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Appendix B Additional Results and Proofs

B.1 Excessive Entry for Equilibria With a Single Pooling Market

In Appendix A.3, we introduce a threshold v0
H , which guarantees that the price ranges of the

separate markets to which high and low types apply cannot intersect. Using this threshold,

we can show the following:

Proposition 8. Assume cH < vL − k and vH > v0
H . Then, as N → ∞, considering any

sequence of equilibria featuring a single pooling market, the workers’ market utility satisfies

(12).

Proof. Consider an arbitrary equilibrium with a single pooling market; that is, with a single

wage level at which both H- and L-type workers send some applications. Let p̄ denote the

wage and µ̄ denote the effective queue length in that market. Towards a contradiction,

suppose the equilibrium allocation satisfies

lim
N→∞

σuN,L + (1− σ)uN,H = σ(vL − cL) + (1− σ)(vH − cH)− k. (B.1)

Under this condition workers extract all the surplus. This means that in the limit there

is no welfare loss: all workers are thus hired with probability one and all firms hire with

probability one. By an analogous argument to the one used in the proof of Proposition 2

above, we can exclude the possibility that high types are hired at strictly higher wages than
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low types with a probability that is positive in the limit. It thus follows that, as N → ∞
the probability of trades taking place outside the pooling market tends to zero. In order for

firms to hire with probability one, the effective queue length in the pooling market µ̄ must

then tend to ∞ as N →∞.

Let ñ+1 indicate the first application which L-types send to the pooling market. We allow

ñ to be equal to 0, in which case the first application of L-types is sent to the pooling market.

When ñ ≥ 1 the terms of trade in the separate markets where only L-types send applications,

indexed by n ≤ ñ, are determined as in the equilibrium where types are observable (see the

argument in Appendix A.3). In equilibrium L-types must then prefer to send their (ñ+1)-th

application to the pooling market rather than to the L-type market where they send their

(ñ+ 1)-th application in the equilibrium with observable types (if this condition is violated,

posting wage p∗ñ+1,L constitutes a profitable deviation for firms). Hence, ñ must be such

that1

ψ(µ̄)(p̄− cL − u∗ñ,L) + u∗ñ,L ≥ ψ(µ∗ñ+1,L)(p∗ñ+1,L − cL − u∗ñ,L) + u∗ñ,L.

As argued above, for (B.1) to hold, µ̄ must tend to ∞ as N → ∞. Notice further that p̄ is

bounded above by the size of the gains from trade, i.e. σvL + (1− σ)vH − k. It then follows

that the left-hand side of the above inequality converges to u∗ñ,L as N →∞. In order for the

inequality to hold, given p∗ñ,L− cL− u∗ñ,L > 0, the effective queue length µ∗ñ,L must then also

diverge to ∞ as N →∞. Hence, the index ñ must tend to ∞ as N →∞: L-types send an

infinite number of applications to L-type markets, where only such types apply.

Next, we can show that in any equilibrium with a single pooling market H-types send

their first application to the pooling market. By the assumption vH > v0
H , there is a unique

intersection between the upper envelope of the L-types’ indifference curves associated with

the first ñ applications and ΠH . This intersection is with indifference curve IL(uñ−1,L, uñ).

Since the wage at this intersection is strictly greater than p̄ (ΠH lies to the right of Πγ̄ in

the (p, µ) space), there cannot be a market with a wage p < p̄ to which only H-types apply

and firms make non-negative profits. High types must therefore send their first application

to the pooling market, as claimed.

For the allocation to be incentive compatible and ensure H-types do not want to deviate

and apply to any L-type market, since µ̄ > µ∗ñ,L,2 the H-types’ outside option associated

with their first application must be greater than the L-types’ outside option associated with

their ñ-th application, that is: cH ≥ cL +u∗ñ−1,L. Since ñ tends to∞ as N →∞, the market

utility u∗ñ−1,L tends to vL − cL − k. Having assumed cH < vL − k, the term cL + u∗ñ−1,L thus

tends to a limit strictly greater than cH as N →∞. The above inequality is violated in the

1When ñ = 0, u∗0,L = 0.
2The effective queue length is increasing in the index of the low types’ applications.
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limit, which yields the contradiction.

B.2 Proof of Lemma 8

We show first that for wages p < p̄ the market utility condition and (6) imply that firms’

beliefs are γ(p) = 1. We begin by establishing the property for all p ∈ (p∗l,L, p̄). This is

achieved by showing that, under the assumptions made, the following condition holds, for

all n = 1, .., N − l:

ψ(µ)(p− cL) + (1− ψ(µ))u∗l−1,L = u∗l,L, (B.2)

ψ(µ)(p− cH) + (1− ψ(µ))un−1,H ≤ un,H . (B.3)

Solving the first equation for ψ(µ) and substituting into the second inequality yields

u∗l,L − u∗l−1,L

p− cL − u∗l−1,L

≤ un,H − un−1,H

p− cH − un−1,H

. (B.4)

Recalling that, in the candidate equilibrium under consideration, u∗l,L = ψ(µ̄)(p̄− cL) + (1−
ψ(µ̄))u∗l−1,L and un,H = ψ(µ̄)(p̄− cH) + (1− ψ(µ̄))un−1,H , we have:

u∗l,L − u∗l−1,L

p̄− cL − u∗l−1,L

=
un,H − un−1,H

p̄− cH − un−1,H

. (B.5)

