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B Omitted Proofs

The results in lemma 1 and proposition 3 follow from Cai et al. (2016). For completeness, we

provide short proofs here, referring to their paper for additional detail.

B.1 Proof of Lemma 1

The maximum valuation at a seller who meets n ∈ N1 buyers is an order statistic, distributed

according to Gn (x). Taking the expectation over x and n, followed by integration by parts and

using the Dominated Convergence Theorem to interchange summation and integration, yields

S (λ,G) =
∞∑
n=1

Pn (λ)

∫ 1

0

x dGn (x) =

∫ 1

0

(
1−

∞∑
n=0

Pn (λ)Gn (x)

)
dx.

The result then follows because the rightmost integrand equals φ (λ (1−G (x)) , λ).

B.2 Proof of Proposition 3

The proof consists of two parts. First, we consider a seller who can choose the length and

composition of his queue directly in a competitive market (“relaxed maximization problem”).

By the first welfare theorem, the equilibrium in this market is Pareto optimal, which necessarily
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implies that it maximizes social net output as there is only one consumption good. Subse-

quently, we establish that a seller who posts the proposed equilibrium mechanism to attract an

endogenously determined queue of buyers (“constrained maximization problem”) implements

the same solution.

Part 1 (relaxed maximization problem). For a given market utility function U (x), a

seller chooses the queue (λ,G) that maximizes his expected payoff, which equals the difference

between surplus S (λ,G) and the expected payoff that the seller has to offer to each of the

buyers. That is, ∫ 1

0

φ (λ (1−G (z)) , λ) dz −
∫ 1

0

U (z) dλG(z).

Because the seller takes the market utility function as given, he is a residual claimant on any

extra surplus that he creates. Hence, the seller will compare the marginal cost U (x) of attracting

a buyer with valuation x to this buyer’s marginal contribution to surplus T (x). To calculate

T (x), increase the measure of buyers with values around x, formally [x, x+∆x], by ε and denote

the new queue length and buyer value distribution as λ′ and G′ respectively. That is, λ′ = λ+ε,

while λ′(1−G′(z)) = λ(1−G(z)) for z > x and λ′(1−G′(z)) = λ(1−G(z)) + ε for z < x. By

lemma 1, the average contribution to surplus by buyers with values around x is

S(λ′, G′)− S(λ,G)

ε
=

1

ε

(∫ x

0

φ(λ(1−G(x)) + ε, λ+ ε)− φ(λ(1−G(x)), λ)

)
+

1

ε

(∫ 1

x

φ(λ(1−G(x)), λ+ ε)− φ(λ(1−G(x)), λ)

)
Let ε→ 0, then the above equation converges to

T (x) =

∫ 1

0

φλ (λ (1−G (z)) , λ) dz +

∫ x

0

φµ (λ (1−G (z)) , λ) dz. (20)

The solution to the relaxed maximization problem must therefore satisfy

U(x) ≥ T (x) for all x, with equality for all x ∈ suppG (21)

Part 2 (constrained maximization problem). Consider now a seller who posts a second-

price auction and a meeting fee τ , attracting a queue (λ,G). A buyer with valuation x in

the support of G meets the seller together with n − 1 other buyers with probability nPn(λ)
λ

.1

Hence, he pays the meeting fee τ with probability 1
λ

∑∞
n=1 nPn (λ) = φµ (0, λ) and trades with

1See Eeckhout and Kircher (2010) or Lester et al. (2015).
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probability 1
λ

∑∞
n=1 nPn (λ)G(x)n−1 = φµ (λ (1−G (x)) , λ). As a result, his expected payoff is

U (x, τ, λ,G) = −φµ (0, λ) τ +

∫ x

0

φµ (λ (1−G (y)) , λ) dy, (22)

where the second term is the payoff from the auction, which—by standard results in auction

theory—equals the integral over the trading probabilities (see e.g. Peters, 2013). A queue (λ,G)

is therefore compatible with an auction with fee τ if and only if

U(x) ≥ U(x, τ, λ,G) for all x, with equality for all x ∈ suppG (23)

Clearly, if a queue (λ,G) satisfies (21), then by setting the entry fee τ in equation (22) equal

to

τ = −
∫ 1

0
φλ (λ (1−G (x)) , λ) dx

φµ (0, λ)
,

it also satisfies (23). Therefore, any queue chosen by an unconstrained seller who can buy queues

directly at a price U(x) is also compatible with an auction with an entry fee.

