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B Social Planner

B.1 Boundary.

Submarket with Only Low-Type Buyers. Consider a submarket that has a queue λ with
only low-type buyers. Then, the marginal contribution of these buyers is T1(0, λ) = m′(λ),
while sellers’ marginal contribution is R(0, λ) = m(λ) − λm′(λ). For future reference, we can
therefore define a function g which maps the marginal contribution to surplus of sellers to that
of low-type buyers. That is, for any λ > 0, we have

T1(0, λ) = g(R(0, λ)).(B.1)

Alternatively, we can define g explicitly as

g(R) =

{
m′
(
(m− λm′)−1 (R)

)
for R ∈ [0, 1)

0 for R ≥ 1,

where (m− λm′)−1 is the inverse function of m − λm′. Since d
dλ
R(0, λ) = −λm′′(λ) and

d
dλ
T1(0, λ) = −m′′(λ), we have

g′(R) = −1

λ
if R = m(λ)− λm′(λ).(B.2)

When R ≥ 1, we have g′(R) = 0. For the stochastic capacity meeting technology with m(λ) =
λ/(1 + λ), one can verify that g(R) = (1−

√
R)2 when R ∈ [0, 1) and g(R) = 0 for R ≥ 1.

Proposition 2 tells us that pooling is optimal if S
′
(B1) ≥ 0, i.e. the marginal contribution of

low-type buyers is greater in the segment with the high-type buyers than in a separate segment
with an ε amount of low-type buyers and where sellers are optimally allocated. In the following,
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we are especially interested in the cutting-edge case where S
′
(B1) in equation (14) is exactly

zero. That is, (B2, B1 +B2) is a solution to the following equation

T1(µ, λ) = g(R(µ, λ)).(B.3)

In this case, the planner’s solution is pooling, but (B2, B1 + B2) lies on the boundary of the
pooling area.

Among the solutions to equation (B.3), we distinguish between two cases: i) R(µ, λ) < 1, and
ii) R(µ, λ) ≥ 1, which implies T1(µ, λ) = g(R(µ, λ)) = 0. In the first case, by the definition of g,
there exists a λ0 such that R(µ, λ) = R(0, λ0) and T1(µ, λ) = T1(0, λ0), which, by equations (4)
and (6), implies that

m(λ0)−m(λ)− (λ0 − λ)m′(λ0)

m′(λ)−m′(λ0)
=
φ(µ, λ)− µφµ(µ, λ)

−φλ(µ, λ)
(B.4)

By taking the derivative with respect to λ0, one can see that the right-hand side above is strictly
increasing in λ with its infimum being 0 as λ0 → λ and its supremum being (1−m(λ))/m′(λ),
the Mills ratio of function m(λ), as λ0 → ∞. For future use, we introduce a new function to
denote the solution of λ0 to the above equation. Specifically, we define

Λ(µ, λ) =

{
λ0 the solution in equation (B.4), if φ(µ,λ)−µφµ(µ,λ)

−φλ(µ,λ)
∈
(

0, 1−m(λ)
m′(λ)

)
∞, if φ(µ,λ)−µφµ(µ,λ)

−φλ(µ,λ)
≥ 1−m(λ)

m′(λ)

(B.5)

Note that Λ(µ, λ) is not well-defined at points (µ, λ) where φλ(µ, λ) > 0, i.e. the meeting
externalities are positive. To simplify exposition and to focus on the more realistic case where
buyers crowd each other out, we will therefore sometimes impose the following assumption.

Assumption 4. φλ(µ, λ) < 0 for 0 < µ ≤ λ.

Note that the inequality in this assumption is strict, which means that it is satisfied by
the stochastic capacity technology as long as σ < 1. Note that for any meeting technology,
φ(0, λ) = 0, which implies that φλ(0, λ) = 0 for any λ. Hence in the above assumption we
require µ > 0.

B.2 Special Cases

B.2.1 Stochastic Capacity Technology

Before solving the planner’s problem, we first calculate φ(µ, λ), the result of which is given by
the following lemma.

Lemma 8. For the stochastic capacity technology, we have

φ(µ, λ) =
µ

1 + σµ+ (1− σ)λ
.(B.6)

Proof. The seller’s meeting capacity nC follows a geometric distribution with support N1 and
mean (1− σ)−1. That is, P(nC = n) = (1− σ)σn−1 for n = 1, 2, . . . . Meanwhile, the number of
buyers who visit the seller, nA, also follows a geometric distribution but with support N0 and
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mean λ, i.e. P(nA = n) = 1
1+λ

( λ
1+λ

)n for n = 0, 1, 2, . . . . The actual number of buyers that the
seller meets, n, is then min{nC , nA} ∈ N0. Hence Pn(λ) ≡ P [min{nC , nA} = n |λ]. Since the
capacity constraint nC is at least one, P0(λ) = 1

1+λ
. For n ≥ 1, we have

Pn(λ) = (1− σ)σn−1
∞∑
j=n

1

1 + λ

(
λ

1 + λ

)j
+

1

1 + λ

(
λ

1 + λ

)n ∞∑
j=n+1

(1− σ)σj−1.

The first term on the right-hand side denotes the case where the number of buyers is (weakly)
larger than n while the meeting capacity equals n. The second term denotes the case where the
number of buyers equals n while the meeting capacity is strictly larger than n. Simplifying the
summations yields

Pn(λ) =

{
1

1+λ
for n = 0,

σn−1 1
1+λ

(
λ

1+λ

)n
(1 + (1− σ)λ) for n ∈ N1.

(B.7)

Substituting (B.7) into equation (1) and simplifying the result yields equation (B.6).