Using this condition to substitute for (un,H − un−1,H) /
(
u∗l,L − u∗l−1,L

)
in the above inequality

and simplifying terms, we obtain:

p
(
cH + un−1,H − cL − u∗l−1,L

)
≤ p̄

(
cH + un−1,H − cL − u∗l−1,L

)
. (B.6)

Finally, notice that for all n ≤ l − 1, we have u∗n,L + cL ≤ cH by definition of l and hence3

u∗l−1,L + cL ≤ un−1,H + cH , for all n = 1, ..N. (B.7)

Hence inequality (B.6) is satisfied whenever p < p̄, which establishes the claim. A similar

argument applies to wages weakly below p∗l,L—for this case, it is in fact the same as for the

separating equilibrium.

Next, we consider wages in the interval (p̄, pH). We will show that for all p ∈ (p̄, pH),

3Here we abstract from the non-generic case where ul−1+cL = cH . In this knife-edge case, (B.3) will hold
as equality for n = 1 and p < p̄, which means that any γ(p) ∈ [0, 1] will satisfy the market utility condition,
including γ(p) = 1.
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γ(p) = 1 again holds. By definition of l we have u∗l,L+cL > cH . Hence for all n = 0, 1, 2, ..., N−
l − 1, in the candidate equilibrium under consideration the following holds:

ul+n,L + cL = β(n; µ̄)p̄+ (1− β(n; µ̄))(u∗l,L + cL)

> β(n; µ̄)p̄+ (1− β(n; µ̄))cH (B.8)

= un,H + cH .

This means that the reservation utility for the n-th application sent to the pooling market

is greater for low than for high types, for all n = 0, .., N − l − 1. In particular, we have

uN−1,L + cL > uN−l−1,H + cH . (B.9)

We also want to show that the reservation utility for the N -th application sent by low

types to the pooling market is smaller than the one for the first application sent by high

types to a H-type market, that is:

uN−1,L + cL < uN−l,H + cH . (B.10)

Recalling that ul+n,L + cL = β(n; µ̄)p̄+ (1− β(n; µ̄))(u∗l,L + cL), using the property β(n; ·) =

β(n−1; ·)+(1−β(n−1; ·))β(1; ·) and the fact that u∗l,L = β(1; µ̄)(p̄−cL)+(1−β(1; µ̄))u∗l−1,L,

when n = N − l − 1, we obtain

uN−1,L = β(N − l − 1; µ̄)(p̄− cL) + (1− β(N − l − 1; µ̄))u∗l,L

= β(N − l; µ̄)(p̄− cL) + (1− β(N − l; µ̄))u∗l−1,L.
(B.11)

This implies

uN−1,L + cL = β(N − l; µ̄)p̄+ (1− β(N − l; µ̄))(u∗l−1,L + cL)

≤ β(N − l; µ̄)p̄+ (1− β(N − l; µ̄))cH

= uN−l,H + cH ,

(B.12)

where the inequality in the second line follows from u∗l−1,L + cL ≤ cH , which as we already

pointed out, holds by definition of l. This then establishes (B.10).

Having shown (B.9) and (B.10), we want to prove that the following conditions hold for
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all p ∈ (p̄, pH) and n = 1, ..., N :

ψ(µ)(p− cL) + (1− ψ(µ))uN−1,L = uN,L (B.13)

ψ(µ)(p− cH) + (1− ψ(µ))un−1,H ≤ un,H (B.14)

Again solving for ψ(µ) the first equation and substituting into the second one yields

uN,L − uN−1,L

(p− cL − uN−1,L)
≤ un,H − un−1,H

(p− cH − un−1,H)
(B.15)

For n ≤ N − l the above inequality holds as an equality at (µ̄, p̄). Following the same argu-

ment as above, we can use this equality to substitute for (un,H − un−1,H) / (uN,L − uN−1,L)

and rewrite (B.15) as an inequality similar to (B.6):

p
(
cH + un−1,H − cL − u∗N−1,L

)
≤ p̄

(
cH + un−1,H − cL − u∗N−1,L

)
(B.16)

Due to condition (B.9), the terms in the brackets are negative for all n ≤ N − l, so (B.15)

holds. Hence, (B.13,B.14) is satisfied for p ∈ (p̄, pH) and n ≤ N − l.
Next, consider the applications that are sent by high types to the market with wage pH :

n = N − l+ 1, ..., N − l+ n̄− 1. Using the property that for n = N − l+ 1, ..., N − l+ n̄− 1

condition (B.15) holds as an equality at pH (since in the candidate equilibrium we are

considering, high types send those applications to pH), we can again rewrite (B.15) as follows:

p (cH + un−1,H − cL − uN−1,L) ≤ pH (cH + un−1,H − cL − uN−1,L) . (B.17)

Under condition (B.10), we have uN−1,L + cL < un−1,H + cH , so the inequality holds for all

p ∈ (p̄, pH).

