Pricing and Hedging of Commodity Derivatives using the Fast Fourier Transform

Vladimir Surkov vladimir.surkov@utoronto.ca

Department of Statistical and Actuarial Sciences, University of Western Ontario The Fields Institute, University of Toronto

December 9, 2009

- 1 Generalized Model for Commodity Spot Prices
- Pourier Space Time-stepping framework
- 3 Computing Option Greeks
- 4 Dynamic and Static Hedging

- 1 Generalized Model for Commodity Spot Prices
- 2 Fourier Space Time-stepping framework
- Computing Option Greeks
- 4 Dynamic and Static Hedging

WTI Crude Oil and Henry Hub Gas

Great Britain System Sell Prices

Generalized Model for Commodity Spot Prices

Commodity prices

- Exhibit high volatilities and spikes and prices
- Tend to revert to long run equilibrium prices

Generalized Model for Commodity Spot Prices

Commodity prices

- Exhibit high volatilities and spikes and prices
- Tend to revert to long run equilibrium prices

The Model

$$d\mathbf{X}(t) = (\mathbf{\Theta}(t) - \kappa \mathbf{X}(t)) dt + d\mathbf{W}(t) + d\mathbf{J}(t)$$
$$\mathbf{S}(t) = \mathbf{S}(0) \exp{\{\mathbf{B}\mathbf{X}(t)\}}$$

Generalized Model for Commodity Spot Prices

Commodity prices

- Exhibit high volatilities and spikes and prices
- Tend to revert to long run equilibrium prices

The Model

$$d\mathbf{X}(t) = (\mathbf{\Theta}(t) - \kappa \mathbf{X}(t)) dt + d\mathbf{W}(t) + d\mathbf{J}(t)$$
$$\mathbf{S}(t) = \mathbf{S}(0) \exp{\{\mathbf{B}\mathbf{X}(t)\}}$$

- Multi-factor, mean-reverting model with jumps
- Generalizes a number of well-known models, such as Gibson and Schwartz (1990), Clewlow and Strickland (2000), Hikspoors and Jaimungal (2007)
- Mean-reversion rate is time dependent allows to incorporate seasonality

One-Factor Mean-Reverting Process with Jumps

Two-Factor MR Process with Different Decay Rates

One-Factor MR Processes with Co-dependent Jumps

Numerical Methods for Option Pricing

- Monte Carlo methods
- Tree methods
- Finite difference methods
 - Alternating Direction Implicit-FFT Andersen and Andreasen (2000)
 - Implicit-Explicit (IMEX) Cont and Tankov (2004)
 - IMEX Runge-Kutta Briani, Natalini, and Russo (2004)
 - Fixed Point Iteration d'Halluin, Forsyth, and Vetzal (2005)
- Quadrature methods
 - Reiner (2001)
 - QUAD Andricopoulos, Widdicks, Duck, and Newton (2003)
 - Q-FFT O'Sullivan (2005)
- Transform-based methods
 - Carr and Madan (1999)
 - Raible (2000)
 - Lewis (2001)
 - Lord, Fang, Bervoets, and Oosterlee (2008)

- Generalized Model for Commodity Spot Prices
- Pourier Space Time-stepping framework
- Computing Option Greeks
- 4 Dynamic and Static Hedging

Fourier Space Time-stepping Framework Overview

The Approach

- Consider the PIDE for the option price
- Transform the PIDE into ODE in Fourier space
- Solve the resulting ODE analytically
- Utilize FFT to efficiently switch between real and Fourier spaces

Fourier Space Time-stepping Framework Overview

The Approach

- Consider the PIDE for the option price
- Transform the PIDE into ODE in Fourier space
- Solve the resulting ODE analytically
- Utilize FFT to efficiently switch between real and Fourier spaces

A framework for numerical pricing of financial derivatives

- Fast and precise pricing of a wide range of European and path-dependent, single- and multi-asset, vanilla and exotic derivatives
- Efficient handling of path-independent and discretely monitored derivatives
- Generic handling of different spot-price models and option payoffs

Pricing Framework in Real Space

Option price at time t is the discounted expected future payoff

$$V(t, \mathbf{S}(t)) = e^{-r(T-t)} \mathbb{E}[\varphi(\mathbf{S}(T))]$$

Pricing Framework in Real Space

Option price at time t is the discounted expected future payoff

$$V(t, \mathbf{S}(t)) = e^{-r(T-t)} \mathbb{E}[\varphi(\mathbf{S}(T))]$$

• The discount-adjusted and log-transformed price process $v(t, \mathbf{X}(t)) \triangleq e^{r(T-t)}V(t, \mathbf{S}(0)e^{\mathbf{X}(t)})$ satisfies a PIDE

$$\begin{cases} (\partial_t + \mathcal{L}(t, \mathbf{x}) - \kappa \mathbf{x}' \partial_{\mathbf{x}}) \, v(t, \mathbf{x}) &= 0, \\ v(T, \mathbf{x}) &= \varphi(\mathbf{S}(0) \, e^{\mathbf{B}\mathbf{x}}) \end{cases}$$

where \mathcal{L} acts on twice-differentiable functions $g(\mathbf{x})$ as follows:

$$\mathcal{L}(t, \mathbf{x})g(\mathbf{x}) = \left(\mathbf{\Theta}(t)'\partial_{\mathbf{x}} + \frac{1}{2}\,\partial_{\mathbf{x}}'\mathbf{\Sigma}\partial_{\mathbf{x}}\right)g(\mathbf{x}) + \int_{\mathbb{R}^n} \left(g(\mathbf{x} + \mathbf{y}) - g(\mathbf{x})\right)\nu(d\mathbf{y})$$