We now solve the planner’s problem analytically. We show that the outcome depends on
the extent to which sellers can meet multiple buyers, as determined by the value of σ. We
distinguish between three regions by specifying two cutoff values for σ, i.e. σ0(x2) and σ1(x2),
defined as

(B.8) σ0(x2) ≡
√
x2 − 1
√
x2 + 1

<

√
x2√

x2 + 1
≡ σ1(x2)

Low Sigma. We first consider the case in which σ ≤ σ0(x2). Using the functional form for
φ(µ, λ) given in (B.6), a straightforward calculation yields

H(µ, λ) =
(1− σ)2

4σ

(1 + λ)3

(1 + (1− σ)λ)(1 + σµ+ (1− σ)λ)
>

(1− σ)2

4σ
≥ 1

x2 − 1
,(B.9)

where the first inequality follows because the second factor in H(µ, λ) is strictly larger than 1,
and the second inequality is implied by σ ≤ σ0(x2). Consequently, the second-order condition
(8) can never be satisfied in this case, i.e. a submarket (µ, λ) where 0 < µ < λ cannot be part
of the planner’s solution. Instead, perfect separation is obtained: one submarket contains all
high-type buyers and another submarket contains all low-type buyers.

The allocation of sellers depends on their marginal contribution to surplus, which equals

R(µ, λ) =
(x2 − 1)µ(σµ+ (1− σ)λ)

(1 + σµ+ (1− σ)λ)2
+

λ2

(1 + λ)2
.(B.10)

If R(B2, B2) ≥ 1, then the planner will allocate all sellers to the submarket with high-type
buyers; otherwise both submarkets will be active.

Intermediate Sigma. We now consider the case σ ∈ (σ0(x2), σ1(x2)], which is illustrated in
Figure 3a. The key object for determining the planner’s solution is the marginal contribution
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to surplus of low-type buyers, i.e.

T1(µ, λ) =
1

(1 + λ)2
− (x2 − 1)(1− σ)µ

(1 + σµ+ (1− σ)λ)2
.(B.11)

First, we are interested in combinations of µ and λ for which T1(µ, λ) = 0, as this is the
minimum requirement for a submarket with high-type buyers to also contains low-type buyers.
Straightforward algebra shows that, for any (x2− 1)−1(1− σ) ≤ µ ≤ (x2− 1)−1(1− σ)−1, there
exists a unique λ such that T1(µ, λ) = 0. The locus of these points is represented by the green
curves in Figure 3a and 3b. Low-type buyers’ contribution to surplus is negative in points above
this curve, which therefore cannot be part of the planner’s solution.

Next, we are interested in the combinations of µ and λ for which T1(µ, λ) = g(R(µ, λ)), as
this is where the planner is indifferent between keeping low-type buyers in the submarket and
sending them (with an optimal number of sellers) to a separate submarket. Using (B.1), (B.9)
and (B.11) we can solve for µ as a function of λ, i.e.

µ =

√
(x2 − 1)(1 + λ)√

(x2 − 1)(1 + λ)− 2
√
σ
− 1 + (1− σ)λ

σ
.(B.12)

This solution is represented by the solid blue curve AB in Figure 3a; sending some low-type
buyers and sellers to form a new submarket is beneficial right but not left of this curve. The
end points of the curve, i.e. point A = (λA, 0) on the horizontal axis and point B = (λB, λB) on
the diagonal, can be obtained by solving (B.12) for µ = 0 and µ = λ, respectively. The latter

yields λB = σ
(1+
√
x2)√

x2−1 − 1.

For every point on the segment AB, there exists—by the definition of g—a corresponding
point (λ0, 0) on the horizontal axis with the same marginal contributions of sellers and low-type
buyers, i.e. R(µ, λ) = R(0, λ0) and T1(µ, λ) = T1(0, λ0) where λ0 is given explicitly by the
function Λ(µ, λ) defined in (B.5) in Appendix B.1. As we move from A to B, this corresponding
point moves from A to C = (λC , 0), where λC = Λ(λB, λB). The thresholds σ0(x2) and σ1(x2)
are determined by the location of point C: as σ ↘ σ0(x2), point C approaches (0, 0); in contrast,
when σ ↗ σ1(x2), then λC ↗∞.

We have thus fully characterized the case where the planner’s solution consists of two active
submarkets and one of two contains both types of buyers, which is the brown area in Figure 3a.
After establishing the boundaries for this case, the other two cases (complete pooling and
compete separation) are also determined accordingly.

High Sigma. Finally, we consider the case σ > σ1(x2), which is illustrated in Figure 3b.
The analysis is quite similar to the case with intermediate sigma. One key difference, however,
is that point B no longer lies on the diagonal but on the green curve where T1(µ, λ) = 0.
As a result, another point plays an important role: the intersection between the green curve
T1(µ, λ) = 0 and the diagonal. This intersection is point D in Figure 3b. Note that at any
point on the segment BD of the green curve, we have T1(µ, λ) = 0 and R(µ, λ) ≥ 1. After fully
characterizing the brown area (two active submarkets where one of two contains both types
of buyers) and yellow area (two submarkets where one contains both types of buyers and the
other contains only low-type buyers and no sellers or high-type buyers) in Figure 3b, the other
two areas (complete pooling and compete separation) are determined accordingly. See the main
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text for a detailed description.

B.2.2 Fixed Capacity

As an alternative to the stochastic capacity technology, we consider the following fixed capac-
ity meeting technology. The number of buyers that try to reach a particular seller follows
a geometric distribution but the maximum number of buyers a seller can meet is 2. Thus,
Pn(λ) = ( 1

1+λ
)
(

λ
1+λ

)n
for n < 2, and P2(λ) = 1− P0(λ)− P1(λ). In this case, the function φ is

given by

φ(µ, λ) =
µ(1 + 2λ− µ)

(1 + λ)2
(B.13)

By equations (6) and (4), we have

R(µ, λ) =
2(x2 − 1)λ2µ− (x2 − 1)(λ− 1)µ2 + (λ+ 1)λ2

(λ+ 1)3
(B.14)

T1(µ, λ) =
1

(1 + λ)2
− (x2 − 1)

2µ(λ− µ)

(1 + λ)3
(B.15)

To solve the planner’s problem, we first calculate the function H(µ, λ) defined by equa-
tion (8), which is given by

H(µ, λ) =
(λ− µ)2 − µ

1 + λ

This is a quadratic equation in µ. Note that H(0, λ) > 0 and H(λ, λ) < 0, which implies that
the equation H(µ, λ) = 1/(x2 − 1) has a unique root of µ, which is given by,

µ = h(λ) ≡ 1 + 2λ

2
− 1

2

√
1 + 4λ+ 4

1 + λ

(x2 − 1)
with λ ≥ λA(B.16)

where λA is the root of h(λ) = 0 and is given by

λA =
1 +

√
1 + 4(x2 − 1)

2(x2 − 1)
.(B.17)

The curve h(λ) is represented by the red curve in Figure 1 where we set (x2 − 1) = 1. The
Hessian matrix is negative definitive in the area to left of the red curve; the surplus function
S(µ, λ) is locally concave at any point in this area.