C Joint Concavity Using Pn (λ)

In the main text, we define joint concavity in terms of φ, but an equivalent condition in terms

of Pn, the actual primitive of the model, can be derived.2 Starting from the definition of φ,

taking partial derivatives yields

φµµ = −
∞∑
n=0

(n+ 2)(n+ 1)
Pn+2

λ2

(
1− µ

λ

)n
,

φµλ =
∞∑
n=0

[
(n+ 1)

λP ′n+1 − Pn+1

λ2
+ (n+ 2)(n+ 1)Pn+2

µ

λ3

](
1− µ

λ

)n
,

φλλ = −
∞∑
n=0

[
P ′′n + 2µ(n+ 1)

λP ′n+1 − Pn+1

λ3
+

(n+ 2)(n+ 1)Pn+2µ
2

λ4

](
1− µ

λ

)n
.

Using the fact that
∑∞

n=0 any
n
∑∞

n=0 bny
n− (

∑∞
n=0 cny

n)2 =
∑∞

n=0

∑n
i=0 (aibn−i − cicn−i) yn, the

condition for joint concavity can then be written as

φ11φ22 − φ2
12 =

∞∑
n=0

Zn

(
1− µ

λ

)n
≥ 0,

2To save on notation, we suppress the argument of Pn throughout this derivation.
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where, after some simplification, Zn equals

Zn =
n∑
i=0

[
(i+ 2)(i+ 1)Pi+2P

′′
n−i

λ2
− (i+ 1)(n− i+ 1)

λP ′i+1 − Pi+1

λ2
λP ′n−i+1 − Pn−i+1

λ2

]
.

D Additional Details on Proposition 3

To illustrate the proof of proposition 3, consider a market with a measure Λ = 1 of buyers whose

valuations are either low (with probability 0.6) or high (with probability 0.4), such that N = 2,

ζ1 = 1 and ζ2 = 0.4. This implies a0 = a1 = 0, a2 = 0.36, a3 = −1.56, a4 = 2.2 and a5 = −1.

Since urn-ball implies P5 (1) = 0.0031, we set ε (1) = 0.002 to make sure that P̃n (1) ≥ 0 for all

n.

The left panel of figure 1 then plots φ (µ, 1) and φ̃ (µ, 1) as functions of µ. The two functions

are nearly indistinguishable, so we plot the difference φ (µ, 1)− φ̃ (µ, 1) in the right panel. This

reveals that the difference is strictly positive, except when µ
λ
∈ {0, ζ1, ζ2}, just as we expected

from the proof of proposition 3.

Figure 1: Perturbation of the Meeting Technology
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Unfortunately, this method does not work when considering a distribution for which the

support contains an interval. To see this, consider for example a distribution where x = 0 with

probability 1/2 and x has a density function f on the interval [x, 1] for x > 0. Constructing P̃

then requires that

φ̃(µ, λ) ≤ φ(µ, λ) with equality if and only if
µ

λ
∈
[

1

2
, 1

]

However, for a given λ, both φ̃(µ, λ) and φ(µ, λ) are analytic functions of µ. If two analytic
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functions agree on an interval, then they agree everywhere (see p127 of Ahlfors, 1979 or Theorem

10.18 of Rudin, 1987). Therefore, there doesn’t exist a P̃n such that the above equation holds.

E Mechanisms and Equilibrium Conditions

Our description of the mechanism space and equilibrium conditions is similar to Eeckhout and

Kircher (2010) and Auster and Gottardi (2016). See those papers for additional details.