Fourier Transform

• A function in the space domain $g(\mathbf{x})$ can be transformed to a function in the frequency domain $\hat{g}(\omega)$, where ω is given in radians per second, and vice-versa using the continuous Fourier transform

$$\mathcal{F}[g](\omega) \triangleq \int_{-\infty}^{\infty} g(\mathbf{x}) e^{-i\omega'\mathbf{x}} d\mathbf{x}$$
 $\mathcal{F}^{-1}[\hat{g}](\mathbf{x}) \triangleq \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{g}(\omega) e^{i\omega'\mathbf{x}} d\omega$

Fourier Transform

• A function in the space domain $g(\mathbf{x})$ can be transformed to a function in the frequency domain $\hat{g}(\omega)$, where ω is given in radians per second, and vice-versa using the continuous Fourier transform

$$\mathcal{F}[g](\omega) \triangleq \int_{-\infty}^{\infty} g(\mathbf{x}) e^{-i\omega' \mathbf{x}} d\mathbf{x}$$
 $\mathcal{F}^{-1}[\hat{g}](\mathbf{x}) \triangleq \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{g}(\omega) e^{i\omega' \mathbf{x}} d\omega$

• Continuous Fourier transform is a linear operator that maps spatial derivatives ∂_x into multiplications in the frequency domain

$$\mathcal{F}\left[\partial_{\mathbf{x}}^{n}g\right](\omega) = i\omega\,\mathcal{F}\left[\partial_{\mathbf{x}}^{n-1}g\right](\omega) = \dots = (i\omega)^{n}\mathcal{F}\left[g\right](\omega)$$

 Applying the Fourier transform to the pricing PDE we obtain a PDE in frequency space

$$\left\{ \begin{array}{ll} \left(\partial_t + \hat{\mathcal{L}}(t,\omega) + \kappa + \kappa \omega \partial_\omega\right) \, \hat{v}(t,\omega) &= 0 \,, \\ \hat{v}(T,\omega) &= \hat{\Phi}(T,\omega) \end{array} \right.$$

 Applying the Fourier transform to the pricing PDE we obtain a PDE in frequency space

$$\left\{ \begin{array}{ll} \left(\partial_t + \hat{\mathcal{L}}(t,\omega) + \kappa + \kappa \omega \partial_\omega\right) \, \hat{v}(t,\omega) &= 0 \,, \\ \hat{v}(T,\omega) &= \hat{\Phi}(T,\omega) \end{array} \right.$$

ullet The Fourier transform of the operator $\mathcal{L}(t,\mathbf{x})$ can be computed analytically

$$\hat{\mathcal{L}}(t, \omega) = i\omega \mathbf{\Theta}(t) - \frac{1}{2}\omega' \mathbf{\Sigma}\omega + \int \left(e^{i\omega' \mathbf{z}} - 1\right) \nu(d\mathbf{z})$$

 Applying the Fourier transform to the pricing PDE we obtain a PDE in frequency space

$$\left\{ \begin{array}{ll} \left(\partial_t + \hat{\mathcal{L}}(t,\omega) + \kappa + \kappa \omega \partial_\omega\right) \, \hat{v}(t,\omega) &= 0 \,, \\ \hat{v}(T,\omega) &= \hat{\Phi}(T,\omega) \end{array} \right.$$

ullet The Fourier transform of the operator $\mathcal{L}(t,\mathbf{x})$ can be computed analytically

$$\hat{\mathcal{L}}(t, oldsymbol{\omega}) = i oldsymbol{\omega} oldsymbol{\Theta}(t) - rac{1}{2} oldsymbol{\omega}' oldsymbol{\Sigma} oldsymbol{\omega} + \int \left(\mathrm{e}^{i oldsymbol{\omega}' \mathbf{z}} - 1
ight)
u(d\mathbf{z})$$

• Introduce a new coordinate system via frequency scaling

$$\tilde{v}(t,\omega) = \hat{v}(t,e^{\kappa'(t-t_{\star})}\omega)$$

 Applying the Fourier transform to the pricing PDE we obtain a PDE in frequency space

$$\left\{ \begin{array}{ll} \left(\partial_t + \hat{\mathcal{L}}(t,\omega) + \kappa + \kappa \omega \partial_\omega\right) \, \hat{v}(t,\omega) &= 0 \,, \\ \hat{v}(T,\omega) &= \hat{\Phi}(T,\omega) \end{array} \right.$$

ullet The Fourier transform of the operator $\mathcal{L}(t,\mathbf{x})$ can be computed analytically

$$\hat{\mathcal{L}}(t, oldsymbol{\omega}) = i oldsymbol{\omega} oldsymbol{\Theta}(t) - rac{1}{2} oldsymbol{\omega}' oldsymbol{\Sigma} oldsymbol{\omega} + \int \left(\mathrm{e}^{i oldsymbol{\omega}' \mathbf{z}} - 1
ight)
u(d\mathbf{z})$$