Next, we proceed to solve equation (B.3). First, consider the equation T1(µ, λ) = 0. By
equation (B.15), for any given µ there exists a unique λ such that T1(µ, λ) = 0 (the converse is
false), and the solution is simply

λ = µ+
1 + µ

2(x2 − 1)µ− 1
, where µ >

1

2(x2 − 1)
(B.18)

The above function is represented by the green curve in Figure 1. Note that the upper branch
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Figure 1: Fixed capacity with x2 = 2

approaches asymptotically to the diagonal line, and the lower branch approaches asymptotically
to the horizontal line µ = 1/(2(x2 − 1)). When µ < 1/(2(x2 − 1)), T1(µ, λ) is always positive.
A point (µ0, λ0) satisfies T1(µ0, λ0) ≥ 0 if and only if it lies to the left of the green curve.

Next, note that

R(0, λ) = m(λ)− λm′(λ) =

(
λ

1 + λ

)2

, and T1(0, λ) = m′(λ) =

(
1

1 + λ

)2

which implies that

g(R) = (1−
√
R)2(B.19)

We plug equations (B.14), (B.15), and (B.19) into equation (B.3). After some rearrangements,
we can find the solution, which is given by the following.

λ =
1 + (x2 − 1)µ+

√
1 + 4(x2 − 1) + 2(x2 − 1)µ

2(x2 − 1)
, where 0 ≤ µ ≤ µB(B.20)

and

µB =
3 +

√
9 + 16(x2 − 1)

4(x2 − 1)

The above function, (B.20), is represented by the solid blue curve AB in Figure 1. It intersects
with the curve T1(µ, λ) = 0, equation (B.18), at point (λB, µB), which is represented by Point
B in Figure 1. At Point B, T1(µB, λB) = 0 and R(µB, λB) = 1.

Setting µ = 0 in equation (B.20) gives λ =
1+
√

1+4(x2−1)
2(x2−1) , which is exactly point A from

equation (B.17), the same point where h(λ) crosses the x-axis. This is no coincidence; it holds
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for general meeting technologies. To see why, consider point S1 that lies on the curve AB in
Figure 1. It has a corresponding point S3 on the x-axis. The marginal contributions to surplus of
sellers and of the low-type buyers are the same between the two points. Therefore, by Lemma 5,
S1 must lie to the left of the red curve where the determinant of the Hessian matrix is 0. Since
S1 is an arbitrary point on the curve AB, this implies that the entire curve AB must lie to the
left of the red curve. As point S3 moves towards point A, S2 and hence S1 also move towards
point A. In the end, all three points coincide at point A, which then implies that the blue and
the red curve intersect at the same point on the x-axis.

The above analysis has pinned down the boundaries of the relevant regions. The planner’s
solution is summarized by the following. Note that they satisfy the first-order conditions and
are hence optimal by Proposition 2.

Suppose that (B1 + B2, B2) belongs to the blue area. Assume pooling initially, then the
marginal contribution of the low-type buyers is negative. Therefore, the planner will move the
low-type buyers to a second submarket and the queue in the first submarket will move horizon-
tally to the left till it reaches the green curve BD. At that point, there is one active submarket
where the marginal contribution of the low-type buyers is 0 and the marginal contribution of
sellers is larger than 1, and one idle submarket with only the low-type buyers.

Suppose (B1 + B2, B2) belongs to the brown area. As we mentioned before, for each point
(λ, µ) on the curve AB, there is a corresponding point on the x-axis such that R and T1 are the
same between the two. Formally, the point is given by (Λ(µ, λ), 0), where Λ(µ, λ) is defined by
equation (B.5). As we move from point A to point B, the corresponding point on the x-axis
moves from point A to infinity. The convex combinations between points on AB and their
corresponding point on x-axis cover the whole brown area. For each point in the brown area,
after representing it as a convex combination between a point on AB and its corresponding point
on the x-axis, the first-order condition of the planner’s problem is satisfied by construction, and
we have the optimum: two active submarkets where the queue in the first submarket must lie
on the AB curve (for example point S1) and the second submarket contains some sellers and
low-type buyers (for example point S3).

If (B1 + B2, B2) belongs to the white area, then the optimum is pooling. Note that curve
AB divides the area where T1(µ, λ) ≥ 0 into two disconnected areas: T1(µ, λ) > g(R(µ, λ)) and
T1(µ, λ) < g(R(µ, λ)), with curve AB being the boundary. The white area is the former, and it
is not socially beneficial to even move an ε amount of low-type buyers to a second submarket.
Thus the optimum is pooling.

B.3 Comparative Statics

B.3.1 Changes in Screening Capacity

Analogous to the stochastic capacity technology case, we assume that the meeting technology
is indexed by a parameter σ. To highlight the dependence of φ, R, T1 and S

′
(B1) on σ, we

append it to the arguments of these functions and write φ(µ, λ, σ), etc. We make the following
assumption about how φ varies with σ.

Assumption 5. For any µ and λ, ∂
∂σ
φ(µ, λ, σ) ≥ 0, and ∂

∂σ
φ(λ, λ, σ) = 0.

Note that the above assumption holds trivially for the stochastic capacity technology. The
first part of this assumption states that a higher σ leads to a higher probability of meeting

7



at least one high-type buyer. The second part states that the probability that a seller meets
at least one buyer is independent of σ. In other words, a higher σ makes it easier to identify
certain buyers while holding the overall matching rate constant. Because of the second part of
the above assumption, we can continue to write m(λ) ≡ φ(λ, λ, σ).

