Option Pricing with Regime Switching Lévy Processes using Fourier Space Time Stepping

Vladimir Surkov University of Toronto

Financial Engineering and Applications UC Berkeley September 24, 2007

Joint work with Ken Jackson and Sebastian Jaimungal, University of Toronto

1 [Fourier Space Time-stepping method](#page-2-0)

- [Infinitesimal generator and characteristic exponent](#page-7-0)
- [Method derivation](#page-9-0)
- **•** [Numerical results](#page-13-0)

² [Multi-asset options](#page-17-0)

- [Spread options](#page-21-0)
- **[Catastrophe Equity Put options](#page-26-0)**

³ [Regime switching](#page-31-0)

- [Option pricing](#page-33-0)
- [Implied volatility surfaces](#page-40-0)

[Conclusions](#page-42-0)

The Option Pricing Problem

- Option payoff is given by $\varphi(S)$
- · Stock price follows an exponential Lévy model:

$$
S(t) = S(0)e^{\mu t + X(t)}, \qquad X(t) \text{ is a Lévy process}
$$

The Option Pricing Problem

- Option payoff is given by $\varphi(S)$
- Stock price follows an exponential Lévy model:

$$
S(t) = S(0)e^{\mu t + X(t)}, \qquad X(t) \text{ is a Lévy process}
$$

Generalizing PIDE for Lévy processes

$$
\begin{cases}\n\partial_t v + \mathcal{L}v = 0 \\
v(T, x) = \varphi(S(0) e^x)\n\end{cases}
$$

where $\mathcal L$ is the infinitesimal generator of the Lévy process:

$$
\mathcal{L}f = \gamma \partial_x f + \frac{\sigma^2}{2} \partial_{xx} f + \int_{\mathbb{R}/\{0\}} \left[f(x+y) - f(x) - y \mathbb{1}_{\{|y| < 1\}} \partial_x f(x) \right] \nu(dy)
$$

Finite Difference Methods for Option Pricing

- Alternating Direction Implicit-FFT Andersen and Andreasen (2000)
- Implicit-Explicit (IMEX) Cont and Tankov (2004)
- IMEX Runge-Kutta Briani, Natalini, and Russo (2004)
- Fixed Point Iteration d'Halluin, Forsyth, and Vetzal (2005)

Finite Difference Methods for Option Pricing

- Alternating Direction Implicit-FFT Andersen and Andreasen (2000)
- Implicit-Explicit (IMEX) Cont and Tankov (2004)
- IMEX Runge-Kutta Briani, Natalini, and Russo (2004)
- Fixed Point Iteration d'Halluin, Forsyth, and Vetzal (2005)

Common Features:

- Treat the integral term explicitly to avoid solving a dense system of linear equations.
- Use the Fast Fourier Transform (FFT) to speed up the computation of the integral term (which can be regarded as a convolution)

Finite Difference Methods for Option Pricing

- Alternating Direction Implicit-FFT Andersen and Andreasen (2000)
- Implicit-Explicit (IMEX) Cont and Tankov (2004)
- IMEX Runge-Kutta Briani, Natalini, and Russo (2004)
- Fixed Point Iteration d'Halluin, Forsyth, and Vetzal (2005)

Common Features:

- Treat the integral term explicitly to avoid solving a dense system of linear equations.
- Use the Fast Fourier Transform (FFT) to speed up the computation of the integral term (which can be regarded as a convolution)

Drawbacks:

- Diffusive and integral terms are treated asymmetrically
- Large jump are truncated and small jumps approximated by diffusion
- Difficult to extend to higher dimensions

Infinitesimal Generator and Characteristic Exponent

The characteristic exponent of a Lévy-Khinchin representation can be factored from a Fourier transform of the operator (Sato 1999)

$$
\mathcal{F}[\mathcal{L}v](\tau,\omega) = \left\{ i\gamma\omega - \frac{\sigma^2\omega^2}{2} + \int [e^{i\omega x} - 1 - i\omega y 1_{\{|\omega| < 1\}}] \nu(dy) \right\} \mathcal{F}[v](\tau,\omega) \n= \psi(\omega) \mathcal{F}[v](\tau,\omega)
$$