Mechanism Space. A direct mechanism m is an extensive form game, which determines

buyers’ trading probabilities and payoffs. To be precise, for a buyer with valuation x, meeting

the seller joint with n − 1 other buyers whose valuations are (x1, . . . , xn−1), the mechanism

specifies

1. a trading probability θn (x;x1, . . . , xn−1;m), symmetric in x1, . . . , xn−1.

2. a transfer tn (x;x1, . . . , xn−1;m), symmetric in x1, . . . , xn−1.

Feasibility requires that the sum of the trading probabilities across all buyers meeting a seller

does not exceed 1, i.e.

n∑
i=1

θn (xi;x1, . . . , xi−1, xi+1, . . . xn;m) ≤ 1 ∀ (x1, . . . , xn) ∈ [0, 1]n .

Incentive Compatibility. Given a queue (λ,G), the expected probability of trade for a buyer

with valuation x equals

θ (x;m,λ,G) =
∞∑
n=1

nPn (λ)

λ

∫
. . .

∫
θn (x;x1, . . . , xn−1;m) dG (x1) . . . dG (xn−1) ,

while the expected transfer equals

t (x;m,λ,G) =
∞∑
n=1

nPn (λ)

λ

∫
. . .

∫
tn (x;x1, . . . , xn−1;m) dG (x1) . . . dG (xn−1) .

Incentive compatibility then specifies that buyers maximize their payoff by by truthfully report-

ing their type. That is,

θ (x;m,λ,G)xi − t (x;m,λ,G)

is maximized in x = xi for all xi.
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Payoffs. If a mechanism m is incentive compatible and attracts a queue (λ,G) , then the

expected payoff of a buyer with valuation x is

U (x;m,λ,G) = θ (x;m,λ,G)x− t (x;m,λ,G) ,

while the expected payoff of the seller is

R (m,λ,G) = λ

∫
t (x;m,λ,G) dG (x) .

Beliefs. Given a mechanism m (j) and a queue (λ (j) , G (j, ·)) for each seller j ∈ [0, 1], define

the market utility U (x) as the highest payoff that a buyer with valuation x can obtain, i.e.

U (x) = max
j∈[0,1]

U (x;m (j) , λ (j) , G (j, ·)) .

A queue (λ,G) solves the market utility condition for a mechanism m if

U (x;m,λ,G) ≤ U (x) with equality for each x ∈ supp G. (24)

Denote the set of queues (λ,G) that solve (24) for a mechanism m by Q (m). A seller who posts

a mechanism m then expects to obtain a payoff

max
λ,G
{R (m,λ,G) | (λ,G) ∈ Q (m)} ,

where the max operator represents sellers’ optimism in case Q (m) contains more than one

element. By convention, sellers expect a non-positive payoff if Q (m) is empty.3

Aggregate Consistency. Consistency requires that aggregating queues across sellers does

not exceed the total measure of buyers of each type. That is,∫ 1

0

λ(j)ν(j, B) dj ≤ ΛνF (B)

for any Borel-measurable set B, where νF is the measure associated with F and ν(j, ·) is the

measure associated with G(j, ·).
3The motivation for this assumption is the following. A seller who offers all buyer types a payoff less than

their market utility, irrespective of the queue, expects to attract no buyers, which yields a zero payoff. A seller
who offers certain buyer types a payoff higher than their market utility, irrespective of the queue, expects to
attract an infinite queue, which yields the seller a payoff that approaches minus infinity.
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F Invariance, Non-Rivalry and Pooling

Invariance. Proposition 2 and 4 jointly imply that invariance is a sufficient condition for a

pooling equilibrium, but not a necessary condition. The intuition for sufficiency is straightfor-

ward. Invariance implies that the presence of low-type buyers in a submarket has no effect on

the meetings between high-type buyers and sellers. Surplus is therefore maximized by spread-

ing high-type buyers evenly across all sellers, as opposed to concentrating them at a subset, to

maximize the number of high-type buyers that will trade. A single market results.

