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The Option Pricing Problem

Option payoff is given by ϕ(S)

Stock price follows an exponential Lévy model:

S(t) = S(0)eµt+X (t), X (t) is a Lévy process

Generalizing PIDE for Lévy processes

{
∂tv + Lv = 0
v(T , x) = ϕ(S(0) ex)

where L is the infinitesimal generator of the Lévy process:

Lf = γ ∂x f +
σ2

2
∂xx f +

∫
R/{0}

[
f (x + y)− f (x)− y1{|y |<1}∂x f (x)

]
ν(dy)
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Finite Difference Methods for Option Pricing

Alternating Direction Implicit-FFT - Andersen and Andreasen (2000)

Implicit-Explicit (IMEX) - Cont and Tankov (2004)

IMEX Runge-Kutta - Briani, Natalini, and Russo (2004)

Fixed Point Iteration - d’Halluin, Forsyth, and Vetzal (2005)

Common Features:

Treat the integral term explicitly to avoid solving a dense system of
linear equations.

Use the Fast Fourier Transform (FFT) to speed up the computation
of the integral term (which can be regarded as a convolution)

Drawbacks:

Diffusive and integral terms are treated asymmetrically

Large jump are truncated and small jumps approximated by diffusion

Difficult to extend to higher dimensions

4 / 31



FST method Multi-asset options Regime switching Conclusions Characteristic exponent Method derivation Numerical results

Finite Difference Methods for Option Pricing

Alternating Direction Implicit-FFT - Andersen and Andreasen (2000)

Implicit-Explicit (IMEX) - Cont and Tankov (2004)

IMEX Runge-Kutta - Briani, Natalini, and Russo (2004)

Fixed Point Iteration - d’Halluin, Forsyth, and Vetzal (2005)

Common Features:

Treat the integral term explicitly to avoid solving a dense system of
linear equations.

Use the Fast Fourier Transform (FFT) to speed up the computation
of the integral term (which can be regarded as a convolution)

Drawbacks:

Diffusive and integral terms are treated asymmetrically

Large jump are truncated and small jumps approximated by diffusion

Difficult to extend to higher dimensions

4 / 31



FST method Multi-asset options Regime switching Conclusions Characteristic exponent Method derivation Numerical results

Finite Difference Methods for Option Pricing

Alternating Direction Implicit-FFT - Andersen and Andreasen (2000)

Implicit-Explicit (IMEX) - Cont and Tankov (2004)

IMEX Runge-Kutta - Briani, Natalini, and Russo (2004)

Fixed Point Iteration - d’Halluin, Forsyth, and Vetzal (2005)

Common Features:

Treat the integral term explicitly to avoid solving a dense system of
linear equations.

Use the Fast Fourier Transform (FFT) to speed up the computation
of the integral term (which can be regarded as a convolution)

Drawbacks:

Diffusive and integral terms are treated asymmetrically

Large jump are truncated and small jumps approximated by diffusion

Difficult to extend to higher dimensions

4 / 31



FST method Multi-asset options Regime switching Conclusions Characteristic exponent Method derivation Numerical results

Infinitesimal Generator and Characteristic Exponent

The characteristic exponent of a Lévy-Khinchin representation can be
factored from a Fourier transform of the operator (Sato 1999)

F [Lv ](τ, ω) =

{
iγω − σ2ω2

2
+

∫
[e iωx − 1− iωy1{|ω|<1}]ν(dy)

}
F [v ](τ, ω)

= ψ(ω)F [v ](τ, ω)

Model Characteristic Exponent ψ(ω)

Black-Scholes-Merton iµω − σ2ω2

2

Merton Jump-Diffusion iµω − σ2ω2

2 + λ(e iµ̃ω−σ̃2ω2/2 − 1)

Variance Gamma − 1
κ log(1− iµκω + σ2κω2

2 )

CGMY CΓ(−Y )
[
(M−iω)Y−MY + (G +iω)Y−GY

]
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The characteristic exponent of a Lévy-Khinchin representation can be
factored from a Fourier transform of the operator (Sato 1999)

F [Lv ](τ, ω) =

{
iγω − σ2ω2

2
+

∫
[e iωx − 1− iωy1{|ω|<1}]ν(dy)

}
F [v ](τ, ω)

= ψ(ω)F [v ](τ, ω)

Model Characteristic Exponent ψ(ω)

Black-Scholes-Merton iµω − σ2ω2

2

Merton Jump-Diffusion iµω − σ2ω2

2 + λ(e iµ̃ω−σ̃2ω2/2 − 1)