Infinitesimal Generator and Characteristic Exponent

The characteristic exponent of a Lévy-Khinchin representation can be factored from a Fourier transform of the operator (Sato 1999)

$$
\mathcal{F}[\mathcal{L}v](\tau,\omega) = \left\{ i\gamma\omega - \frac{\sigma^2\omega^2}{2} + \int [e^{i\omega x} - 1 - i\omega y 1_{\{|\omega| < 1\}}] \nu(dy) \right\} \mathcal{F}[v](\tau,\omega) \n= \psi(\omega) \mathcal{F}[v](\tau,\omega)
$$

Numerical Method Derivation

Apply the Fourier transform to the pricing PIDE

$$
\left\{\begin{array}{ll}\partial_t \mathcal{F}[v](t,\omega)+\Psi(\omega)\mathcal{F}[v](t,\omega)&=0\,,\\ \mathcal{F}[v](\mathcal{T},\omega)&=&\mathcal{F}[\varphi](\omega)\end{array}\right.
$$

[FST method](#page-2-0) [Multi-asset options](#page-17-0) [Regime switching](#page-31-0) [Conclusions](#page-42-0) [Characteristic exponent](#page-7-0) [Method derivation](#page-12-0) [Numerical results](#page-13-0)

Numerical Method Derivation

Apply the Fourier transform to the pricing PIDE

$$
\begin{cases}\n\partial_t \mathcal{F}[v](t,\omega) + \Psi(\omega) \mathcal{F}[v](t,\omega) &= 0, \\
\mathcal{F}[v](T,\omega) &= \mathcal{F}[\varphi](\omega)\n\end{cases}
$$

Resulting ODE has explicit solution

$$
\mathcal{F}[v](t_1,\omega)=\mathcal{F}[v](t_2,\omega)\cdot e^{(t_2-t_1)\Psi(\omega)}
$$

[FST method](#page-2-0) [Multi-asset options](#page-17-0) [Regime switching](#page-31-0) [Conclusions](#page-42-0) [Characteristic exponent](#page-7-0) [Method derivation](#page-12-0) [Numerical results](#page-13-0)

Numerical Method Derivation

• Apply the Fourier transform to the pricing PIDE

$$
\begin{cases}\n\partial_t \mathcal{F}[v](t,\omega) + \Psi(\omega) \mathcal{F}[v](t,\omega) &= 0, \\
\mathcal{F}[v](T,\omega) &= \mathcal{F}[\varphi](\omega)\n\end{cases}
$$

• Resulting ODE has explicit solution

$$
\mathcal{F}[v](t_1,\omega)=\mathcal{F}[v](t_2,\omega)\cdot e^{(t_2-t_1)\Psi(\omega)}
$$

• Apply the inverse Fourier transform

$$
v(t_1, \mathbf{x}) = \mathcal{F}^{-1}\left\{\mathcal{F}[v](t_2, \omega) \cdot e^{(t_2 - t_1)\Psi(\omega)}\right\}(\mathbf{x})
$$

[FST method](#page-2-0) [Multi-asset options](#page-17-0) [Regime switching](#page-31-0) [Conclusions](#page-42-0) [Characteristic exponent](#page-7-0) [Method derivation](#page-9-0) [Numerical results](#page-13-0)

Numerical Method Derivation

• Apply the Fourier transform to the pricing PIDE

$$
\begin{cases}\n\partial_t \mathcal{F}[v](t,\omega) + \Psi(\omega) \mathcal{F}[v](t,\omega) = 0, \\
\mathcal{F}[v](T,\omega) = \mathcal{F}[\varphi](\omega)\n\end{cases}
$$

Resulting ODE has explicit solution

$$
\mathcal{F}[v](t_1,\omega)=\mathcal{F}[v](t_2,\omega)\cdot e^{(t_2-t_1)\Psi(\omega)}
$$

• Apply the inverse Fourier transform

$$
v(t_1, \mathbf{x}) = \mathcal{F}^{-1}\left\{\mathcal{F}[v](t_2, \omega) \cdot e^{(t_2 - t_1)\Psi(\omega)}\right\}(\mathbf{x})
$$

Fourier Space Time-stepping (FST) method

$$
v^{n-1} = \mathsf{FFT}^{-1}[\mathsf{FFT}[v^n] \cdot e^{\Psi \Delta t}]
$$

European Call Option Results

- Option: European call $S = 1.0, K = 1.0, T = 0.2$
- Model: Kou jump-diffusion $\sigma = 0.2, \lambda = 0.2, p = 0.5, \eta_{-} = 3, \eta_{+} = 2, r = 0.0$
- Quoted Price: 0.0426761 Almendral and Oosterlee (2005)