For applications n ≥ N − l + n̄, the L-type incentive constraint is slack (by definition of

n̄) and the terms of trades for these applications are given by the unconstrained solution,

described in (A.6). This implies that to attract applications from high types for which their

reservation utility is given by uN−l+n̄−1, firms cannot make positive profits. Since for all

p ∈ (p̄, pH) and µ satisfying (B.13) firms would make positive profits if they could attract

applications only from high types, i.e. (1−e−µ)(vH−p) > k, it follows that (B.14) is satisfied

for all n ≥ N − l + n̄.
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B.3 Proof of Proposition 5

B.3.1 The case cH < vL − k.

Candidate equilibrium. The logic of the argument is very close to that used to prove

Proposition 3. Consider the candidate equilibrium we constructed in the proof A.3 with

m = m′ = N− l; that is, with the last N− l applications and the first N− l applications sent

respectively by low and high types to the pooling market. Let us reassign the same fraction

of these applications both for low and high types to a second pooling market, with a higher

wage and effective queue length.

Let n̂ > l indicate the application after which the low type switches from the first pooling

market to the second one. The low types’ application strategy consists thus in sending the

first l applications to L-type markets, where only low types are present, the next n̂ − l

applications to pooling market 1 and the last N − n̂ applications to pooling market 2. The

high types’ application strategy consists in sending the first n̂ − l to pooling market 1, the

next N − n̂ applications to pooling market 2, and the last l applications to H-type markets.

We show next that the effective composition in the two pooling markets, resulting from this

reassignment, is the same. Let us denote it by γ̄, while (µ̄1, p̄1) denote the terms of trade in

the first pooling market and (µ̄2, p̄2) those in the second pooling market.

Proceeding similarly to the proof of Proposition 3, we also indicate with τ2,H the prob-

ability that a high type receives no wage offer strictly above p̄2. In pooling market 2 low

types send N − n̂ effective applications (since all offers received are accepted) , while high

types only send τ2,H(N − n̂) effective applications. The effective composition in this market

is thus given by the following expression, analogous to (A.8):

σ(N − n̂)

σ(N − n̂) + (1− σ)τ2,H(N − n̂)
=

σ

σ + (1− σ)τ2,H

Let β(N − n̂; µ̄2) denote again the probability for any of the two types of receiving an offer

in pooling market 2, with effective queue length µ̄2, when sending n ≥ 1 applications to that

market. It thus follows that the effective composition in pooling market 1 is:

σ (n̂− l) (1− β(N − n̂; µ̄2))

σ(n̂− l)(1− β(N − n̂; µ̄2)) + (1− σ)(n̂− l)τ2,H(1− β(N − n̂; µ̄2))
=

σ

σ + (1− σ)τ2,H

,

the same as the effective compositions in pooling market 1.

The terms of trade in pooling market 1 are determined by the same condition (A.3)

pinning down the terms of trade in the single pooling market in Appendix A.3. In pooling

market 2 they are then determined as the unique solution satisfying p̄2 > p̄1 of the analogous
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condition:

(µ̄2, p̄2) ∈ (Πγ̄ ∩ IL(un̂−1,L, un̂,L)) . (B.18)

with un̂,L obtained analogously to uN,L in Appendix A.3. It is easy to see4 that such a solution

exists whenever n̂ is sufficiently large. The terms of trade in the high quality markets are

determined by the same procedure as in Appendix A.3,5 starting from the utility attained

by high types from their applications to pooling markets 1 and 2

uN−l,H = β(N − n̂, µ̄2)(p̄2 − cH) + (1− β(N − n̂, µ̄2)) β(n̂− l; µ̄1)(p̄1 − cL)︸ ︷︷ ︸
=un̂−l,H

,

and the wage p2,H lying at the intersection of the low types’ indifference curve associated

with their last application to pooling market 2 and the H-isoprofit curve.

Having found the effective queue lengths in the H-type markets, the high types’ prob-

ability of being hired in one of these markets τ2,H can be determined as a function of γ̄ in

the same way as in (A.7). Proceeding as in Appendix A.3 allows us then to prove that a

fixed point for γ̄ exists. This fixed point depends on the switching point n̂, as do the other

equilibrium variables (except for the terms of trade in the low quality markets). In what

follows we make this dependence explicit by writing the variables as functions of n̂.

It will be useful to establish some limit properties of these variables. First, since un̂,L is

strictly increasing in n̂ and bounded above by the gains from trade σvH + (1 − σ)vL − k,

the difference un̂,L − un̂−1,L converges to zero as n̂ → ∞. Given this property and p̄2(n̂) >

p̄1(n̂) > cL +un̂−1,L, condition (B.18) implies limn̂→∞ µ̄2(n̂) =∞. The fact that the effective

queue length in the second pooling market tends ∞ implies that also the effective queue

lengths in the high-type markets tend to ∞.6 Noticing that the number of applications that

high types send to these markets is l and thus independent n̂, it follows that the probability

with which high types receive an offer in one of the high-type markets tends to zero as

n̂ → ∞. Hence, limn̂→∞ τ2,H(n̂) = 1. Due to this property, the effective composition γ̄(n̂),

as determined by (A.8) with m′ = m = n̂, tends to σ as n̂→∞.

No profitable deviations. Next, we need to show that there are no profitable deviations.