We first consider the optimality of complete separation. As the following proposition estab-
lishes, Assumption 5 implies that if—for a given endowment of buyers B1 and B2 and a given
buyer value dispersion x2—complete separation is optimal for some σb, then it is also optimal
for all σa with σa < σb. That is, the parameter range for which complete separation is optimal
is shrinking with σ.

Proposition 8. Under Assumption 5, the area in which complete separation is optimal is
shrinking in σ.

Proof. Because m(λ) is independent of σ (Assumption 5), total surplus generated by complete
separation is independent of σ. To see this, suppose that the planner allocates α sellers to the
submarket of x2 buyers and the remaining sellers to the submarket of x1 buyers, then total
surplus is αm(B2

α
)(1 + (x2 − 1)) + (1 − α)m( B1

1−α), which is certainly independent of σ. Thus
conditional on complete separation, the optimal α, α∗, is also independent of σ.

Next, consider a general allocation with L submarkets. When σ = σb, by assumption we
have α∗m(B2

α∗
)(1+(x2−1))+(1−α∗)m( B1

1−α∗ ) ≥
∑L

`=1 α
`S(µ`, λ`, σb), where S(µ`, λ`, σb) is given

by equation (3) and now depends also on σ. Since for any µ and λ, φ(µ, λ, σb) ≥ φ(µ, λ, σa),
we have S(µ, λ, σb) ≥ S(µ, λ, σa). Therefore, α∗m(B2

α∗
)(1 + (x2 − 1)) + (1 − α∗)m( B1

1−α∗ ) ≥∑L
`=1 α

`S(µ`, λ`, σb) ≥
∑L

`=1 α
`S(µ`, λ`, σa). Thus complete separation is also optimal for σ =

σa.

Next, we consider the case of complete pooling. We are interested in the following question:
if—for a given endowment of buyers B1 and B2 and a given buyer value dispersion x2—pooling is
optimal for some σ, then under what conditions will pooling continue to be optimal for σ+∆σ?

By Proposition 2, pooling is optimal at a given σ if and only if S
′
(B1, σ) ≥ 0. If this

inequality is strict, then by continuity with respect to σ, it continues to hold for σ+ ∆. Hence,
the more complicated case is the one in which S

′
(B1, σ) = 0; pooling then continues to be

optimal for σ + ∆σ if and only if S
′
(B1, σ + ∆σ) ≥ 0, which is equivalent to1

∂T1(µ, λ, σ)

∂σ
≥ g′(R(B2, B1 +B2, σ))

∂R(µ, λ, σ)

∂σ
.(B.21)

By equations (4) and (6), we have

∂T1(µ, λ, σ)

∂σ
= (x2 − 1)φλσ and

∂R(µ, λ, σ)

∂σ
= (x2 − 1) (φσ − µφµσ − λφλσ) .

Moreover, by equation (B.2), we have g′(R(B2, B1 +B2, σ)) = −1/Λ(µ, λ, σ), where Λ is defined
in B.5, and 1/∞ = 0 by convention. As a result, we can rewrite (B.21) as

1

Λ(µ, λ, σ)− λ
(φσ − µφµσ) ≥ −φλσ,(B.22)

1Note that the function g is independent of σ because m(λ) is independent of σ.
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which leads to the following result regarding the parameter range in which complete pooling is
optimal.

Proposition 9. Under Assumption 1, 2, 4, and 5, the area in which complete pooling is optimal
is expanding with σ if and only if (B.22) holds for all (µ, λ).

Proof. See above.

Next we show that (B.22) holds for the stochastic capacity technology, so the result applies.
Since φ(µ, λ) is given by equation (B.6), equation (B.4) which determines Λ(λz, λ, σ) can be

rewritten as

(1 + λ)(λ0 − λ)

2 + λ+ λ0
=

λzσ

1− σ

As a function of λ0, the supremum of the left-hand side is 1 + λ. Thus if λzσ
1−σ < 1 + λ, the

solution to the above equation is given by

Λ(λz, λ, σ) =
λ ((1 + λ)(1− σ) + σz(1 + λ))

(1 + λ)(1− σ)− λzσ
.(B.23)

Otherwise Λ(λz, λ, σ) =∞. To verify (B.22), we rewrite the above equation as

1

Λ(λz, λ, σ)− λ
=

(1 + λ)(1− σ)− λzσ
2σzλ(1 + λ)

.(B.24)

Note that when λzσ
1−σ > 1 + λ, the right-hand side of the above equation is still well-defined, and

it is negative (an underestimate of the true value, which is zero in this case).
Next, by equation (B.6) direct computation gives

φσ(λz, λ, σ)− λzφµσ(λz, λ, σ) = z2λ2
1 + (1 + σ − zσ)λ

(1 + (1− σ(1− z))λ)3
> 0

φλσ(λz, λ, σ) = zλ
1 + ((2− σ)z − (1− σ))λ

(1 + (1− σ(1− z))λ)3
.

From the above equations we can see that φσ − λzφµσ is always strictly positive, but the sign
of φλσ is indeterminate. A sufficient condition for (B.22) is thus we plug the right-hand side of
equation (B.24) into (B.22) irrespective of whether λzσ

1−σ > 1 + λ, which then gives

(φσ − µφµσ)

Λ(λz, λ, σ)− λ
+ φλσ = λz

1 + σ + (λ+ λσ(z − 1))2 + λ((2− σ)(1 + zσ) + σ2)

2(λ+ 1)σ(1 + (1− σ(1− z))λ)3

The right-hand side is always positive. We have thus proved (B.22) for this meeting technology.