• Introduce a new coordinate system via frequency scaling

$$\tilde{v}(t,\omega) = \hat{v}(t,e^{\kappa'(t-t_{\star})}\omega)$$

ullet The PDE reduces to an ODE in time parameterized by ω

$$\left\{ egin{array}{ll} \left(\partial_t + ilde{\mathcal{L}}(t,\omega) + \kappa
ight) \ ilde{v}(t,\omega) &= 0 \,, \ ilde{v}(T,\omega) &= ilde{\Phi}(T,\omega) \end{array}
ight.$$

• Given the value of $\tilde{v}(t,\omega)$ at time $t_2 \leq T$, the constant coefficient ODE is easily solved to find the value at time $t_1 < t_2$:

$$ilde{v}(t_1, \omega) = ilde{v}(t_2, \omega) \cdot \mathrm{e}^{ ilde{\Psi}_{\kappa}(t_1, \omega; t_2)}\,,$$

where the frequency space propagator is

$$ilde{\Psi}_{m{\kappa}}(t_1,m{\omega};t_2) = \int_{t_1}^{t_2} ilde{\mathcal{L}}(s,m{\omega}) \, ds + \mathrm{Tr} \, m{\kappa} \, (t_2-t_1)$$

• Given the value of $\tilde{v}(t,\omega)$ at time $t_2 \leq T$, the constant coefficient ODE is easily solved to find the value at time $t_1 < t_2$:

$$ilde{v}(t_1, \omega) = ilde{v}(t_2, \omega) \cdot \mathrm{e}^{ ilde{\Psi}_{\kappa}(t_1, \omega; t_2)}\,,$$

where the frequency space propagator is

$$ilde{\Psi}_{m{\kappa}}(t_1,m{\omega};t_2) = \int_{t_1}^{t_2} ilde{\mathcal{L}}(s,m{\omega}) \, ds + \operatorname{Tr} m{\kappa} \, (t_2-t_1)$$

• The solution in terms of original coordinates (with $t_{\star}=t_{1}$) is given by

$$\hat{v}(t_1, \boldsymbol{\omega}) = \hat{v}(t_2, e^{\boldsymbol{\kappa}'(t_2 - t_1)} \, \boldsymbol{\omega}) \cdot e^{\hat{\Psi}_{\boldsymbol{\kappa}}(t_1, \boldsymbol{\omega}; t_2)}$$

and the frequency space propagator is

$$\hat{\Psi}_{\kappa}(t_1, \omega; t_2) = \int_{t_1}^{t_2} \hat{\mathcal{L}}(s, e^{\kappa'(s-t_1)} \omega) ds + \operatorname{Tr} \kappa (t_2 - t_1)$$

 The scaled option prices in frequency space can be obtained from the scaled option prices in real space

$$\mathcal{F}[g](t, \mathrm{e}^{\kappa'(t_2-t_1)}\,\omega) = \mathcal{F}\left[\breve{g}\right]\!(t, \omega)\,\cdot\,\mathrm{e}^{-\mathrm{Tr}\,\kappa\,(t_2-t_1)}\,,$$
 where $\breve{g}(t, \mathbf{x}) \triangleq g(t, \mathbf{x}\,\mathrm{e}^{-\kappa'(t_2-t_1)})$

 The scaled option prices in frequency space can be obtained from the scaled option prices in real space

$$\mathcal{F}[g](t,e^{\kappa'(t_2-t_1)}\omega) = \mathcal{F}[reve{g}](t,\omega)\cdot e^{-\mathrm{Tr}\,\kappa\,(t_2-t_1)},$$
 where $reve{g}(t,\mathbf{x}) riangleq g(t,\mathbf{x}\,e^{-\kappa'(t_2-t_1)})$

The final solution becomes

$$v(t_1, \mathsf{x}) = \mathcal{F}^{-1}\left[\mathcal{F}\left[reve{\mathsf{v}}
ight](t_2, oldsymbol{\omega}) \,\cdot\, \mathsf{e}^{\hat{\Psi}(t_1, oldsymbol{\omega}; t_2)}
ight]\!\left(\mathsf{x}
ight)$$

 The scaled option prices in frequency space can be obtained from the scaled option prices in real space

$$\mathcal{F}[g](t, e^{\kappa'(t_2-t_1)}\omega) = \mathcal{F}[reve{g}](t, \omega) \cdot e^{-\operatorname{Tr}\kappa(t_2-t_1)},$$
 where $reve{g}(t, \mathbf{x}) riangleq g(t, \mathbf{x}\,e^{-\kappa'(t_2-t_1)})$