For wages p < p̄1(n̂) and p > p2,H(n̂) the proof in Appendix A.3 directly applies. Considering

wages p ∈ (p̄1(n̂), p2,H(n̂)), we want to show that for any p in this interval, γ(p) = 1 holds

4A solution of (B.18) is always given by µ̄1, p̄1. Note that the isoprofit curve of pooling market 1 is convex
while the indifference curve of the n̂-th application of the low types (sent to pooling market 1) is concave.
Hence if the latter is steeper than the first one at µ̄1, p̄1, a property satisfied for n̂ sufficiently high, a second
solution exists and features p̄2 > p̄1.

5In particular, see equations (A.6), (A.5) and the text immediately below them.
6Recall that the effective queue length increases in the index of the application—in this case the application

of high types.
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except at p = p̄2(n̂). For wages in the interval (p̄1(n̂), p̄2(n̂)) we can again apply the proof in

Appendix A.3, conditions (B.9) and (B.10), simply replacing N with n̂. Thereby, we obtain

un̂−1,L(n̂)+cL ≥ un̂−l−1,H(n̂)+cH and un̂−1,L(n̂)+cL < un̂−l,H(n̂)+cH , thus proving γ(p) = 1

for all p ∈ (p̄1(n̂), p̄2(n̂)).

Next, consider the interval (p̄2(n̂), p2,H(n̂)). To show γ(p) = 1 for wages in this interval,

we must prove that analogous inequalities hold: uN−1,L(n̂) + cL ≥ uN−l−1,H(n̂) + cH and

uN−1,L(n̂) + cL < uN−l,H(n̂) + cH . We have argued above that un̂,L(n̂) + cL ≥ un̂−l,H(n̂) + cH

is satisfied. Using this property, we obtain:

uN−1,L(n̂) + cL = β(N − 1− n̂; µ̄2(n̂))p̄2(n̂) + (1− β(N − 1− n̂; µ̄2(n̂)))(un̂,L(n̂) + cL)

≥ β(N − 1− n̂; µ̄2(n̂))p̄2(n̂) + (1− β(N − 1− n̂; µ̄2(n̂)))(un̂−l,H(n̂) + cH)

= uN−l−1,H(n̂) + cH ,

which establishes the first inequality. To prove the second inequality, uN−1,L(n̂) + cL <

uN−l,H(n̂) + cH , it is sufficient to notice that un̂,L(n̂) = β(1, µ̄1(n̂))(p̄1(n̂)− cL− un̂−1,L(n̂)) +

un̂−1,L(n̂) holds (low types are indifferent between sending their n̂-th application to the first

or second pooling market). With β(n; ·) = β(n−1; ·)+(1−β(n−1; ·))β(1; ·), we can follow the

same steps as in (B.11-B.12), Appendix A.3, to establish that uN−1,L(n̂)+cL < uN−l,H(n̂)+cH

holds. We thus have γ(p) = 1 for all p ∈ (p̄1(n̂), p̄2(n̂)).

Given γ(p) = 1 for p ∈ (p̄1(n̂), p̄2(n̂))∪ (p̄2(n̂), pH(n̂)), the associated profits for firms are

weakly below k as long as p̄1(n̂), p̄2(n̂) ≥ vL − k is satisfied (see the argument in Appendix

A.3 following (A.9)). Given the assumption vH > v̂H , we can choose n̂ sufficiently large, and

hence γ̄(n̂) sufficiently close to σ, such that p̄1(n̂) ≥ vL − k holds. By construction, we have

p̄2(n̂) > p̄1(n̂), hence p̄2(n̂) ≥ vL − k holds as well.

Taken together, we conclude that for N sufficiently large, we can find a threshold n̂0

sufficiently high such that there is an equilibrium with two pooling markets for each switching

point n̂ ∈ {n̂0, N − 1}.

Expected payoffs. We are now ready to prove the statement in the proposition. Fix ε

arbitrarily close to zero and let δ1, δ2 be a pair of positive numbers such that

δ1(vH − vL) +
δ2

1− δ2

k ≤ ε.

Since, as shown earlier, limn̂→∞ µ̄2(n̂) =∞ and limn̂→∞ γ̄(n̂) = σ, we can find a value for n̂

such that γ̄(n̂) < σ + δ1 and 1− e−µ̄2(n̂) > 1− δ2. In what follows we fix then the number of

applications sent to pooling market 1 to be equal to a value of n̂ such that these inequalities

are satisfied. As N →∞, the number of applications sent to the first pooling market is then
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fixed to n̂− l, while the number of applications sent to the second pooling market tends to

infinity. We want to show that we can find N large enough so that (13) holds.

Using the inequalities γ̄(n̂) < σ+ δ1 and 1− e−µ̄2(n̂) > 1− δ2 together with the free-entry

condition imposed by (B.18) yields:

p̄2(n̂) > (σ + δ1)vL + (1− (σ + δ1))vH −
k

1− δ2

.