B.3.2 Changes in the Dispersion of Buyer Values

To highlight the dependence of S
′
(B1), R and T1 on x2, we append it to the arguments of these

functions and write S
′
(B1, x2), etc.
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Consider complete pooling first. As established in equation (15), complete pooling is socially

optimal if and only if S
′
(B1, x2) ≥ 0. Pooling continues to be optimal for x′2 with x′2 < x2 if

and only if S
′
(B1, x

′
2) ≥ 0. Thus, for the pooling area to shrink as x2 increases, we need that

S
′
(B1, x2), as a function of x2, crosses the x-axis at most once and from above. As is well-

known in the literature, a sufficient condition for this is that ∂
∂x2
S
′
(B1, x2) < 0 if S

′
(B1, x2) = 0;

a necessary condition is that ∂
∂x2
S
′
(B1, x2) ≤ 0 if S

′
(B1, x2) = 0 (note the difference between

the strict and weak inequality). By equation (14),

∂

∂x2
S
′
(B1, x2) =

∂

∂x2
T1(B2, B2 +B1, x2)− g′(R(B2, B2 +B1, x2))

∂

∂x2
R(B2, B2 +B1, x2)

= φλ +
1

Λ(B2, B1 +B2)
(φ−B2φµ − (B1 +B2)φλ) ,(B.25)

where we have suppressed argument (B2, B1 + B2) from function φ, and function Λ is defined
by equation (B.5). It turns out that equation (B.5) implies that the above equation is always
strictly negative, and we have the following result.

Proposition 10. Under Assumption 1, 2, and 4, the area in which complete pooling is optimal
is shrinking in x2.

Note that Assumption 4 holds for the stochastic capacity technology, so the result applies.

Proof. If R(B2, B2 + B1, x2) ≥ 1, then g(R(B2, B2 + B1, x2)) = 0. S
′
(B1, x2) = 0 then implies

T1(B2, B2 + B1, x2) = g(R(B2, B2 + B1, x2)) = 0 and Λ(B2, B1 + B2) = ∞. Since T1(B2, B2 +
B1, x2) = m′(B2 +B1) + (x2 − 1)φλ(B2, B1 +B2), we have φλ(B2, B1 +B2) < 0. Thus (B.25) is
strictly negative.

Next, if R(B2, B2 +B1, x2) ∈ (0, 1), then g(R(B2, B2 +B1, x2)) ∈ (0, 1). Thus S
′
(B1, x2) = 0

implies that Λ(B2, B1 + B2) is defined by first row of equation (B.5) and we have φλ(B2, B1 +
B2) < 0. It is easy to see that (B.25) is strictly negative if and only if the following holds

−φλ
Λ

(
Λ− (B1 +B2)−

φ−B2φµ
−φλ

)
=
−φλ

Λ

(
Λ− (B1 +B2)−

m(Λ)−m(B1 +B2)− (Λ− (B1 +B2))m
′(Λ)

m′(B1 +B2)−m′(Λ)

)
=
−φλ

Λ

(
(Λ− (B1 +B2))m

′(B1 +B2)− (m(Λ)−m(B1 +B2))

m′(B1 +B2)−m′(Λ)

)
< 0.

where we have suppressed the arguments of Λ and φ. For the equality in the second line we used
equation (B.4), and the last inequality is because m is strictly concave and Λ > B1 +B2.

Next consider complete separation. The logic is similar to the case for pooling. By equa-
tion (15), complete separation is socially optimal if and only if S

′
(0, x2) ≤ 0. For the area of

complete separation to expand with x2, we need that S
′
(0, x2), as a function of x2, crosses the

x-axis at most once and from above.
Assume S

′
(0, x2) = 0. Let λH (resp. λL) be the queue length in the submarket of high-type

(resp. low-type) buyers at the optimum. These queue lengths are determined by two equations.
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First, sellers’ marginal contribution to surplus must be the same between the two submarkets,
i.e.

x2 (m(λH)− λHm′(λH)) = m(λL)− λLm′(λL),(B.26)

Second, summing the number of sellers across the two submarkets must yield the total measure
of sellers, i.e.

B2

λH
+
B1

λL
= 1.(B.27)

Next, consider the marginal contribution to surplus of low-type buyers in the two submarkets.
Since S

′
(0, x2) = 0, we have

m′(λH) + (x2 − 1)φλ(λH , λH) = m′(λL)(B.28)

where the left- and the right-hand denotes the marginal contribution of a low-type buyer in the
submarket with high-type and low-type buyers, respectively.2

Now suppose that x2 increases to x′2. We want to rule out the possibility that S
′
(0, x′2) =

0. Suppose otherwise. Then at x′2, the new queue lengths λ′H and λ′L also satisfy equa-
tions (B.26), (B.27), and (B.28). Note that equations (B.27) and (B.28) are special cases
of equation (6) and (4), respectively. As before, we can combine equations (B.27) and (B.28) to
eliminate x2 and the resulting equation is simply (B.4), where the correspondence is µ = λ = λH
and λ0 = λL. Thus we have λL = Λ(λH , λH) and λ′L = Λ(λ′H , λ

′
H), where Λ(µ, λ) is defined by

equation (B.5) and is independent of x2.
Conditional on full separation, the allocation of sellers is completely determined by equa-

tion (B.26). When x2 increases to x′2, more sellers will vist the submarket with high-type buyers,
which then implies that λ′H < λH < λL < λ′L. To rule out that λ′H and λ′L are also a solution to
equation (B.28), a sufficient and necessary condition is simply that Λ(µ, µ) is weakly increasing
in µ, which then implies that if λ′H < λH , then λ′L = Λ(λ′H , λ

′
H) ≤ Λ(λH , λH) = λL, which

contradicts the above assertion that λ′L > λL. This leads to the following assumption.

Assumption 6. Λ(µ, µ), which is defined by equation (B.5), is (weakly) increasing in µ.

In equation (B.23), we give an explicit expression for Λ(µ, λ) for the stochastic capacity
technology, which verifies that the above assumption is satisfied.

We then have the following result.

Proposition 11. Under Assumption 1, 2, 4, and 6, the area in which full separation is optimal
is expanding with x2.