Variance Gamma − 1
κ log(1− iµκω + σ2κω2

2 )

CGMY CΓ(−Y )
[
(M−iω)Y−MY + (G +iω)Y−GY

]
5 / 31



FST method Multi-asset options Regime switching Conclusions Characteristic exponent Method derivation Numerical results

Numerical Method Derivation

Apply the Fourier transform to the pricing PIDE{
∂tF [v ](t,ω) + Ψ(ω)F [v ](t,ω) = 0 ,
F [v ](T ,ω) = F [ϕ](ω)

Resulting ODE has explicit solution

F [v ](t1,ω) = F [v ](t2,ω) · e(t2−t1)Ψ(ω)

Apply the inverse Fourier transform

v(t1, x) = F−1
{
F [v ](t2,ω) · e(t2−t1)Ψ(ω)

}
(x)

Fourier Space Time-stepping (FST) method

vn−1 = FFT−1[FFT[vn] · eΨ ∆t ]
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European Call Option Results

N Value Change log2Ratio CPU-Time

2048 0.04261423 0.002
4096 0.04263998 0.000026 0.005
8192 0.04264641 0.000006 2.0018 0.010

16384 0.04264801 0.000002 2.0010 0.019
32768 0.04264841 0.000000 2.0011 0.038

Option: European call S = 1.0,K = 1.0,T = 0.2

Model: Kou jump-diffusion
σ = 0.2, λ = 0.2, p = 0.5, η− = 3, η+ = 2, r = 0.0

Quoted Price: 0.0426761 Almendral and Oosterlee (2005)
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American Put Option Results

N M Value Change log2Ratio CPU-Time

4096 512 9.22533163 0.181
8192 1024 9.22547180 0.0001402 0.958

16384 2048 9.22544621 0.0000256 2.4534 4.036
32768 4096 9.22543840 0.0000078 1.7117 21.303

Option: American put S = 90.0,K = 98.0,T = 0.25

Model: CGMY C = 0.42,G = 4.37,M = 191.2,Y = 1.0102,
r = 0.06

Quoted Price: 9.2254 Forsyth, Wan, and Wang (2006)
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American Put Option Results with Infinite Activity

N M Value Change log2Ratio CPU-Time

4096 512 4.42077686 0.239
8192 1024 4.42077346 0.0000034 1.198

16384 2048 4.42077259 0.0000009 1.9616 4.614
32768 4096 4.42077245 0.0000001 2.6769 20.735

Option: American put S = 10.0,K = 10.0,T = 0.25

Model: CGMY C = 1.0,G = 8.8,M = 9.2,Y = 1.8, r = 0.1
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Up-and-Out Barrier Call Option Results

N M Value Change log2Ratio CPU-Time

4096 512 0.25432521 0.149
8192 1024 0.25422752 0.0000977 0.669

16384 2048 0.25420350 0.0000240 2.0239 2.928
32768 4096 0.25419764 0.0000059 2.0335 15.691

Option: Up-and-Out Barrier Call
S = 100.0,K = 100.0,B = 110,T = 1.0

Model: Black-Scholes-Merton σ = 0.15, r = 0.05, q = 0.02

Closed-Form Price: 0.2541963 Hull (2005)
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Multi-dimensional FST method

Pricing PIDE

{
(∂t + L) v = 0 ,
v(T , x) = ϕ(S(0) ex)

Multi-dimensional FST method

vn−1 = FFT−1[FFT[vn] · eΨ ∆t ]

Can be applied to pricing of European, American and other exotic,
path dependent options
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Spread Option Pricing Components

Payoff depends on difference of two stock prices

ϕ(S1(T ),S2(T )) = max(αS2(T )− βS1(T )− K , 0)

Stock price process is a 2D Merton jump-diffusion process

dSi (t)

Si (t−)
= µidt + σidWi (t) + (Ji − 1)dNi (t)

Characteristic exponent is given by:

Ψ(ω1, ω2) = i(µ1−
σ2

1

2
)ω1 +i(µ2−

σ2
2

2
)ω2−

σ2
1ω

2
1

2
−ρσ1σ2ω1ω2−

σ2
2ω

2
2

2

+ λ1 (e iµ̃1ω1−σ̃2
1ω

2
2/2 − 1) + λ2 (e iµ̃2ω2−σ̃2

2ω
2
2/2 − 1)
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Spread Option Results

N Value Change log2Ratio CPU-Time

512 15.03639950 0.880245
1024 15.02776432 0.008635 2.821585
2048 15.02919574 0.001431 2.5928 11.919293
4096 15.02924971 0.000054 4.7293 48.371978
8192 15.02924214 0.000008 2.8345 209.806361

