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Commodity prices

Exhibit high volatilities and spikes and prices

Tend to revert to long run equilibrium prices

The Model

dX(t) = (Θ(t) − κX(t)) dt + dW(t) + dJ(t)

S(t) = S(0) exp{BX(t)}

Multi-factor, mean-reverting model with jumps

Generalizes a number of well-known models, such as Gibson and Schwartz
(1990), Clewlow and Strickland (2000), Hikspoors and Jaimungal (2007)

Mean-reversion rate is time dependent - allows to incorporate seasonality
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Numerical Methods for Option Pricing

Monte Carlo methods

Tree methods

Finite difference methods
Alternating Direction Implicit-FFT - Andersen and Andreasen (2000)
Implicit-Explicit (IMEX) - Cont and Tankov (2004)
IMEX Runge-Kutta - Briani, Natalini, and Russo (2004)
Fixed Point Iteration - d’Halluin, Forsyth, and Vetzal (2005)

Quadrature methods
Reiner (2001)
QUAD - Andricopoulos, Widdicks, Duck, and Newton (2003)
Q-FFT - O‘Sullivan (2005)

Transform-based methods
Carr and Madan (1999)
Raible (2000)
Lewis (2001)
Lord, Fang, Bervoets, and Oosterlee (2008)
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Fourier Space Time-stepping Framework Overview

The Approach

Consider the PIDE for the option price

Transform the PIDE into ODE in Fourier space

Solve the resulting ODE analytically

Utilize FFT to efficiently switch between real and Fourier spaces

A framework for numerical pricing of financial derivatives

Fast and precise pricing of a wide range of European and path-dependent,
single- and multi-asset, vanilla and exotic derivatives

Efficient handling of path-independent and discretely monitored derivatives

Generic handling of different spot-price models and option payoffs
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Pricing Framework in Real Space

Option price at time t is the discounted expected future payoff

V (t,S(t)) = e−r(T−t)
E
[
ϕ(S(T ))

]

The discount-adjusted and log-transformed price process
v(t,X(t)) , er(T−t)V (t,S(0)eX(t)) satisfies a PIDE

{
(∂t + L(t, x) − κx′∂x) v(t, x) = 0 ,
v(T , x) = ϕ(S(0) eBx)

where L acts on twice-differentiable functions g(x) as follows:

L(t, x)g(x) =
(
Θ(t)′∂x + 1

2 ∂′
xΣ∂x

)
g(x) +

∫Rn

(g(x+y)−g(x))ν(dy)
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Fourier Transform

A function in the space domain g(x) can be transformed to a function in the
frequency domain ĝ(ω), where ω is given in radians per second, and
vice-versa using the continuous Fourier transform

F [g ](ω) ,

∫ ∞

−∞

g(x)e−iω
′xdx

F−1 [ĝ ](x) ,
1

2π

∫ ∞

−∞

ĝ(ω)e iω
′xdω
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Continuous Fourier transform is a linear operator that maps spatial
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∫ (
e iω

′z − 1
)

ν(dz)

Introduce a new coordinate system via frequency scaling

ṽ(t, ω) = v̂(t, eκ
′(t−t⋆)

ω)

The PDE reduces to an ODE in time parameterized by ω

{ (
∂t + L̃(t, ω) + κ

)
ṽ(t, ω) = 0 ,

ṽ(T , ω) = Φ̃(T , ω)
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Pricing Framework in Fourier Space (cont.)

Given the value of ṽ (t, ω) at time t2 ≤ T , the constant coefficient ODE is
easily solved to find the value at time t1 < t2:

ṽ(t1, ω) = ṽ(t2, ω) · eΨ̃κ(t1,ω;t2) ,

where the frequency space propagator is

Ψ̃κ(t1, ω; t2) =

∫ t2

t1

L̃(s, ω) ds + Trκ (t2 − t1)
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t1

L̃(s, ω) ds + Trκ (t2 − t1)
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Pricing Framework in Fourier Space (cont.)

The scaled option prices in frequency space can be obtained from the scaled
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F [g ](t, eκ
′(t2−t1)

ω) = F [ğ ](t, ω) · e−Trκ (t2−t1) ,

where ğ(t, x) , g(t, x e−κ
′(t2−t1))

The final solution becomes

v(t1, x) = F−1
[
F [v̆ ](t2, ω) · eΨ̂(t1,ω;t2)

]
(x)

FST Method for Propagating Option Prices

vm−1 = FFT−1
[
FFT [v̆m] · eΨ̂(tm−1,ω;tm)

]
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Fourier Space Time-stepping Numerical Method

European options

v0 = FFT−1
[
FFT [v̆1] · e

Ψ̂(t,ω;T )
]
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,
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{
v⋆
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}
,

where v⋆
m−1 represents the holding value of the option

Barrier options

vm−1 = FFT−1
[
FFT [v̆m] · eΨ̂(tm−1,ω;tm)

]
· 1{x<B} + R · 1{x≥B}

Exotic options, such as swings, can also be handled
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Discrete Barrier Option Results

N M Value Change Convergence Time (sec.)