The final solution becomes

$$v(t_1, \mathbf{x}) = \mathcal{F}^{-1}\left[\mathcal{F}\left[reve{v}
ight](t_2, \omega) \,\cdot\, e^{\hat{\Psi}(t_1, \omega; t_2)}
ight](\mathbf{x})$$

FST Method for Propagating Option Prices

$$\mathbf{v}_{m-1} = \mathsf{FFT}^{-1} \left[\mathsf{FFT} \left[reve{\mathbf{v}}_m
ight] \cdot \mathrm{e}^{\hat{\Psi}(t_{m-1}, oldsymbol{\omega}; t_m)}
ight]$$

European options

$$\mathbf{v}_0 = \mathsf{FFT}^{-1}\left[\mathsf{FFT}\left[oldve{\mathbf{v}}_1
ight] \cdot e^{\hat{\Psi}(t,oldsymbol{\omega};T)}
ight]$$

European options

$$\mathbf{v}_0 = \mathsf{FFT}^{-1}\left[\mathsf{FFT}\left[reve{\mathbf{v}}_1
ight] \cdot e^{\hat{\Psi}(t, oldsymbol{\omega}; T)}
ight]$$

Bermudan/American options

$$\begin{split} \mathbf{v}_{m-1}^{\star} &= \mathsf{FFT}^{-1} \left[\mathsf{FFT} \left[\breve{\mathbf{v}}_m \right] \cdot \mathrm{e}^{\hat{\Psi} \left(t_{m-1}, \boldsymbol{\omega}; t_m \right)} \right] \,, \\ \mathbf{v}_{m-1} &= \max \left\{ \mathbf{v}_{m-1}^{\star}, \mathbf{v}_M \right\} \,, \end{split}$$

where \mathbf{v}_{m-1}^{\star} represents the holding value of the option

European options

$$\mathbf{v}_0 = \mathsf{FFT}^{-1} \left[\mathsf{FFT} \left[reve{\mathbf{v}}_1
ight] \cdot e^{\hat{\Psi}(t, oldsymbol{\omega}; T)}
ight]$$

Bermudan/American options

$$\begin{split} \mathbf{v}_{m-1}^{\star} &= \mathsf{FFT}^{-1} \left[\mathsf{FFT} \left[\breve{\mathbf{v}}_m \right] \cdot \mathrm{e}^{\hat{\Psi} \left(t_{m-1}, \boldsymbol{\omega}; t_m \right)} \right] \,, \\ \mathbf{v}_{m-1} &= \max \left\{ \mathbf{v}_{m-1}^{\star}, \mathbf{v}_M \right\} \,, \end{split}$$

where \mathbf{v}_{m-1}^{\star} represents the holding value of the option

Barrier options

$$\mathbf{v}_{m-1} = \mathsf{FFT}^{-1}\left[\mathsf{FFT}\left[\breve{\mathbf{v}}_{m}\right] \cdot e^{\hat{\Psi}(t_{m-1}, \boldsymbol{\omega}; t_{m})}\right] \cdot \mathbb{1}_{\left\{\mathbf{x} < \mathbf{B}\right\}} + R \cdot \mathbb{1}_{\left\{\mathbf{x} \geq \mathbf{B}\right\}}$$

European options

$$\mathbf{v}_0 = \mathsf{FFT}^{-1} \left[\mathsf{FFT} \left[reve{\mathbf{v}}_1
ight] \cdot e^{\hat{\Psi}(t, oldsymbol{\omega}; T)}
ight]$$

Bermudan/American options

$$\begin{split} \mathbf{v}_{m-1}^{\star} &= \mathsf{FFT}^{-1} \left[\mathsf{FFT} \left[\breve{\mathbf{v}}_m \right] \cdot \mathrm{e}^{\hat{\Psi} \left(t_{m-1}, \boldsymbol{\omega}; t_m \right)} \right] \,, \\ \mathbf{v}_{m-1} &= \max \left\{ \mathbf{v}_{m-1}^{\star}, \mathbf{v}_M \right\} \,, \end{split}$$

where \mathbf{v}_{m-1}^{\star} represents the holding value of the option

Barrier options

$$\mathbf{v}_{m-1} = \mathsf{FFT}^{-1} \left[\mathsf{FFT} \left[\widecheck{\mathbf{v}}_m \right] \cdot e^{\widehat{\Psi}(t_{m-1}, \boldsymbol{\omega}; t_m)} \right] \cdot \mathbb{1}_{\left\{ \mathbf{x} < \mathbf{B} \right\}} + R \cdot \mathbb{1}_{\left\{ \mathbf{x} \ge \mathbf{B} \right\}}$$

Exotic options, such as swings, can also be handled

Discrete Barrier Option Results

N	М	Value	Change	Convergence	Time (sec.)
2048	252	2.75818698			0.048
4096	252	2.77495289	0.0167659		0.099
8192	252	2.77164607	0.0033068	2.3420	0.210
16384	252	2.77315499	0.0015089	1.1319	0.523
32768	252	2.77395701	0.0008020	0.9118	0.974

- Option: Down-and-out barrier put S = 100, K = 105, T = 1, B = 90, R = 3 with daily monitoring
- *Model:* Merton jump-diffusion with mean reversion $\sigma=0.2, \lambda=1.0, \widetilde{\mu}=-0.1, \widetilde{\sigma}=0.25, \theta=90.0, \kappa=0.75, r=0.05$
- Monte Carlo: 2.77533300 95% CI width of 0.00323116 @ 114 sec.