Proof. As we explained before in Proposition 10, Assumption 6 ensures that S
′
(0, x2) crosses

the x-axis at most once. We now prove that if that is the case, S
′
(0, x2) must cross the x-axis

from above. Suppose otherwise. Then S
′
(0, x2) = 0 for some x2, and S

′
(0, x′2) > 0 for all

x′2 > x2. As we mentioned before, more sellers will flow into the submarket of x2 buyers as we
increase x2, and there exists some x2∗ such that the solution to equations (B.26) and (B.27) is

2Note that although the submarket with high-type buyers does not contain low-type buyers, we can still
calculate the effect on surplus of a marginal increase in the number of low-type buyers.
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λH = B2 and λL =∞. If we increase x2 further, then λH will stay constant and the right-hand
side of (B.28) will start decreasing linearly. So S

′
(0, x2) can not stay positive for sufficiently

large x2, and we have a contradiction.

C Uniqueness of Beliefs

The efficiency result in Section 4 assumes that sellers are optimistic. Without this assumption,
it is not clear how sellers should evaluate the expected payoff of deviations if multiple queues
are compatible with market utility. Here, we show that such a scenario is rather special in
the sense that—under mild restrictions on the meeting technology—the solution to the market
utility condition is in fact unique, rendering the optimism assumption redundant.

Uniqueness. The following proposition then presents our result regarding uniqueness of the
beliefs for a seller posting a second-price auction with a reserve price. To avoid the situation
where the optimal response of low-type buyers is indeterminate, we assume that their market
utility is strictly positive.

Proposition 12. Assume that U1 > 0. Under assumptions 1 and 3, for each seller posting a
second-price auction with a reserve price r, there is a unique queue (µ, λ) compatible with the
market utility function. Furthermore, for two sellers posting reserve prices ra and rb, it holds
that λa > λb if and only if ra < rb.

Proof. Our proof consists of two parts: i) ra < rb ⇔ λa > λb, and ii) the queue length λ
determines the whole queue uniquely. Denote by V i

k the expected payoff of xk buyers from
visiting queue i where k = 1, 2 and i = a, b.

For i), we first prove ra < rb ⇒ λa > λb. Suppose otherwise that λa ≤ λb. We distinguish
between two cases, ra < 1 and ra ≥ 1. First, consider the case ra ≥ 1. Then x1 buyers will not
visit the two sellers since their market utility is strictly positive, so that both queues contain
only x2 buyers, and V a

2 = Q1(λ
a)(x2 − ra) > Q1(λ

b)(x2 − ra) ≥ Q1(λ
b)(x2 − rb) = V b

2 . We then
reach a contradiction. Consider next ra < 1. Then by a similar logic, we have

V a
1 = Q1(λ

a)(1− ra) > max(Q1(λ
b)(1− rb), 0) = V b

1

Thus x1 buyers strictly prefer queue a, which implies that queue b does not contain x1 buyers.
Note that V a

2 ≥ Q1(λ
a)(x2 − ra) > Q1(λ

b)(x2 − rb) = V b
2 , where the first inequality is because

queue a may contain x1 buyers and an x2 buyer may enjoy a positive payoff even when he is not
the only buyer showing up, the second inequality follows the same logic as above, and the last
equality is because queue b only contains x2 buyers. Therefore, x2 buyers also strictly prefer
queue a and we reach a contradiction again. The other direction is proved similarly. Thus
ra < rb ⇔ λa > λb.

For ii), suppose otherwise that there are two different queues a and b with the same length
λ that are compatible with the auction with reserve price r. Without loss of generality, set
0 ≤ µa < µb ≤ λ. Note that V a

1 = V b
1 = Q1(λ)(x − r) ≡ V1 and the expected payoff of

an x2 buyer from queue i is V i
2 = V1 + φµ(µi, λ)(x2 − 1) (see the proof of Proposition 5 for

the derivation of this equation). If P0(λ) + P1(λ) < 1, then φ(µ, λ) is strictly concave in µ,
which implies that V a

2 > V b
2 which gives the desired contradiction. If P0(λ) + P1(λ) = 1, then
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φµ(µ, λ) = Q1(λ), independent of µ, and V a
2 = V b

2 . Note that since Q1(λ)(x2 − 1) = (U2 − U1),
and r = 1− U1/Q1(λ), both λ and r are uniquely determined for given market utilities U1 and
U2. Thus it is a knife-edge case, and our statement is true for all r expect one special value. But
note i) this knife-edge phenomenon only occurs because buyer types are discrete, and ii) even
in our discrete buyer type framework, this knife-edge reserve price r will never be adopted by
sellers because by either increasing or decreasing the reserve price, sellers can obtain a strictly
higher profit.

If both sellers attract low-type buyers, then the expected payoffs for low-type buyers from
visiting any of the two sellers must be the same: Q1(λ

a)(1− ra) = Q1(λ
b)(1− rb), which implies

that λa > λb if and only if ra < rb, since Q1(λ) is strictly decreasing by Assumption 3. When
one seller attracts low-type buyers and the other does not, the latter seller must have posted a
high reserve price implying a shorter queue without low-type buyers.

Things are slightly more complicated when sellers post a second-price auction with an entry
fee. Below, we introduce one weak additional restriction on the meeting technology, which is
sufficient to guarantee that there exists a monotonic relation between meeting fees and queue
lengths. This implies that there exists a unique queue that is compatible with the market utility
function when sellers post an auction with an entry fee.

Assumption 7. (1−Q0(λ))/Q1(λ) is weakly increasing in λ.

If we rewrite (1−Q0(λ))/Q1(λ) as 1 +
∑∞

k=2Qk(λ)/Q1(λ), then this assumption states that
with a higher buyer-seller ratio, it is relatively more likely that a buyer will meet competitors
in an auction rather than being alone.

Proposition 13. Under Assumptions 1, 3, and 7, for each seller posting an auction with entry
fee t, there is a unique queue (µ, λ) compatible with the market utility function. Furthermore,
for two sellers posting entry fees ta and tb, it holds that λa > λb if and only if ta < tb.

Proof. The proof is similar to that of Proposition 12 and consists of two parts: i) ta < tb ⇔
λa > λb, and ii) the queue length λ determines the whole queue uniquely. Note that part ii) is
exactly the same as that of Proposition 12 so we only need to consider part i).