2048 252 2.75818698 0.048
4096 252 2.77495289 0.0167659 0.099
8192 252 2.77164607 0.0033068 2.3420 0.210
16384 252 2.77315499 0.0015089 1.1319 0.523
32768 252 2.77395701 0.0008020 0.9118 0.974

Option: Down-and-out barrier put S = 100, K = 105, T = 1, B = 90, R = 3
with daily monitoring

Model: Merton jump-diffusion with mean reversion
σ = 0.2, λ = 1.0, µ̃ = −0.1, σ̃ = 0.25, θ = 90.0, κ = 0.75, r = 0.05

Monte Carlo: 2.77533300 – 95% CI width of 0.00323116 @ 114 sec.
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Theta – ∂tv(t, x)

Obtained directly from the pricing ODE

∂t ṽ(t, ω) = −
(
L̃(t, ω) + κ

)
ṽ(t, ω)

The discrete method for computing Theta is then given by

Θm−1 = FFT−1
[
−

(
L̂(t, ω) + κ

)
· v̂m−1

]
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Computation of Greeks - Model Parameters

In Fourier space, the sensitivity satisfies an ODE with source term

∂⋆

{(
∂t + L̃κ

)
ṽ (t, ω)

}
=

(
∂t + L̃κ

)
∂⋆ṽ(t, ω) + ∂⋆L̃κ · ṽ (t, ω) = 0
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Greeks Computation Errors
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Dynamic Hedging

Hedging portfolio for the option V consists of B units of cash, e units of the
underlying asset S and N hedging instruments ~I with weights ~φ

Π = ~φ ·~I (t,S(t)) + eS(t) + B − V (t,S(t))
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Can also hedge against small movements in interest-rates, volatility, etc.

∂⋆Π = ~φ · ∂⋆
~I (t,S(t)) − ∂⋆V (t,S(t)) = 0

What about large movements?
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Model FST Greeks Hedging

Static Hedging - Minimize Portfolio Variance

Minimize portfolio price variance under expected asset price movement,
Kennedy, Forsyth, Vetzal (2009):

arg min
en,~φn

ξ Etn

[
~φn · ∆~In + en∆Sn − ∆Vn

]2

+ (1 − ξ)Υn .

where Υn is the transaction cost to rebalance the portfolio:

Υn =
N∑

k=1

[
~αk(~φk,n − ~φk,n−1)~Ik,n

]2

+
[
β(en − en−1)Sn

]2

,
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,

Since the objective function is quadratic, the optimality requires

∂F

∂φk,n

= ξ Etn

[(
~φ · ∆~I + e∆S − ∆V

)(
2∆Ik

)]
+ (1 − ξ) ∂φk,n

Υn = 0

∂F

∂en

= ξ Etn

[(
~φ · ∆~I + e∆S − ∆V

)(
2∆S

)]
+ (1 − ξ) ∂en

Υn = 0
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Minimize portfolio price and Greeks variance under expected asset price
movement

arg min
en,~φn

ξ
∑

D

wD Etn

[
~φn · ∆(D~In) + en∆(DSn) − ∆(DVn)

]2

+ (1 − ξ)Υn
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Since the objective function is quadratic, the optimality requires

∂F

∂φk,n

= ξ
∑

D

wD Etn

[(
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D

wD Etn

[(
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)(
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Loss Distribution and VaR - Constant Volatility
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FST Framework Summary

The Approach

Consider the PIDE for the option price

Transform the PIDE into ODE in Fourier space

Solve the resulting ODE analytically

Utilize FFT to efficiently switch between real and Fourier spaces
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The Approach

Consider the PIDE for the option price

Transform the PIDE into ODE in Fourier space

Solve the resulting ODE analytically

Utilize FFT to efficiently switch between real and Fourier spaces

Independent-increment, mean-reverting and interest-rate Lévy models are
handled generically

Option values are obtained for a range of spot prices - readily price
path-dependent options

Two FFTs per time-step are required; no time-stepping for European options
or between monitoring dates of discretely monitored options

One extra FFT required to compute each Greek

Second order convergence in space and second order convergence in time for
American options with penalty method
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Thank You!
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