To see why invariance is not necessary, consider again the pairwise urn-ball technology. As

discussed in the main text, φλ > 0 for this technology. That is, adding low-type buyers to

a submarket increases the probability that a seller will meet a high-type buyer. This feature

violates invariance, but not joint concavity: the fact that the addition of low-type buyers to the

submarket helps to spread the high-type buyers better across sellers strengthens the incentive

to send all buyers to the same market.4

Non-Rivalry. Proposition 2 and 5 jointly imply that non-rivalry is a necessary condition

for a pooling equilibrium, but not a sufficient condition. To understand why non-rivalry is

necessary, consider a submarket with a single high-type buyer with valuation x2 > 0 and a

number of low-type buyers with valuation x1 → 0, such that surplus only depends on the trading

probability of the high-type buyer. Violation of non-rivalry would imply that this probability

could be increased by sending either some low-type buyers (if φµλ (0, λ) < 0) or some sellers

(if φµλ (0, λ) > 0) to a different submarket, contradicting the optimality of the single market

associated with joint concavity.

To see why non-rivalry is not sufficient, consider again the multi-platform technology. As

discussed in the main text, this technology is non-rival. However, the presence of low-type

buyers in the submarket increases the chances for high-type buyers to be crowded out at one

of the αs sellers in the first round, concentrating them at the (1− α) s second-round sellers in

higher numbers than optimal. It is therefore better to send at least some low types to a separate

submarket.

G Spatial Meeting Technology

Consider the following technology.

Spatial. This technology features two distinct locations within every submarket. We call

these locations near and remote, respectively. Each location always attracts exactly half of

4This may raise the question how φλ ≥ 0 relates to joint concavity. We prove in section H of this online
appendix that it is a necessary but not a sufficient condition.
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all sellers in the submarket, allocated in a random way. In contrast, the number of buyers

in each location depends on the queue length λ. In particular, buyers disproportionally

visit the sellers in the near location when λ is small, but spread more evenly across

locations when λ increases. When the queue length reaches (or exceeds) a critical level

λ > 0, half of all buyers visit either location. To formalize this, let γ (λ) be the fraction of

buyers in the submarket visiting the remote location. We then assume that i) γ (0) < 1
2
, ii)

γ (λ) = 1
2

for all λ ≥ λ, and iii) γ (λ) = γ (0)+ λ
λ

(
1
2
− γ (0)

)
for all 0 ≤ λ ≤ λ. Within each

location, buyers and sellers are allocated according to an urn-ball technology.5 Hence,

Pn (λ) =

1
2
e−2λγ(λ) [2λγ(λ)]

n

n!
+ 1

2
e−2λ(1−γ(λ)) [2λ(1−γ(λ))]

n

n!
for λ < λ

e−λ λ
n

n!
for λ ≥ λ.

Verification of the conditions in definition 1 and lemma 2 then yields the following result.

Proposition 7. The spatial technology is jointly concave but not invariant, if γ (0) is below but

sufficiently close to 1
2
.

Proof. It immediately follows from earlier results that the technology satisfies the conditions

for invariance and joint concavity for λ ≥ λ. We therefore focus on λ < λ in the remainder of

the proof. For these values of λ,

φ (µ, λ) =
1

2

(
1− e−2γ(λ)µ

)
+

1

2

(
1− e−2(1−γ(λ))µ

)
.

Taking the derivative with respect to λ yields

φλ =
1
2
− γ (0)

λ
µ
[
e−2γ(λ)µ − e−2(1−γ(λ))µ

]
> 0,

which reveals that the technology is not invariant. Similarly, taking second-order derivatives

reveals that φµµφλλ − φ2
µλ equals

φµµφλλ − φ2
µλ =

(
∂γ

∂λ

)2

e−2µ
[
4µ2 − 4µ+ 2 + e2µ(1−2γ) (4µγ − 1) + e−2µ(1−2γ) (4µ (1− γ)− 1)

]
,

where we omit the argument of γ (λ) to simplify notation. Note that if γ is sufficiently close to
1
2
, then we can use the Taylor expansion ex = 1+x+ x2

2
to approximate e2µ(1−2γ) and e−2µ(1−2γ).