American Put Option Results

- Option: American put $S = 90.0, K = 98.0, T = 0.25$
- Model: CGMY $C = 0.42$, $G = 4.37$, $M = 191.2$, $Y = 1.0102$, $r = 0.06$
- Quoted Price: 9.2254 Forsyth, Wan, and Wang (2006)

American Put Option Results with Infinite Activity

• Option: American put $S = 10.0, K = 10.0, T = 0.25$

• Model: CGMY $C = 1.0$, $G = 8.8$, $M = 9.2$, $Y = 1.8$, $r = 0.1$

Up-and-Out Barrier Call Option Results

- **.** Option: Up-and-Out Barrier Call $S = 100.0, K = 100.0, B = 110, T = 1.0$
- Model: Black-Scholes-Merton $\sigma = 0.15$, $r = 0.05$, $q = 0.02$
- Closed-Form Price: 0.2541963 Hull (2005)

¹ [Fourier Space Time-stepping method](#page-2-0)

- [Infinitesimal generator and characteristic exponent](#page-7-0)
- **•** [Method derivation](#page-9-0)
- **•** [Numerical results](#page-13-0)

² [Multi-asset options](#page-17-0)

- [Spread options](#page-21-0)
- **[Catastrophe Equity Put options](#page-26-0)**

[Regime switching](#page-31-0)

- [Option pricing](#page-33-0)
- **·** [Implied volatility surfaces](#page-40-0)

Multi-dimensional FST method

Pricing PIDE

$$
\begin{cases}\n(\partial_t + \mathcal{L}) v = 0, \\
v(T, x) = \varphi(\mathbf{S}(0) e^x)\n\end{cases}
$$

Multi-dimensional FST method

Pricing PIDE

$$
\begin{cases}\n(\partial_t + \mathcal{L}) v = 0, \\
v(T, x) = \varphi(\mathbf{S}(0) e^x)\n\end{cases}
$$

Multi-dimensional FST method

$$
\mathbf{v}^{n-1} = \mathsf{FFT}^{-1}[\mathsf{FFT}[\mathbf{v}^n] \cdot e^{\mathbf{\Psi} \Delta t}]
$$

Multi-dimensional FST method

Pricing PIDE

$$
\begin{cases}\n(\partial_t + \mathcal{L}) v = 0, \\
v(T, x) = \varphi(\mathbf{S}(0) e^x)\n\end{cases}
$$

Multi-dimensional FST method

$$
\mathbf{v}^{n-1} = \mathsf{FFT}^{-1}[\mathsf{FFT}[\mathbf{v}^n] \cdot e^{\mathbf{\Psi} \Delta t}]
$$

Can be applied to pricing of European, American and other exotic, path dependent options

Spread Option Pricing Components

• Payoff depends on difference of two stock prices

$$
\varphi(S_1(\mathcal{T}),S_2(\mathcal{T}))=\text{max}(\alpha S_2(\mathcal{T})-\beta S_1(\mathcal{T})-K,0)
$$

Spread Option Pricing Components

• Payoff depends on difference of two stock prices

$$
\varphi(S_1(T),S_2(T))=\mathsf{max}(\alpha S_2(T)-\beta S_1(T)-K,0)
$$

• Stock price process is a 2D Merton jump-diffusion process

$$
\frac{dS_i(t)}{S_i(t-)} = \mu_i dt + \sigma_i dW_i(t) + (J_i - 1) dN_i(t)
$$

Spread Option Pricing Components

• Payoff depends on difference of two stock prices

$$
\varphi(S_1(T),S_2(T))=\mathsf{max}(\alpha S_2(T)-\beta S_1(T)-K,0)
$$

• Stock price process is a 2D Merton jump-diffusion process

$$
\frac{dS_i(t)}{S_i(t-)} = \mu_i dt + \sigma_i dW_i(t) + (J_i - 1) dN_i(t)
$$

• Characteristic exponent is given by:

$$
\Psi(\omega_1, \omega_2) = i(\mu_1 - \frac{\sigma_1^2}{2})\omega_1 + i(\mu_2 - \frac{\sigma_2^2}{2})\omega_2 - \frac{\sigma_1^2 \omega_1^2}{2} - \rho \sigma_1 \sigma_2 \omega_1 \omega_2 - \frac{\sigma_2^2 \omega_2^2}{2} + \lambda_1 (e^{i\tilde{\mu}_1 \omega_1 - \tilde{\sigma}_1^2 \omega_2^2/2} - 1) + \lambda_2 (e^{i\tilde{\mu}_2 \omega_2 - \tilde{\sigma}_2^2 \omega_2^2/2} - 1)
$$