The level of total surplus attained by workers in equilibrium satisfies the following:

σuN,L(n̂) + (1− σ)uN,H(n̂)

> σuN,L(n̂) + (1− σ)uN−l,H(n̂)

= σ [β(N − n̂; µ̄2(n̂))(p̄2(n̂)− cL) + (1− β(N − n̂; µ̄2(n̂)))un̂,L(n̂)]

+(1− σ) [β(N − n̂; µ̄2(n̂))(p̄2(n̂)− cH) + (1− β(N − n̂; µ̄2(n̂)))un̂−l,H(n̂)]

= β(N − n̂; µ̄2(n̂))(p̄2(n̂)− σcL − (1− σ)cH)

+(1− β(N − n̂; µ̄2(n̂)))(σun̂,L(n̂) + (1− σ)un̂−l,H(n̂))

≥ β(N − n̂; µ̄2(n̂))

(
σ(vL − cL) + (1− σ)(vH − cH)− k − δ1(vH − vL)− δ2

1− δ2

k

)
+(1− β(N − n̂; µ̄2(n̂)))(σun̂,L(n̂) + (1− σ)un̂−l,H(n̂))

≥ β(N − n̂; µ̄2(n̂)) (σ(vL − cL) + (1− σ)(vH − cH)− k − ε)

+(1− β(N − n̂; µ̄2(n̂)))(σun̂,L(n̂) + (1− σ)un̂−l,H(n̂))

Since n̂ is fixed, µ̄2(n̂) is bounded and β(N − n̂; µ̄2(n̂)) tends to 1 as N →∞ (workers send

infinitely many applications to a market with a finite effective queue length). We thus have

lim
N→∞

(σuN,L(n̂) + (1− σ)uN,H(n̂)) ≥ σ(vL − cL) + (1− σ)(vH − cH)− k − ε.

B.3.2 The case cH ∈ [vL − k, σvL + (1− σ)vH − k).

Candidate equilibrium. We consider the construction of a candidate equilibrium with a

single pooling market in the proof of Proposition 3, with m as the number of applications

low types send to the pooling market and m′ as the number of applications high types send

to the pooling market. For any m,m′ ≥ 1 there exists a value of the wage p̄(m,m′), queue

length µ̄(m,m′) and effective fraction of low types γ̄(m,m′) in the pooling market satisfying

(A.3) and (A.8).

Next, we impose the following condition on m,m′ : for any m, let m′ be determined as
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follows

m′ = arg max{m̃ ≥ 0 : β(m−m̃; µ̄(m, m̃))p̄(m, m̃)+(1−β(m−m̃, µ̄(m, m̃)))(u∗N−m,L+cL) ≥ cH}.
(B.19)

A solution to (B.19) always exists provided N,m are sufficiently large so that p̄(m,m′) > cH .

To see this, note that, for any sequence of values m,m′ → ∞, with m − m′ bounded

(converging to some number greater or equal than 1), we have γ̄(m,m′)→ σ. If in addition

the switching point N −m → ∞ we have µ̄(m,m′) → ∞ and then also p̄(m,m′) → σvL +

(1−σ)vH−k. Hence for m,m′, N−m sufficiently large and m′

m
sufficiently close to 1 we have

γ̄(m,m′)vL + (1− γ̄(m,m′))vH − k > cH (B.20)

and also, since σvL + (1− σ)vH − k > cH , p̄(m,m
′) > cH .

No profitable deviations. Next, we verify that firms have no incentives to deviate. For

wages p in the interval (p∗N−m,L, p̄), we can follow steps (B.2-B.6), replacing l with N −m,
to establish that γ(p) = 1 and hence no deviation to wages in this range is profitable. The

analogous condition to (B.7) is u∗N−m−1,L + cL < cH + un−1,H for all n = 1, ..., N , which

follows from

u∗N−m−1,L + cL < vL − k ≤ cH ,

and holds then for all N −m. Hence the switching point to the pooling market N −m can

now take an arbitrarily large value.

Consider next wages p ∈ (p̄, pH), Since m′ satisfies (B.19), we have

uN−m′,L + cL = β(m−m′; µ̄)p̄+ (1− β(m−m′, µ̄))(u∗N−m,L + cL) ≥ cH .

Hence, proceding similarly as in (B.8), we obtain:

uN−1,L + cL = β(m′ − 1; µ̄)p̄+ (1− β(m′ − 1; µ̄))(uN−m′,L + cL)

≥ β(m′ − 1; µ̄)p̄+ (1− β(m′ − 1; µ̄))cH

= um′−1,H + cH ,

the analogue of condition (B.9) in our candidate equilibrium, saying that the reservation

utility for the last application sent to the pooling market is greater for the low than for the

high types.

The analogue of (B.10) in our candidate equilibrium is uN−1,L+cL < um′,H+cH , requiring

that the reservation utility for the last application sent by low types to the pooling market
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is smaller than the one for the first application sent by high types to a high quality market.

Since m′ is the largest value of m̃ satisfying the inequality in (B.19), we have

uN−m′−1,L + cL = β(m− (m′+ 1); µ̄)p̄+ (1−β(m− (m′+ 1), µ̄))(u∗N−m,L + cL) < cH . (B.21)

We proceed then similarly as in (B.12) to obtain:

uN−1,L + cL = β(m′ − 1; µ̄)p̄+ (1− β(m′ − 1; µ̄))(uN−m′,L + cL)

= β(m′; µ̄)p̄+ (1− β(m′; µ̄))(uN−m′−1,L + cL)

< β(m′; µ̄)p̄+ (1− β(m′; µ̄))cH

= um′,H + cH ,

where the inequality sign follows from (B.21). This establishes the analogue of (B.10) we

intended to show.