5Strictly speaking, the resulting technology is not (twice-continuously) differentiable in λ, which violates one
of our assumptions. However, at the expense of additional notation, it can be approximated arbitrarily closely
by a technology that satisfies this condition. We omit this step to keep the exposition as simple as possible.
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After simplification, this yields

φµµφλλ − φ2
µλ ≈

(
∂γ

∂λ

)2

e−2µ4µ2
[
1 + (1− 2γ)2 (2µ− 3)

]
,

which is strictly positive for such γ. Hence, by choosing γ (0) below but sufficiently close to 1
2
,

we obtain a meeting technology that is jointly concave but not invariant.

H Necessity and Insufficiency of φλ ≥ 0

The fact that the pairwise urn-ball technology satisfies φλ ≥ 0 as well as joint concavity may

raise the question how these two properties are related. The following proposition establishes

that φλ (µ, λ) ≥ 0 for all 0 ≤ µ ≤ λ < ∞ is a necessary but not a sufficient condition for joint

concavity.

Proposition 8. Joint concavity implies φλ ≥ 0, but φλ ≥ 0 does not imply joint concavity.

Proof. We prove this result in two steps.

Part 1 (joint concavity implies φλ ≥ 0). To derive a contradiction, suppose that there

exists a meeting technology for which φ(µ, λ) is concave in (µ, λ), but φλ(µ0, λ0) < 0 in some

point (µ0, λ0). Note that φµµ < 0 for all technologies that exhibit joint concavity, hence φ(µ, λ)

must also be concave in λ alone, i.e. φλλ ≤ 0. In other words, φλ(µ, λ) is a non-increasing

function of λ, such that φλ(µ0, λ) ≤ φλ(µ0, λ0) < 0 for all λ > λ0. This implies that φ(µ0, λ) ≤
φ(µ0, λ0) + φλ(µ0, λ0)(λ − λ0) for all λ > λ0. Let λ → ∞ and thus φλ(µ0, λ0)(λ − λ0) → −∞,

such that φ(µ0, λ) → −∞. Since φ is a probability, this leads to the required contradiction.

Hence, concavity of φ(µ, λ), i.e. joint concavity, implies φλ ≥ 0.

Part 2 (φλ ≥ 0 does not imply joint concavity). Consider the following technology:

Minimum Demand. This technology consists of two rounds. In the first round, the b

buyers in the submarket are allocated to the s sellers according to the urn-ball technology.

In the second round, each seller draws a minimum demand requirement and operates only

if the number of buyers that came to him weakly exceeds this minimum.6 We assume

that the minimum demand requirements follow a geometric distribution, such that the

minimum is weakly less than n ∈ N1 with probability 1− (1− ψ)n for 0 < ψ < 1. Hence,

Pn(λ) = e−λ λ
n

n!
(1− (1− ψ)n) for n ∈ N1 and P0 (λ) = 1−

∑∞
n=1 Pn (λ) = e−ψλ.

6Geromichalos (2012) analyzes minimum demand requirements in a different context. Minimum class size
requirements are also common in the matching between students and schools.
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This technology gives φ (µ, λ) = 1−e−µ−e−ψλ+e−λψ−µ(1−ψ). Hence, φλ = ψe−ψλ
(
1− e−µ(1−ψ)

)
,

which is strictly positive. However, the determinant of the Hessian of φ, evaluated in µ = 0,

equals −ψ2(1−ψ)2e−2λψ < 0, which means that φ is not concave. Hence, φλ ≥ 0 does not imply

joint concavity.

I Urn-Ball with Capacity Constraints

A particularly intuitive class of meeting technologies is the following.7

Urn-Ball with Capacity Constraints. Meetings between buyers and sellers are governed

by an urn-ball technology, except for the fact that each seller can meet at most L ∈ N1

buyers. That is,

Pn (λ) =


e−λ λ

n

n!
for n ∈ 0, . . . , L∑∞

i=L e
−λ λi

i!
for n = L

0 for n ∈ {L+ 1, L+ 2, . . .}.