Spread Option Results

- Option: Spread call $S_1 = 96.0, S_2 = 100.0, K = 2.0, T = 1.0$
- Model: Merton jump-diffusion $\sigma_1 = 0.1, q_1 = 0.05, \lambda_1 = 0.25, \tilde{\mu_1} = -0.13, \tilde{\sigma}_1 = 0.37, \sigma_2 =$ 0.2, $q_2 = 0.05$, $\lambda_2 = 0.5$, $\tilde{\mu_2} = 0.11$, $\tilde{\sigma}_2 = 0.41$, $\rho = 0.5$, $r = 0.1$
- Kirk's Formula Price: 15.03001533

Spread Option Price Surface

[FST method](#page-2-0) [Multi-asset options](#page-17-0) [Regime switching](#page-31-0) [Conclusions](#page-42-0) [Spread options](#page-21-0) [CatEPut options](#page-26-0)

Catastrophe Equity Put (CatEPut) Payoff

 \bullet In the event of large (catastrophic) losses U, the insurer receives a put option on its own stock $\varphi(S(T), L(T)) = \mathbb{1}_{L(T)>U} (K - S(T))_+$

CatEPut Stock and Loss Processes

• Presence of losses drives the share value down, not an independent jump process

$$
S(t) = S(0) \exp \{-\alpha L(t) + \gamma t + \sigma W(t)\}
$$

$$
L(t) = \sum_{n=1}^{N(t)} l_i
$$

CatEPut Stock and Loss Processes

• Presence of losses drives the share value down, not an independent jump process

$$
S(t) = S(0) \exp \{-\alpha L(t) + \gamma t + \sigma W(t)\}
$$

$$
L(t) = \sum_{n=1}^{N(t)} l_i
$$

When losses are modeled as a Gamma r.v., characteristic exponent is

$$
\Psi(\omega_1,\omega_2) = i \gamma \omega_1 - \frac{1}{2} \sigma^2 \omega_1^2 + \lambda \left[\left(1 - i(-\alpha \omega_1 + \omega_2) \frac{\nu}{m} \right) \right)^{-\frac{m^2}{\nu}} - 1 \right]
$$

[FST method](#page-2-0) [Multi-asset options](#page-17-0) [Regime switching](#page-31-0) [Conclusions](#page-42-0) [Spread options](#page-21-0) [CatEPut options](#page-26-0)

European CatEPut Price Surface

[FST method](#page-2-0) [Multi-asset options](#page-17-0) [Regime switching](#page-31-0) [Conclusions](#page-42-0) [Spread options](#page-21-0) [CatEPut options](#page-26-0)

American CatEPut Price Surface

¹ [Fourier Space Time-stepping method](#page-2-0)

- [Infinitesimal generator and characteristic exponent](#page-7-0)
- **•** [Method derivation](#page-9-0)
- **•** [Numerical results](#page-13-0)

[Multi-asset options](#page-17-0)

- [Spread options](#page-21-0)
- [Catastrophe Equity Put options](#page-26-0)

³ [Regime switching](#page-31-0)

- [Option pricing](#page-33-0)
- • [Implied volatility surfaces](#page-40-0)

Why Regime Switching ?

- Capture long term implied volatility surfaces
- Model defaultable securities by associating one state as an absorbing, default state
- Model catastrophic losses which have moderate and extreme periods

Regime Switching Modeling Framework

• Let $\mathbb{K} := \{1, \ldots, K\}$ denote the possible hidden states of the world, driven by a continuous time Markov chain Z_t .