- Generalized Model for Commodity Spot Prices
- 2 Fourier Space Time-stepping framework
- 3 Computing Option Greeks
- 4 Dynamic and Static Hedging

Computation of Greeks - State Variables

$$\mathsf{Delta} - \partial_{\mathcal{S}_k} v(t, \mathbf{x}) = \partial_{\mathbf{x}_k} v(t, \mathbf{x}) / \mathbf{S}_k(t)$$

Computation of Greeks - State Variables

$$Delta - \partial_{S_k} v(t, \mathbf{x}) = \partial_{\mathbf{x}_k} v(t, \mathbf{x}) / \mathbf{S}_k(t)$$

Differentiation in real space computed via scaling in Fourier space

$$\partial_{\mathbf{x}_k} v(t, \mathbf{x}) = \mathcal{F}^{-1} [i\omega_k \cdot \hat{v}(t, \omega)](\mathbf{x}).$$

$$Delta - \partial_{S_k} v(t, \mathbf{x}) = \partial_{\mathbf{x}_k} v(t, \mathbf{x}) / \mathbf{S}_k(t)$$

• Differentiation in real space computed via scaling in Fourier space

$$\partial_{\mathbf{x}_k} v(t, \mathbf{x}) = \mathcal{F}^{-1} [i\omega_k \cdot \hat{v}(t, \omega)](\mathbf{x}).$$

• The discrete method for computing Deltas is then given by

$$\mathbf{\Delta}_{k,m-1} = \mathsf{FFT}^{-1} \left[i \boldsymbol{\omega}_k \cdot \hat{\mathbf{v}}_{m-1} \right]$$

$$Delta - \partial_{S_k} v(t, \mathbf{x}) = \partial_{\mathbf{x}_k} v(t, \mathbf{x}) / \mathbf{S}_k(t)$$

Differentiation in real space computed via scaling in Fourier space

$$\partial_{\mathbf{x}_k} v(t, \mathbf{x}) = \mathcal{F}^{-1} [i\omega_k \cdot \hat{v}(t, \omega)](\mathbf{x}).$$

• The discrete method for computing Deltas is then given by

$$\mathbf{\Delta}_{k,m-1} = \mathsf{FFT}^{-1} \left[i \boldsymbol{\omega}_k \cdot \hat{\mathbf{v}}_{m-1} \right]$$

• Higher order derivatives computed in similar manner

$$\mathsf{Delta} - \partial_{S_k} v(t, \mathbf{x}) = \partial_{\mathbf{x}_k} v(t, \mathbf{x}) / \mathbf{S}_k(t)$$

• Differentiation in real space computed via scaling in Fourier space

$$\partial_{\mathbf{x}_k} v(t, \mathbf{x}) = \mathcal{F}^{-1} [i\omega_k \cdot \hat{v}(t, \omega)](\mathbf{x}).$$

• The discrete method for computing Deltas is then given by

$$\mathbf{\Delta}_{k,m-1} = \mathsf{FFT}^{-1} \left[i \boldsymbol{\omega}_k \cdot \hat{\mathbf{v}}_{m-1} \right]$$

• Higher order derivatives computed in similar manner

Theta –
$$\partial_t v(t, \mathbf{x})$$

$$\mathsf{Delta} - \partial_{S_k} v(t, \mathbf{x}) = \partial_{\mathbf{x}_k} v(t, \mathbf{x}) / \mathbf{S}_k(t)$$

Differentiation in real space computed via scaling in Fourier space

$$\partial_{\mathbf{x}_k} v(t, \mathbf{x}) = \mathcal{F}^{-1} [i\omega_k \cdot \hat{v}(t, \omega)](\mathbf{x}).$$

• The discrete method for computing Deltas is then given by

$$\mathbf{\Delta}_{k,m-1} = \mathsf{FFT}^{-1} \left[i \boldsymbol{\omega}_k \cdot \hat{\mathbf{v}}_{m-1} \right]$$

• Higher order derivatives computed in similar manner

Theta – $\partial_t v(t, \mathbf{x})$

Obtained directly from the pricing ODE

$$\partial_t ilde{v}(t, oldsymbol{\omega}) = -ig(ilde{\mathcal{L}}(t, oldsymbol{\omega}) + oldsymbol{\kappa}ig) ilde{v}(t, oldsymbol{\omega})$$

 $Delta - \partial_{S_k} v(t, \mathbf{x}) = \partial_{\mathbf{x}_k} v(t, \mathbf{x}) / \mathbf{S}_k(t)$

• Differentiation in real space computed via scaling in Fourier space

$$\partial_{\mathbf{x}_k} v(t, \mathbf{x}) = \mathcal{F}^{-1} [i\omega_k \cdot \hat{v}(t, \omega)](\mathbf{x}).$$