Having shown these properties, we can follow the steps of the proof of Proposition 3,

conditions (B.13-B.17), to show that γ(p) = 1 for all p ∈ (p̄, pH). To show that no deviation

to a wage in this interval is profitable it remains then to show that η(µ(p))(vL−p) ≤ k holds

for µ(p) satisfying (µ(p), p) ∈ IL(uN−1,L, uN,L). This is true since p̄ ≥ vL − k, always holds

here, as p̄ > cH and cH ≥ vL − k.

The non profitability of deviations to wages p < p∗N−m,L and p > pH follows then directly

by the same argument as in the proof of Proposition 3.

Expected payoffs. In the next and final step, we use a similar argument as for the case

cH < vL − k, taking the switching point for low types to the pooling market large enough.

Fix ε arbitrarily close to zero and let δ be a positive number such that

δ

1− δ
k < ε. (B.22)

Recalling that µ∗n−1,L → ∞ as n → ∞, let the low types’ switching point to the pooling

market N − m be the smallest number κ satisfying 1 − e−µ
∗
κ,L ≥ 1 − δ. For δ small, this

condition implies p̄ ≥ cH as long as N is sufficiently large. Having set N −m = κ, we can

write all equilibrium variables as a function of N . For any N , the number of applications

low types send to the pooling market is m = N − κ and the number of applications high

types send to the pooling market, m′(N − κ), is determined by (B.19).

We consider then N → ∞. Since (µ̄(N − κ), p̄(N − κ)) lies on the indifference curve

associated with the κ-th application of the low types, as N → ∞ both µ̄(N − κ) and

p̄(N − κ) tend to a finite limit. This implies that also m −m′ = N − κ −m′(N − κ) has
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a finite limit as N → ∞.7 Hence limN→∞m
′(N − κ) = ∞ and limN→∞

m′(N−κ)
N−κ = 1. Also

limN→∞ γ̄(N − κ) = σ.

Using the above properties, we want to show that we can find N large enough so that

(13) holds. Since L-type workers send their κ+1-th application to the pooling market which

features a higher effective queue length than their κ-th application, sent to a low market, we

have

η(µ̄(m)) > η(µκ,L) ≥ 1− δ.

Together with the free-entry condition η(µ̄(m))(γ̄(m)vL + (1 − γ̄(m))vH − p̄(m)) = k, this

implies:

lim
N→∞

p̄(N − κ) = σvL + (1− σ)vH − lim
N→∞

k

η(µ̄(N − κ))
≥ σvL + (1− σ)vH −

k

1− δ
.

Taking then the limit of the expression of total surplus in equilibrium, as N →∞, we obtain:

lim
N→∞

(σuN,L(N) + (1− σ)uN,H(N))

≥ lim
N→∞

(σuN,L(N) + (1− σ)uN−κ,H(N − κ))

= lim
N→∞

(
σ
[
β(N − κ); µ̄(N − κ))(p̄(N − κ)− cL) + (1− β(N − κ); µ̄(N − κ)))u∗κ,L(N − κ)

]
+(1− σ)β(N − κ; µ̄(N − κ))(p̄(N − κ)− cH)

)
= lim

N→∞
p̄(N − κ)− σcL − (1− σ)cH

≥ σ(vL − cL) + (1− σ)(vH − cH)− k − δ

1− δ
k

> σ(vL − cL) + (1− σ)(vH − cH)− k − ε

where we used limN→∞ β(N−κ); µ̄(N−κ)) = 1 and, in the last inequality, condition (B.22).

This proves that (13) is satisfied.

B.4 Proof of Proposition 7

Because both the market and the planner need to respect the free entry condition, firms’

payoffs are zero. Hence, ex-ante welfare equals W = σu2,L + (1− σ)u2,H , where low- and

high-type workers’ payoffs are equal to u2,L and u2,H , respectively. We focus on the limit

cH → cL, but the results extend to the case where cH and cL are different but close enough by

continuity. In the limit, both types of workers have identical preferences and must therefore

obtain identical payoffs. That is, u2,H → u2,L and thus W → u2,L.

7Takem,N large enough so that a solution to (B.19) exists. Let thenN →∞ so that alsom = N−κ→∞.
The solution for m′ obtained from (B.19) is such that m−m′ is either unchanged or decreases.
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Equilibrium. For cH sufficiently close to cL, we are in the case of mild averse selection

with l = 1. Hence, the partial-pooling equilibrium features 3 markets, (µL, pL), (µ̄, p̄) and

(µH , pH), with low types applying to the first two and high types applying to the last two.