Option: Spread call S1 = 96.0,S2 = 100.0,K = 2.0,T = 1.0

Model: Merton jump-diffusion
σ1 = 0.1, q1 = 0.05, λ1 = 0.25, µ̃1 = −0.13, σ̃1 = 0.37, σ2 =
0.2, q2 = 0.05, λ2 = 0.5, µ̃2 = 0.11, σ̃2 = 0.41, ρ = 0.5, r = 0.1

Kirk’s Formula Price: 15.03001533
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Spread Option Price Surface
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Catastrophe Equity Put (CatEPut) Payoff

In the event of large (catastrophic) losses U, the insurer receives a
put option on its own stock ϕ(S(T ), L(T )) = 1L(T )>U (K − S(T ))+
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CatEPut Stock and Loss Processes

Presence of losses drives the share value down, not an independent
jump process

S(t) = S(0) exp {−α L(t) + γ t + σW (t)}

L(t) =

N(t)∑
n=1

li

When losses are modeled as a Gamma r.v., characteristic exponent is

Ψ(ω1, ω2) = i γ ω1 − 1
2σ

2 ω2
1 + λ

[(
1− i(−αω1 + ω2)

v

m
)
)−m2

v − 1

]
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European CatEPut Price Surface
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American CatEPut Price Surface
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Why Regime Switching ?

Capture long term implied volatility surfaces

Model defaultable securities by associating one state as an
absorbing, default state

Model catastrophic losses which have moderate and extreme periods
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Regime Switching Modeling Framework

Let K := {1, . . . ,K} denote the possible hidden states of the world,
driven by a continuous time Markov chain Zt .

Within state k, log-stock follows Lévy model k

The transition probability from state k at time t1 to state l at time
t2 is given by

P t1t2

kl = Q(Zt2 = l |Zt1 = k) = (exp{(t2 − t1)A})kl

where A is the Markov chain generator
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FST Method with Regime Switching

Pricing PIDE

{ [
∂t +

(
Akk + L(k)

)]
v(x, k , t) +

∑
j 6=k Ajk v(x, j , t) = 0

v(x, k ,T ) = ϕ(S(0)ex)

FST Method Extension

vn−1 = FFT−1[FFT[vn] · eΨ̃ ∆t ]

where

Ψ̃(ω)kl =

{
Akk + Ψ(k)(ω), k = l
Akl , k 6= l

No time-stepping required for European options
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American Put Option with 3 Regimes Results

N M Value Change log2Ratio CPU-Time

4096 256 14.25029309 0.634
8192 512 14.25025450 0.0000386 4.694

16384 1024 14.25024472 0.0000098 1.9802 14.385
32768 2048 14.25024245 0.0000023 2.1119 63.443

Option: American put S = 100.0,K = 100.0,T = 1.0

Model: Merton jump-diffusion σ = 0.15, µ̃ = −0.5, σ̃ = 0.45,
r = 0.05, q = 0.02, λ ∈ [0.3, 0.5, 0.7], p = [0.2, 0.3, 0.5],
A = [−0.8, 0.6, 0.2; 0.2,−1, 0.8; 0.1, 0.3,−0.4]
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American Put Option with 3 Regimes Exercise Boundary
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Implied Volatility with Lévy Processes

Lévy processes unable to capture the smile of long term options
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Implied Vol. with Lévy Processes and Regime Switching

The feature can be captured using two state regime switching Lévy model
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Fourier Space Time-stepping Method Summary

Stable and robust, even for options with discontinuous payoffs

Easily extendable to various stochastic processes and no loss of
performance for infinite activity processes

Can be applied to multi-dimensional and regime-switching problems
in a natural manner

Computationally efficient

Computational cost is O(MNlogN) while the error is O(∆x2 + ∆t2)
European options priced in a single time-step
Bermudan style options do not require time-stepping between
monitoring dates
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Future Work

Exotic, multi-asset options

Mean reverting processes in energy markets

Stochastic volatility processes

HJB equations arising from optimal control problems

Efficient policy iteration algorithm
Optimal control with jump-diffusions
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Thank You!

http://128.100.73.155/fst/

31 / 31


	Fourier Space Time-stepping method
	Infinitesimal generator and characteristic exponent
	Method derivation
	Numerical results

	Multi-asset options
	Spread options
	Catastrophe Equity Put options

	Regime switching
	Option pricing
	Implied volatility surfaces

	Conclusions