• The discrete method for computing Deltas is then given by

$$\mathbf{\Delta}_{k,m-1} = \mathsf{FFT}^{-1} \left[i \boldsymbol{\omega}_k \cdot \hat{\mathbf{v}}_{m-1} \right]$$

Higher order derivatives computed in similar manner

Theta – $\partial_t v(t, \mathbf{x})$

• Obtained directly from the pricing ODE

$$\partial_t ilde{v}(t,\omega) = -(ilde{\mathcal{L}}(t,\omega) + \kappa) ilde{v}(t,\omega)$$

• The discrete method for computing Theta is then given by

$$oldsymbol{\Theta}_{m-1} = \mathsf{FFT}^{-1} \left[- ig(\hat{\mathcal{L}}(t, oldsymbol{\omega}) + oldsymbol{\kappa} ig) \cdot \hat{oldsymbol{\mathsf{v}}}_{m-1}
ight]$$

In Fourier space, the sensitivity satisfies an ODE with source term

$$\partial_\star \Big\{ ig(\partial_t + ilde{\mathcal{L}}_{m{\kappa}}ig) ilde{v}(t,m{\omega}) \Big\} = ig(\partial_t + ilde{\mathcal{L}}_{m{\kappa}}ig) \partial_\star ilde{v}(t,m{\omega}) + \partial_\star ilde{\mathcal{L}}_{m{\kappa}} \cdot ilde{v}(t,m{\omega}) = m{0}$$

In Fourier space, the sensitivity satisfies an ODE with source term

$$\partial_\star \Big\{ ig(\partial_t + ilde{\mathcal{L}}_{m{\kappa}}ig) ilde{v}(t,m{\omega}) \Big\} = ig(\partial_t + ilde{\mathcal{L}}_{m{\kappa}}ig) \partial_\star ilde{v}(t,m{\omega}) + \partial_\star ilde{\mathcal{L}}_{m{\kappa}} \cdot ilde{v}(t,m{\omega}) = m{0}$$

• The ODE can be solved explicitly

$$\partial_{\star} v(t, \mathbf{x}) = \mathcal{F}^{-1} \left[\partial_{\star} \hat{\Psi}_{\kappa}(t, e^{\kappa'(T-t)} \omega; T) \cdot \hat{v}(t, \omega) \right] (\mathbf{x})$$

In Fourier space, the sensitivity satisfies an ODE with source term

$$\partial_\star \Big\{ ig(\partial_t + ilde{\mathcal{L}}_{m{\kappa}}ig) ilde{v}(t,m{\omega}) \Big\} = ig(\partial_t + ilde{\mathcal{L}}_{m{\kappa}}ig) \partial_\star ilde{v}(t,m{\omega}) + \partial_\star ilde{\mathcal{L}}_{m{\kappa}} \cdot ilde{v}(t,m{\omega}) = m{0}$$

• The ODE can be solved explicitly

$$\partial_{\star} v(t, \mathbf{x}) = \mathcal{F}^{-1} \left[\partial_{\star} \hat{\Psi}_{\kappa}(t, e^{\kappa'(T-t)} \omega; T) \cdot \hat{v}(t, \omega) \right] (\mathbf{x})$$

• The discrete method for computing the sensitivity is then given by

$$abla_{\star,\,m-1} = \mathsf{FFT}^{-1} \left[\partial_{\star} \hat{\Psi}_{\kappa}(t_{m-1}, e^{\kappa' \Delta t_m} \, \omega; t_m) \cdot \hat{\mathbf{v}}_{m-1}
ight]$$

In Fourier space, the sensitivity satisfies an ODE with source term

$$\partial_\star \Big\{ ig(\partial_t + ilde{\mathcal{L}}_{m{\kappa}}ig) ilde{v}(t,m{\omega}) \Big\} = ig(\partial_t + ilde{\mathcal{L}}_{m{\kappa}}ig) \partial_\star ilde{v}(t,m{\omega}) + \partial_\star ilde{\mathcal{L}}_{m{\kappa}} \cdot ilde{v}(t,m{\omega}) = m{0}$$

• The ODE can be solved explicitly

$$\partial_{\star} v(t, \mathbf{x}) = \mathcal{F}^{-1} \left[\partial_{\star} \hat{\Psi}_{\kappa}(t, e^{\kappa'(T-t)} \omega; T) \cdot \hat{v}(t, \omega) \right] (\mathbf{x})$$

• The discrete method for computing the sensitivity is then given by

$$abla_{\star,\,m-1} = \mathsf{FFT}^{-1} \left[\partial_{\star} \hat{\Psi}_{\kappa}(t_{m-1}, \mathsf{e}^{\kappa' \Delta t_m} \, \omega; t_m) \cdot \hat{\mathbf{v}}_{m-1}
ight]$$

Higher order derivatives computed in similar manner

Greeks Computation Errors

- 1 Generalized Model for Commodity Spot Prices
- 2 Fourier Space Time-stepping framework
- Computing Option Greeks
- 4 Dynamic and Static Hedging