The market (µL, pL) coincides with the first best and maximizes ψ (µ) (p− cL) subject to

the free entry condition η (µ) (vL − p)− k = 0. Substitution of the free entry condition into

the objective yields

ueqm
1,L = u∗1,L ≡ max

µ
ψ (µ) (vL − cL)− k

µ
. (B.23)

Let γ̄ > σ be the equilibrium composition of the pooling market (µ̄, p̄). This market then

lies on the iso-profit curve determined by

η (µ̄) (γ̄vL + (1− γ̄) vH − p̄)− k = 0. (B.24)

In the limit cH → cL, welfare is equal to the payoff of a low-type worker sending two

applications, which is

ueqm
2,L ≡ ψ (µ̄)

(
p̄− cL − u∗1,L

)
+ ueqm

1,L

= ψ (µ)
(
γvL + (1− γ) vH − cL − ueqm

1,L

)
+ ueqm

1,L −
k

µ
,

where the second line follows from substituting (B.24)

Planner with One Market. Consider a planner who implements full pooling by opening

a single market (µ, p) to which both types of workers send both their applications. With a

single market, both types of workers get job offers with identical probability, which means

that the composition of the market must equal the population composition. The free entry

condition is therefore given by

η (µ) (E [v]− p)− k = 0, (B.25)

where E [v] ≡ σvL + (1− σ) vH .

The planner chooses (µ, p) to maximize welfare, subject to this free entry condition. In

the limit cH → cL, welfare equals the payoff of the low-type worker, which after substitution

of (B.25) is equal to

upl,1
2,L = max

µ
ψ (µ) (E [v]− cL)− k

µ
+ (1− ψ (µ))

[
ψ (E [v]− cL)− k

µ

]
.
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Planner with Two Markets. Consider now a planner who creates two markets, (µ1, p1)

and (µ2, p2), in such a way that both types of workers send application i to (µi, pi). Both

markets must lie on the same iso-profit curve, which again is defined by (B.25). In the limit

cH → cL, welfare again equals the payoff of the low-type worker, which after substitution of

(B.25) is equal to

upl,2
2,L ≡ max

µ1,µ2
ψ (µ2) (E [v]− cL)− k

µ2

+ (1− ψ (µ2))

[
ψ (µ1) (E [v]− cL)− k

µ1

]
.

It is straightforward to see that the planner’s choice of µ1 differs from µ2, which means

that the planner who pools types but spreads applications across two markets creates more

welfare than the planner who implements full pooling of all types and applications.8

For the comparison with equilibrium welfare, we proceed in two steps. First, we compare

the low type’s payoff from their first application. Since E [v] > vL, we have

upl,2
1,L ≡ max

µ1
ψ (µ1) (E [v]− cL)− k

µ1

> max
µ

ψ (µ) (vL − cL)− k

µ
≡ ueqm

1,L .

That is, the low-type worker obtains a higher payoff with their first application under the

planner with two markets than in equilibrium.

We then proceed by comparing the payoff from the portfolio with two applications. Note

that

upl,2
2,L ≡ max

µ2
ψ (µ2)

(
σvL + (1− σ) vH − cL − upl,2

1,L

)
− k

µ2

+ upl,2
1,L

> max
µ2

ψ (µ2)
(
γvL + (1− γ) vH − cL − upl,2

1,L

)
− k

µ2

+ upl,2
1,L

> max
µ2

ψ (µ2)
(
γvL + (1− γ) vH − cL − ueqm

1,L

)
− k

µ2

+ ueqm
1,L

≥ ψ (µ)
(
γvL + (1− γ) vH − cL − ueqm

1,L

)
− k

µ
+ ueqm

1,L

≡ ueqm
2,L ,

where the inequalities follow because γ > σ, upl,2
1,L > ueqm

1,L , and the maximization. Hence, the

planner with two markets creates more welfare than the market equilibrium.

8Note that this optimization problem coincides with the one in Kircher (2009) if we assign the workers
in his model a productivity E [v] and outside option cL.
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Appendix C Equilibrium Definition

Let p = (p1, . . . pN) be an application portfolio and let p−n = (p1, . . . pn−1, pn+1, . . . pN) be the

portfolio excluding application pn. We then define Gi (p) as the application distribution of

a worker of type i, with corresponding marginals Gn,i (p). Similarly, G−n,i (p−n; pn) denotes

the distribution of p−n, conditional on the worker sending application n to pn. We can then

define equilibrium as follows.

Definition 2. An equilibrium is a measure of vacancies φ, a distribution of wages F , appli-

cation distributions (GL, GH), effective queue lengths µ(p), and effective queue compositions

γ(p) such that

1. For any n ∈ {1, . . . , N} and p ∈ F , λn,L (p) satisfies

φ

∫ p

0

λn,L (p′) dF (p′) = σGn,L (p)

and λn,H (p) satisfies

φ

∫ p

0

λn,H (p′) dF (p′) = (1− σ)Gn,H (p) .

2. For any i ∈ {L,H}, n ∈ {1, . . . , N}, and p ∈ F , µn,i (p) satisfies

µn,i (p) = λn,i (p)

∫
Fn−1

N∏
j=n+1

(
1− 1− e−µ(pj)

µ (pj)

)
dG−n,i (p−n; p) .

3. For any p ∈ F , µ (p) satisfies

µ (p) =
N∑
n=1

∑
i=L,H

µn,i (p) .

4. For any p ∈ F , γ (p) must satisfy

γ (p) =

∑N
n=1 µn,L (p)

µ(p)
.
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5. For any i ∈ {L,H} and n ∈ {1, . . . , N}, every p ∈ supp Gn,i solves

un,i =
1− e−µ(p)

µ (p)
(p− ci − un−1,i) + un−1,i.