For i), we first prove ta < tb ⇒ λa > λb. Suppose otherwise that λa ≤ λb. We distinguish
two cases, ta < 0 and ta ≥ 0. First, consider the case ta < 0 (entry subsidy). As before, denote
by V i

k the expected payoff of xk buyers from a queue i where k = 1, 2 and i = a, b. Then, we
have

V a
1 = Q1(λ

a)− (1−Q0(λ
a))ta > Q1(λ

b)− (1−Q0(λ
a))ta

≥ Q1(λ
b)− (1−Q0(λ

b))ta

≥ Q1(λ
b)− (1−Q0(λ

b))tb = V b
1

where the first inequality is because Q1(λ) is strictly decreasing, the second inequality is because
1 − Q0(λ) is decreasing and ta < 0, and the final inequality follows from the assumption that
ta < tb. Thus x1 buyers strictly prefer queue a and queue b does not contain x2 buyers. However,
V a
2 ≥ Q1(λ

a) − (1 − Q0(λ
a))ta > Q1(λ

b)x2 − (1 − Q0(λ
b))tb = V b

2 , where the first inequality is
because queue a may contain x1 buyers and an x2 buyer may enjoy a positive payoff even when
he is not the only buyer showing up, the second inequality follows the same logic as above, and
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the last equality is because queue b only contains x2 buyers. Thus, x2 buyers also strictly prefer
queue a, and we have a contradiction, which implies that λa > λb. The other direction is proved
similarly.

Next, we consider the case ta ≥ 0. Again suppose otherwise that λa ≤ λb. As above, we
have

V a
1 = Q1(λ

a)− (1−Q0(λ
a))ta = Q1(λ

a)

(
1− 1−Q0(λ

a)

Q1(λa)
ta
)
> Q1(λ

b)

(
1− 1−Q0(λ

a)

Q1(λa)
ta
)

≥ Q1(λ
b)

(
1− 1−Q0(λ

b)

Q1(λb)
ta
)
> Q1(λ

b)

(
1− 1−Q0(λ

b)

Q1(λb)
tb
)

= V b
1

where the inequality in the first line is because Q1(λ) is strictly decreasing, the first inequality in
the second line is because of Assumption 7, and the second inequality in the second line follows
from the assumption that ta < tb. The remaining arguments then follow exactly the same as for
the case ta < 0.

The intuition behind Proposition 13 is similar to that of Proposition 12 and readily follows
from the correspondence between the reserve price and entry fee: t = rQ1/(1 − Q0). Again,
consider two different queues a and b. We have shown in Proposition 12 that λa > λb if and
only if ra < rb. Under Assumption 7, the two inequalities jointly lead to ta < tb.

Hence, we have established that under mild restrictions on the meeting technology, there
exists only one queue which is compatible with market utility when sellers post an auction
with a reserve price or an entry fee. Consequently, the assumption that sellers are optimistic is
redundant for a large class of meeting technologies.

D N Buyer Types

D.1 Surplus: Proof of Lemma 3

For later use, we prove a slightly more general version of equation (23) with a general, possibly
continuous, buyer value distribution.

Lemma 9. Consider a submarket with a measure 1 of sellers and a measure λ of buyers whose
values are distributed according to F (x) with support [0, x]. Total surplus then equals

S(λ, F ) =

∫ x

0

φ(λ(1− F (x)), λ)dx.(D.1)

Proof. A direct proof. When a seller meets n ≥ 1 buyers, the surplus x from the meeting is
distributed according to F n (x). Thus the expected surplus per seller in the submarket is

S =
∞∑
n=1

Pn (λ)

∫ x

0

x dF n (x) =
∞∑
n=1

Pn (λ)

(
x−

∫ x

0

F n (x) dx

)
=
∞∑
n=1

Pn (λ)

(∫ x

0

1− F n (x) dx

)
,

where for the second equality we used integration by parts. Notice that F n(x) = 0 when n = 0.

We can add a zero term P0 (λ) (
∫ x
0

1 − F 0 (x) dx) to the RHS of the above equation and start
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the summation from n = 0. Therefore,

S =
∞∑
n=0

Pn (λ)

(∫ x

0

1− F n (x) dx

)
=

∫ x

0

1−
∞∑
n=0

Pn (λ)F n (x) dx

=

∫ x

0

φ(λ(1− F (x)), λ)dx

where for the second equality in the first line we use the Dominated Convergence Theorem to
interchange integration with summation and for the last equality we used the definition of φ
from equation (1).

An alternative approach. First recall the following fact from probability theory. Suppose
z is any random variable with cdf G(z) and z ∈ [0, x]. Then the expected value of z can be

written as Ez =
∫ x
0
zdG(z) =

∫ x
0

1−G(z)dz. This equation is well-known and can be proved by
integration by parts. We can use it to directly derive our surplus equation.

(Back to our surplus equation.) Let z be the highest valuation among all buyers that a seller
meets. The event z ≥ x happens if and only if the seller meets at least one buyer with valuation
higher than x, the probability of which is simply φ(λ(1 − F (x)), λ) by the construction of φ.

Therefore, by the above equation we have S = Ez =
∫ x
0
φ(λ(1− F (x)), λ)dx

In our discrete case, F (xj) = µj/µ1 for j = 1, . . . , N . The above equation reduces to (23).
Next, we calculate Tk(µ). Note that a marginal entrant of xk buyers increases µj, j =

1, . . . , k, by the same amount. Therefore,

Tk(µ) =
k∑
j=1

∂S(µ)

∂µj
=

k∑
j=1

(xj − xj−1)φµ(µj, µ1) +
N∑
j=1

(xj − xj−1)φλ(µj, µ1)

Because total surplus function is constant-returns-to-scale, if we add one more seller and λ
more buyers to the submarket while keeping the buyer value distribution unchanged, the added
surplus is simply S(λ, F ) in equation (D.1). Thus the effect of adding one more seller only is

R = S − λ∂S(λ, F )

∂λ
=

∫ x

0

φ(λ(1− F (x)), λ)− λ∂φ(λ(1− F (x)), λ)

∂λ
dx

=

∫ x

0

φ(λ(1− F (x)), λ)− λ(1− F (x))φµ(λ(1− F (x)), λ)− λφλ(λ(1− F (x)), λ)dx

which is simply equation (25) in the discrete-value case.
Finally, we consider the Hessian matrix. We denote it by H and its negative is then −H.