• Hedging portfolio for the option V consists of B units of cash, e units of the underlying asset S and N hedging instruments \vec{l} with weights $\vec{\phi}$

$$\Pi = ec{\phi} \cdot ec{I}(t, \mathbf{S}(t)) + e \mathbf{S}(t) + B - V(t, \mathbf{S}(t))$$

• Hedging portfolio for the option V consists of B units of cash, e units of the underlying asset S and N hedging instruments \vec{I} with weights $\vec{\phi}$

$$\Pi = ec{\phi} \cdot ec{I}(t, \mathbf{S}(t)) + e \mathbf{S}(t) + B - V(t, \mathbf{S}(t))$$

The portfolio's value remains unchanged under small movements in price

$$\partial_{S}\Pi = \vec{\phi} \cdot \partial_{S}\vec{I}(t, \mathbf{S}(t)) + e - \partial_{S}V(t, \mathbf{S}(t)) = 0$$

• Hedging portfolio for the option V consists of B units of cash, e units of the underlying asset S and N hedging instruments \vec{I} with weights $\vec{\phi}$

$$\Pi = ec{\phi} \cdot ec{I}(t, \mathbf{S}(t)) + e \mathbf{S}(t) + B - V(t, \mathbf{S}(t))$$

The portfolio's value remains unchanged under small movements in price

$$\partial_{S}\Pi = \vec{\phi} \cdot \partial_{S}\vec{I}(t, \mathbf{S}(t)) + e - \partial_{S}V(t, \mathbf{S}(t)) = 0$$

Can also hedge against small movements in interest-rates, volatility, etc.

$$\partial_{\star}\Pi = \vec{\phi} \cdot \partial_{\star}\vec{I}(t, \mathbf{S}(t)) - \partial_{\star}V(t, \mathbf{S}(t)) = 0$$

• Hedging portfolio for the option V consists of B units of cash, e units of the underlying asset S and N hedging instruments \vec{l} with weights $\vec{\phi}$

$$\Pi = ec{\phi} \cdot ec{I}(t, \mathbf{S}(t)) + e\mathbf{S}(t) + B - V(t, \mathbf{S}(t))$$

The portfolio's value remains unchanged under small movements in price

$$\partial_{S}\Pi = \vec{\phi} \cdot \partial_{S}\vec{I}(t, \mathbf{S}(t)) + e - \partial_{S}V(t, \mathbf{S}(t)) = 0$$

• Can also hedge against small movements in interest-rates, volatility, etc.

$$\partial_{\star}\Pi = \vec{\phi} \cdot \partial_{\star}\vec{I}(t, \mathbf{S}(t)) - \partial_{\star}V(t, \mathbf{S}(t)) = 0$$

• What about large movements?

Static Hedging - Minimize Portfolio Variance

 Minimize portfolio price variance under expected asset price movement, Kennedy, Forsyth, Vetzal (2009):

$$\mathop{\arg\min}_{e_n,\vec{\phi}_n} \, \xi \, \mathbb{E}_{t_n} \Big[\vec{\phi}_n \cdot \Delta \vec{I}_n + e_n \Delta S_n - \Delta V_n \Big]^2 + (1 - \xi) \Upsilon_n \, .$$

where Υ_n is the transaction cost to rebalance the portfolio:

$$\Upsilon_n = \sum_{k=1}^{N} \left[\vec{\alpha}_k (\vec{\phi}_{k,n} - \vec{\phi}_{k,n-1}) \vec{I}_{k,n} \right]^2 + \left[\beta (e_n - e_{n-1}) S_n \right]^2,$$

Static Hedging - Minimize Portfolio Variance

 Minimize portfolio price variance under expected asset price movement, Kennedy, Forsyth, Vetzal (2009):

$$\mathop{\arg\min}_{\mathbf{e}_n,\vec{\phi}_n} \, \xi \, \mathbb{E}_{t_n} \Big[\vec{\phi}_n \cdot \Delta \vec{I}_n + \mathbf{e}_n \Delta S_n - \Delta V_n \Big]^2 + (1 - \xi) \Upsilon_n \, .$$

where Υ_n is the transaction cost to rebalance the portfolio:

$$\Upsilon_{n} = \sum_{k=1}^{N} \left[\vec{\alpha}_{k} (\vec{\phi}_{k,n} - \vec{\phi}_{k,n-1}) \vec{I}_{k,n} \right]^{2} + \left[\beta (e_{n} - e_{n-1}) S_{n} \right]^{2},$$

Since the objective function is quadratic, the optimality requires

$$\begin{split} &\frac{\partial F}{\partial \phi_{k,n}} = \xi \, \mathbb{E}_{t_n} \Big[\big(\vec{\phi} \cdot \Delta \vec{I} + e \Delta S - \Delta V \big) \big(2 \Delta I_k \big) \Big] + (1 - \xi) \, \partial_{\phi_{k,n}} \Upsilon_n = 0 \\ &\frac{\partial F}{\partial e_n} = \xi \, \mathbb{E}_{t_n} \Big[\big(\vec{\phi} \cdot \Delta \vec{I} + e \Delta S - \Delta V \big) \big(2 \Delta S \big) \Big] + (1 - \xi) \, \partial_{e_n} \Upsilon_n = 0 \end{split}$$