[FST method](#page-2-0) [Multi-asset options](#page-17-0) [Regime switching](#page-31-0) [Conclusions](#page-42-0) [Option pricing](#page-35-0) [Implied volatility surfaces](#page-40-0)

Regime Switching Modeling Framework

- Let $\mathbb{K} := \{1, \ldots, K\}$ denote the possible hidden states of the world, driven by a continuous time Markov chain Z_t .
- Within state k , log-stock follows Lévy model k

[FST method](#page-2-0) [Multi-asset options](#page-17-0) [Regime switching](#page-31-0) [Conclusions](#page-42-0) **[Option pricing](#page-33-0) [Implied volatility surfaces](#page-40-0)**

Regime Switching Modeling Framework

- Let $\mathbb{K} := \{1, \ldots, K\}$ denote the possible hidden states of the world, driven by a continuous time Markov chain Z_t .
- Within state k , log-stock follows Lévy model k

• The transition probability from state k at time t_1 to state l at time t_2 is given by

$$
P_{kl}^{t_1t_2} = \mathbb{Q}(Z_{t_2} = I | Z_{t_1} = k) = (\exp\{(t_2 - t_1)\mathbf{A}\})_{kl}
$$

where **A** is the Markov chain generator

FST Method with Regime Switching

Pricing PIDE

$$
\begin{cases}\n\left[\partial_t + \left(A_{kk} + \mathcal{L}^{(k)}\right)\right] \mathbf{v}(\mathbf{x}, k, t) + \sum_{j \neq k} A_{jk} \mathbf{v}(\mathbf{x}, j, t) = 0 \\
\mathbf{v}(\mathbf{x}, k, T) = \varphi(\mathbf{S}(0) e^{\mathbf{x}})\n\end{cases}
$$

FST Method with Regime Switching

Pricing PIDE

$$
\begin{cases}\n\left[\partial_t + \left(A_{kk} + \mathcal{L}^{(k)}\right)\right] \nu(\mathbf{x}, k, t) + \sum_{j \neq k} A_{jk} \nu(\mathbf{x}, j, t) = 0 \\
v(\mathbf{x}, k, T) = \varphi(\mathbf{S}(0) e^{\mathbf{x}})\n\end{cases}
$$

FST Method Extension

$$
v^{n-1} = \mathsf{FFT}^{-1}[\mathsf{FFT}[v^n] \cdot e^{\widetilde{\Psi} \, \Delta t}]
$$

where

$$
\widetilde{\Psi}(\omega)_{kl} = \left\{ \begin{array}{ll} A_{kk} + \Psi^{(k)}(\omega), & k = l \\ A_{kl}, & k \neq l \end{array} \right.
$$

• No time-stepping required for European options

American Put Option with 3 Regimes Results

- \bullet Option: American put $S = 100.0, K = 100.0, T = 1.0$
- Model: Merton jump-diffusion $\sigma = 0.15$, $\tilde{\mu} = -0.5$, $\tilde{\sigma} = 0.45$, $r = 0.05, q = 0.02, \lambda \in [0.3, 0.5, 0.7], p = [0.2, 0.3, 0.5],$ $A = [-0.8, 0.6, 0.2, 0.2, -1, 0.8, 0.1, 0.3, -0.4]$

American Put Option with 3 Regimes Exercise Boundary

Implied Volatility with Lévy Processes

Lévy processes unable to capture the smile of long term options

Implied Vol. with Lévy Processes and Regime Switching

The feature can be captured using two state regime switching Lévy model

1 [Fourier Space Time-stepping method](#page-2-0)

- [Infinitesimal generator and characteristic exponent](#page-7-0)
- **•** [Method derivation](#page-9-0)
- **•** [Numerical results](#page-13-0)

[Multi-asset options](#page-17-0)

- [Spread options](#page-21-0)
- [Catastrophe Equity Put options](#page-26-0)

³ [Regime switching](#page-31-0)

- [Option pricing](#page-33-0)
- • [Implied volatility surfaces](#page-40-0)

Fourier Space Time-stepping Method Summary

- Stable and robust, even for options with discontinuous payoffs
- Easily extendable to various stochastic processes and no loss of performance for infinite activity processes
- Can be applied to multi-dimensional and regime-switching problems in a natural manner
- **Computationally efficient**
	- Computational cost is $O(MNlogN)$ while the error is $O(\Delta x^2 + \Delta t^2)$
	- European options priced in a single time-step
	- Bermudan style options do not require time-stepping between monitoring dates

Future Work

- Exotic, multi-asset options
- Mean reverting processes in energy markets
- Stochastic volatility processes
- HJB equations arising from optimal control problems
	- **•** Efficient policy iteration algorithm
	- Optimal control with jump-diffusions

Thank You!

http://128.100.73.155/fst/