(25)

Clearly, if L → ∞, then this technology reduces to standard urn-ball, which satisfies joint

concavity, such that perfect pooling is optimal for any F and Λ. However, for any L <∞, joint

concavity is violated, as the following lemma establishes.

Lemma 4. For any L <∞, the meeting technology (25) violates joint concavity.

Proof. Note that

φ (µ, λ) = 1−
L∑
n=0

Pn (λ)
(

1− µ

λ

)n
= 1−

e−µΓ (L, λ− µ) +
(
1− µ

λ

)L
(Γ (L)− Γ (L, λ))

Γ (L)
,

where Γ (L) and Γ (L, λ) denote the Gamma function
∫∞
0
zL−1e−z dz and the upper incomplete

Gamma function
∫∞
λ
zL−1e−z dz, respectively. Taking the derivative with respect to λ yields

φλ(µ, λ) =
e−λµ

(
1− µ

λ

)L [
λL − eλL (Γ (L)− Γ (L, λ))

]
λ (λ− µ) Γ (L)

< 0,

7We thank Philipp Kircher for suggesting an analysis of this meeting technology.
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for any 0 < µ < λ, where the inequality follows from the fact that

λL − eλL (Γ (L)− Γ (L, λ)) = λL − eλL
∫ λ

0

e−zzL−1 dz = λL −
∫ λ

0

eλ−z dzL

=

∫ λ

0

(
1− eλ−z

)
dzL < 0.

By proposition 8, φλ < 0 implies that joint concavity is violated.

Given the violation of joint concavity, proposition 2 then directly implies that, for any

L < ∞, there exists an F and Λ such that perfect pooling is not optimal. However, it turns

out that one can prove an even stronger result: for any L < ∞, there exist F and Λ such

that perfect separation is optimal. The following proposition formalizes this by providing an

example.8

Proposition 9. If meetings are governed by (25) with L < ∞, there exist F and Λ for which

the planner creates a separate submarket for each type of buyer.

Proof. Consider a two-point distribution with support {x1 = 0, x2 > 0}. By lemma 1, surplus

in a submarket with a queue µ of high-type buyers and a queue λ−µ of low-type buyers equals

x2φ (µ, λ). As established in the proof of lemma 4, the meeting technology satisfies φλ < 0.

Hence, as long as λ− µ > 0, a planner can increase surplus by removing low-type buyers from

the submarket and allocating them to their own submarket (which will not feature any sellers

as x1 = 0). In other words, perfect separation is optimal.

While we use a specific distribution to prove proposition 9, for a given L < ∞, other

distributions may exist for which perfect separation is optimal. A complete characterization

is not feasible, but one can show that the lower L is, the more prevalent perfect separation

becomes, in the following sense:

Proposition 10. For given F and Λ, if perfect separation is optimal for L′, then perfect sepa-

ration is optimal for all L < L′.

Proof. Denote by A an allocation of buyers to sellers and let S (A,L) be the surplus that

this allocation creates when the capacity constraint is L. Further, let AS denote the optimal

(perfectly separating) allocation when the capacity is L′. We then prove the desired result by

establishing that

S (AS, L) = S (AS, L
′) ≥ S (A,L′) ≥ S (A,L) (26)

8As the proof of the proposition reveals, this result does not only hold for (25), but for any meeting technology
violating joint concavity while satisfying φλ < 0.
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for any A. The first equality holds because the value of the capacity constraint is irrelevant

under perfect separation: surplus per seller is (1− P0 (λ))x, which is independent of L. The

second inequality follows from the assumption that perfect separation is optimal for meeting

technology L′. The final inequality holds because φ (µ, λ) is weakly increasing in L. Hence, by

lemma 1, the meeting technology L′ generates weakly more surplus than L for any allocation

(and strictly more if there is buyer heterogeneity in some submarket). Comparing the first and

last term in (26) yields S(AS, L) ≥ S(A,L) for any A, i.e., perfect separation is optimal for the

meeting technology L.
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