Static Hedging - Minimize Portfolio Variance

Static Hedging - Minimize Price and Greeks Variance

 Minimize portfolio price and Greeks variance under expected asset price movement

$$\underset{e_n,\vec{\phi}_n}{\mathsf{arg\,min}} \ \xi \ \sum_{\mathcal{D}} w_{\mathcal{D}} \, \mathbb{E}_{t_n} \Big[\vec{\phi}_n \cdot \Delta(\mathcal{D} \vec{I}_n) + e_n \Delta(\mathcal{D} S_n) - \Delta(\mathcal{D} V_n) \Big]^2 + (1 - \xi) \Upsilon_n$$

Static Hedging - Minimize Price and Greeks Variance

 Minimize portfolio price and Greeks variance under expected asset price movement

$$\underset{e_n,\vec{\phi}_n}{\text{arg min}} \ \xi \ \sum_{\mathcal{D}} w_{\mathcal{D}} \, \mathbb{E}_{t_n} \Big[\vec{\phi}_n \cdot \Delta(\mathcal{D} \vec{I}_n) + e_n \Delta(\mathcal{D} S_n) - \Delta(\mathcal{D} V_n) \Big]^2 + (1 - \xi) \Upsilon_n$$

• Since the objective function is quadratic, the optimality requires

$$\begin{split} \frac{\partial F}{\partial \phi_{k,n}} &= \xi \sum_{\mathcal{D}} w_{\mathcal{D}} \, \mathbb{E}_{t_n} \Big[\big(\vec{\phi} \cdot \Delta(\mathcal{D}\vec{I}) + e \Delta(\mathcal{D}S) - \Delta(\mathcal{D}V) \big) \big(2\Delta(\mathcal{D}I_k) \big) \Big] \\ &+ (1 - \xi) \, \partial_{\phi_{k,n}} \Upsilon_n = 0 \\ \frac{\partial F}{\partial e_n} &= \xi \sum_{\mathcal{D}} w_{\mathcal{D}} \, \mathbb{E}_{t_n} \Big[\big(\vec{\phi} \cdot \Delta(\mathcal{D}\vec{I}) + e \Delta(\mathcal{D}S) - \Delta(\mathcal{D}V) \big) \big(2\Delta(\mathcal{D}S) \big) \Big] \\ &+ (1 - \xi) \, \partial_{e_n} \Upsilon_n = 0 \end{split}$$

Static Hedging - Minimize Price and Greeks Variance

Loss Distribution and VaR - Constant Volatility

Loss Distribution and VaR - Dynamic Volatility

- Consider the PIDE for the option price
- Transform the PIDE into ODE in Fourier space
- Solve the resulting ODE analytically
- Utilize FFT to efficiently switch between real and Fourier spaces

- Consider the PIDE for the option price
- Transform the PIDE into ODE in Fourier space
- Solve the resulting ODE analytically
- Utilize FFT to efficiently switch between real and Fourier spaces
- Independent-increment, mean-reverting and interest-rate Lévy models are handled generically

- Consider the PIDE for the option price
- Transform the PIDE into ODE in Fourier space
- Solve the resulting ODE analytically
- Utilize FFT to efficiently switch between real and Fourier spaces
- Independent-increment, mean-reverting and interest-rate Lévy models are handled generically
- Option values are obtained for a range of spot prices readily price path-dependent options

- Consider the PIDE for the option price
- Transform the PIDE into ODE in Fourier space
- Solve the resulting ODE analytically
- Utilize FFT to efficiently switch between real and Fourier spaces
- Independent-increment, mean-reverting and interest-rate Lévy models are handled generically
- Option values are obtained for a range of spot prices readily price path-dependent options
- Two FFTs per time-step are required; no time-stepping for European options or between monitoring dates of discretely monitored options

- Consider the PIDE for the option price
- Transform the PIDE into ODE in Fourier space
- Solve the resulting ODE analytically
- Utilize FFT to efficiently switch between real and Fourier spaces
- Independent-increment, mean-reverting and interest-rate Lévy models are handled generically
- Option values are obtained for a range of spot prices readily price path-dependent options
- Two FFTs per time-step are required; no time-stepping for European options or between monitoring dates of discretely monitored options
- One extra FFT required to compute each Greek

- Consider the PIDE for the option price
- Transform the PIDE into ODE in Fourier space
- Solve the resulting ODE analytically
- Utilize FFT to efficiently switch between real and Fourier spaces
- Independent-increment, mean-reverting and interest-rate Lévy models are handled generically
- Option values are obtained for a range of spot prices readily price path-dependent options
- Two FFTs per time-step are required; no time-stepping for European options or between monitoring dates of discretely monitored options
- One extra FFT required to compute each Greek
- Second order convergence in space and second order convergence in time for American options with penalty method

Thank You!

Jaimungal, S. and V. Surkov (2008).

A general Lévy-based framework for energy price modeling and derivative valuation via FFT.

Working paper, available at http://ssrn.com/abstract=1302887.

Surkov, V. (2009).

Efficient static hedging under generalized Lévy models.

Working paper.

More at http://ssrn.com/author=879101