6. For any p /∈ F , µ (p) solves

un,i ≥
1− e−µ(p)

µ (p)
(p− ci − un−1,i) + un−1,i (C.1)

with weak inequality for any (n, i), and with equality for at least one (n, i) if µ(p) > 0.

7. For any p /∈ F , γ (p) satisfiesγ (p)µ (p) = 0 if (C.1) holds with strict inequality for i = L and all n

(1− γ (p))µ (p) = 0 if (C.1) holds with strict inequality for i = H and all n

8. Any p ∈ F solves

(
1− e−µ(p)

)
[γ (p) vL + γ (p) vH − p] = π∗ ≡ max

p′

(
1− e−µ(p′)

)
[γ (p′) vL + γ (p′) vH − p′] .

9. φ ≥ 0 and π∗ ≤ k, with complementary slackness.
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Appendix D Endogenizing Applications

Suppose workers can choose how many applications to send facing a fixed, equal cost z per

application. Let Ni denote the total number of applications a worker of type i = L,H chooses

to send in equilibrium. Given NH , NL, the definition of an equilibrium is analogous to the

one in Definition 1. In addition, to assess the optimality of Ni, recall that for all n ∈ N, the

benefit for a worker of type i from sending one additional application to an optimally chosen

market, after having sent n− 1 of them, is equal to

un,i − un−1,i = max
p∈F

ψ (µ(p)) (p− ci − un−1,i).

For Ni to be optimal, we need that for all n ≤ Ni, the benefit un,i − un−1,i exceeds the

application cost z, while it is lower than z for all n > Ni. The fact that un−1,i is increasing

in n directly implies that the utility gain un,i − un−1,i is decreasing in n. Hence, the total

number of applications a worker of type i sends in equilibrium, Ni, is uniquely pinned down

by the following condition:

Ni = max{n ∈ N : un,i − un−1,i ≥ z}

To examine the consequences for the properties of equilibrium allocations, assume first

that the lemons condition holds, cH ≥ vL − k, and consider the separating equilibrium

characterized in Proposition 1. As we saw, the markets for L-type workers coincide with

the unconstrained solution described in Section 3.2. Hence, the total number of applications

low types send is given by the largest number NL that satisfies u∗NL,L − u
∗
NL−1,L ≥ z. This

condition ensures that L-type workers do not wish to send an additional application to a

separate market (for which the utility gain is u∗NL+1,L − u∗NL,L < z). We also need that they

have no incentives to send an additional application to the lowest wage to which high types

apply.9 Letting (µH , pH) describe this market, we must have

ψ(µH)(pH − cL − uNL,L) ≤ z (D.1)

for uNL,L = u∗NL,L. Since cH ≥ vL−k > u∗NL,L+cL, inequality (D.1) implies ψ(µH)(pH−cH) <

z. Hence, in equilibrium, incentive constraints limit the gains high types can achieve by

trading in the market so much that they will prefer not to participate at all. Hence, with

endogenous applications, a separating equilibrium exists under the conditions of Proposition

9This condition is different than the L-type incentive constraint relative to his last application, u∗NL,L −
u∗NL−1,L ≥ ψ (µH) (pH − cL − u∗NL−1,L), which only guarantees that the L-type has no incentives to divert
his last application to wage pH .
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1 and features NL application of low types and 0 applications of high types.

Turning then to the case cH < vL − k, consider the equilibrium with one pooling market

described in Proposition 3. As we show in the proof of this proposition, in the equilibrium

allocation we constructed, market utilities satisfy the condition

u`+n−1,L + cL < un,H + cH ≤ u`+n,L + cL for all n ≥ 0. (D.2)

Letting (µ̄, p̄) denote again the terms of trade in the pooling market, the total number NL

of applications that the low type sends must then be the largest number satisfying

ψ(µ̄)(p̄− cL − uNL−1,L) ≥ z. (D.3)

Using (D.2), this implies ψ(µ̄)(p̄ − cH − uNL−`−1,H) ≥ z, i.e., when low types are willing

to send NL − ` applications to the pooling market together with ` applications to separate

markets, high types are also happy to send NL − ` applications to the pooling market.

Suppose now that an H-type market exists with terms of trade (µH , pH). For the con-

sidered allocation to be an equilibrium with endogenous applications, it must be that low

types do not want to send any additional application to this market (inequality (D.1) is

satisfied) nor to redirect any of their NL applications to that market (ensured by the in-

centive constraints already imposed in the construction used in the proof of Proposition

3). By the second inequality in (D.2) we have uNL−`,H + cH ≤ uNL,L + cL, so it is possible

that ψ(µH)(pH − uNL−`,H − cH) ≥ z and (D.1) are both satisfied. If that is the case, high

types find it profitable to send one application to market (µH , pH) while low types do not.

However, due to the first inequality in (D.2), we also have uNL−`+1,H + cH > uNL,L + cL,

so that sending a second application to market (µH , pH) is never profitable. Hence, under

the conditions stated in Proposition 3, there exists an equilibrium with a pooling market

whenever z satisfies (D.3) for some NL > `, and high types send at most one application to

a separate market.
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