^{\pi} V^0(t,x)\} = 0 \\ V^0(T,x) = U(x) \end{cases}$$

where

$$\mathcal{A}^{\pi} = (\pi_t(\mu - r) + r) x \partial_x + \frac{1}{2} \pi_t^2 \sigma^2 x^2 \partial_{xx}$$

Optimal Investment Problem

Optimal value HJB equation

$$\begin{cases} \partial_t V^0(t,x) + \sup_{\pi_t} \{\mathcal{A}^{\pi} V^0(t,x)\} = 0 \\ V^0(T,x) = U(x) \end{cases}$$

where

$$\mathcal{A}^{\pi} = (\pi_t(\mu - r) + r) x \partial_x + \frac{1}{2} \pi_t^2 \sigma^2 x^2 \partial_{xx}$$

Example: CARA utility $\gamma = 0.8$; GBM $\mu = 0.1$, $\sigma = 0.2$, r = 0.04

Optimal Expected Utility

Optimal Investment Problem with Option

Optimal value 2D HJB equation

$$\begin{cases} \partial_t V^k(t,x,s) + \sup_{\pi_t} \{ \mathcal{A}^{\pi} V^k(t,x,s) \} &= 0 \\ V^k(T,x,s) &= U(x+k \cdot C(s)) \end{cases}$$

where

$$\mathcal{A}^{\pi} = (\pi_t(\mu - r) + r) \times \partial_x + \frac{1}{2} \pi_t^2 \sigma^2 x^2 \partial_{xx} + \mu s \partial_s + \frac{1}{2} \sigma^2 s s \partial_{ss} + \pi \sigma^2 x s \partial_{xs}$$

Optimal Investment Problem with Option

Optimal value 2D HJB equation

$$\begin{cases} \partial_t V^k(t,x,s) + \sup_{\pi_t} \{ \mathcal{A}^{\pi} V^k(t,x,s) \} &= 0 \\ V^k(T,x,s) &= U(x+k \cdot C(s)) \end{cases}$$

where

$$\mathcal{A}^{\pi} = (\pi_t(\mu - r) + r) \times \partial_x + \frac{1}{2} \pi_t^2 \sigma^2 x^2 \partial_{xx} + \mu s \partial_s + \frac{1}{2} \sigma^2 s s \partial_{ss} + \pi \sigma^2 x s \partial_{xs}$$

Example continued: European put K = 2, T = 5; k = 2 FST method Extensions Indifference pricing

Optimal investment problems Application of FST to HJB

Optimal Expected Utility (t=5)

Optimal Expected Utility (t=0)

Indifference Buy Price

Application of FST to solution of HJB equations

General Approach:

- Fix $\pi_t(x)$ over the time-step $[t_1, t_2]$ and solve the resulting PIDE
- Iterate to converge to the optimal policy

Application of FST to solution of HJB equations

General Approach:

- Fix $\pi_t(x)$ over the time-step $[t_1, t_2]$ and solve the resulting PIDE
- Iterate to converge to the optimal policy

Optimization Algorithm 1: Fix $\pi_t(x) = \pi_t$ over the entire space

- *F*[*A^π*] has an analytic form and the resulting ODE can be solved explicitly (just like in option pricing)
- Inefficient if optimal policy is uniformly distributed in space

Application of FST to solution of HJB equations

General Approach:

- Fix $\pi_t(x)$ over the time-step $[t_1, t_2]$ and solve the resulting PIDE
- Iterate to converge to the optimal policy

Optimization Algorithm 1: Fix $\pi_t(x) = \pi_t$ over the entire space

- *F*[*A^π*] has an analytic form and the resulting ODE can be solved explicitly (just like in option pricing)
- Inefficient if optimal policy is uniformly distributed in space

Optimization Algorithm 2: Let $\pi_t(x)$ vary in space

- $\mathcal{F}[\mathcal{A}^{\pi}]$ involves convolutions of $\mathcal{F}[\mathcal{A}^{\pi}]$ and $\mathcal{F}[\pi(x)]$, $\mathcal{F}[\pi^{2}(x)]$
- Can apply a policy iteration approach of Wang and Forsyth (2006)
- Working in Fourier space we can solve an Integral HJB

Future Work

- Exotic, multi-asset options
- Mean reverting processes in energy markets
- HJB equations arising from optimal control problems
 - Efficient policy iteration algorithm
 - Optimal control with jump-diffusions

Thank You!

http://128.100.73.155/fst/

HOME RESEARCH TEACHING PROJECTS CONTACT PHOTOGRAPHY
and the second sec
Option: Stock Price Process: FST Parameters: Barrier Variance Gamma Space Points (N): 16384 Option Type Call Put Risk Free Rate (r) 0.05 Spot Price (S) 100.0 Dividend Yield (q) 0.01 Plot Format: PDF Strike Price (K) 100.0 Drift (µ) 0.2 Plot Colour: Grayscale Time to Maturity (T) 1.0 Volatility (or) 0.25 Barrier Type Subordinator Volatility (v) 0.4 Down-and-Out 60.0 Rebate 6.0 Regime Switching Enabled Fedime Switching Enabled

Price