Also to save space, define φkµµ ≡ φµµ(µk, µ1), φ
k
µλ ≡ φµλ(µk, µ1), and φkλλ ≡ φλλ(µk, µ1) for

k = 1, . . . , N . We compute the Hessian matrix by directly calculating πij ≡ ∂π(µ)/∂µiµj. Thus
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we have

−H =


P ′′0 (µ1)x1 −

∑N
2 φλλ(µk, µ1)(xk − xk−1), −φ2

µλ(x2 − x1), · · · ,−φNµλ(xN − xN−1)
−φ2

µλ(x2 − x1), −φ2
µµ(x2 − x1), · · · , 0

...
..., · · · ,

...
−φNµλ(xN − xN−1), 0, · · · , −φNµµ(xN − xN−1))


By Sylvester’s criterion, −H is positive semidefinite if and only if the determinants of the

following N matrices are positive: the bottom right 1× 1 corner, the bottom right 2× 2 corner,
. . . , and −H itself. It is easy to see that the bottom right n × n corner with n < N is always
diagonal and the diagonal elements are always positive since φ(µ, λ) is always concave in µ.
Therefore, −H is positive semidefinite if and only if its determinant is positive.

To calculate the determinant of −H, for each n ≥ 2 we multiply column n by −φnµλ/φnµµ and
add it to column 1. The resulting matrix is

−π11 +
∑N

2

(φkµλ)
2

φkµµ
(xk − xk−1), −φ2

µλ(x2 − x1), · · · ,−φNµλ(xN − xN−1)
0, −φ2

µµ(x2 − x1), · · · , 0
...

..., · · · ,
...

0, 0, · · · , −φNµµ(xN − xN−1))


In this way, the matrix −H becomes upper triangular and its determinant can be easily calcu-
lated. The determinant is

det(−H) =

(
P ′′0 (µ1)x1 +

N∑
2

(
(φkµλ)

2

φkµµ
− φkλλ

)
(xk − xk−1)

)
ΠN

2 (−φkµµ(xk − xk−1))).

Again since φ(µ, λ) is always concave in µ, det(−H) > 0 is equivalent to that the first term in
the parenthesis at the right hand side is positive. Thus we have derived equation (26).

D.2 Incentive Compatibility and Payoffs

When a monopolistic seller offers a selling mechanism, incentive compatibility requires that
buyers’ expected utility is intimately connected with their trading probabilities (see Myerson,
1981; Riley and Samuelson, 1981). This logic can be extended to an environment with competing
sellers.3 In such an environment, the expected payoff that a buyer receives from visiting a
submarket is equal to what he would get at a monopolistic seller with a random number of
buyers as in Levin and Smith (1994). However, buyers must also choose which submarket
to visit and this depends on the posted mechanisms which in turn depends on the meeting
technology.

In our analysis, it will sometimes be useful to consider buyers with a value x that is not
in the set {x1, . . . , xN}, who thus have measure zero. To do so, we define an extended version
of the market utility function U(x), which represents the highest expected payoff that a buyer
with value x can achieve, such that Uk ≡ U(xk) for each k. Given any set of mechanisms
posted by sellers, denote the set of mechanisms that buyers of type x visit by Ωb(x), pick an

3See Peters (2013) for a similar treatment for an invariant meeting technology.

16



arbitrary ωb(x) ∈ Ωb(x) and denote by p(x, ωb(x)) the probability that a buyer of type x who
visits a mechanism ωb(x) trades. Of course, if buyers of type x choose to be inactive, then we
set ωb(x) = ∅ and p(x, ∅) = 0. The following Lemma then establishes the properties of the
market utility function. Its proof is closely related to the one in Myerson (1981).

Lemma 10. Given any set of mechanisms posted by sellers, p(x, ωb(x)) is non-decreasing and
the market utility function U(x) is convex, satisfying

U(x) = U(0) +

∫ x

0

p(z, ωb(z))dz.

Proof. The strategy of a buyer with value x is: (i) a probability distribution over the mechanisms
to visit and inactivity and (ii) a value to report when the mechanism is not inactivity. Given the
mechanisms posted by sellers, suppose that the set of mechanisms that a buyer with valuation
x visits is Ωb(x), and the probability that the buyer receives the object when visiting seller
ω ∈ Ωb(x) and reporting x by p(x, ω), with a corresponding expected payment t(x, ω).

First, we select one element ωb(z) ∈ Ωb(z) for each z. Then, by the incentive compatibility
constraint (ICC), for any x, z,

U(x) ≥ xp(z, ωb(z))− t(z, ωb(z)),(D.2)

i.e. buyers with valuation x are always better of following their equilibrium strategies than
mimicking any other type z. Therefore,U(x) = maxz∈[x1,xN ] xp(z, ω

b(z)) − t(z, ωb(z)). Hence,
U(x) is the supreme of a collection of affine functions and must therefore be convex.

Furthermore, we can rewrite equation (D.2) in the following way.

U(x) = xp(x, ωb(x))− t(x, ωb(x)) ≥ xp(z, ωb(z))− t(z, ωb(z))

= U(z) + p(z, ωb(z))(x− z).

So, p(x, ωb(x)) is the slope of a supporting line for the convex function U(x). Therefore,
p(x, ωb(x)) is a non-decreasing function, and it equals the derivative of U(x) almost everywhere.
The latter then implies the integral representation of U(x) in Lemma 10.

As the supremum of a collection of convex functions (expected payoffs from individual sub-
markets), the market utility function U(x) is always convex. Because of incentive compatibility,
a higher winning probability is associated with a higher expected payoff.

Buyers only visit sellers who offer them their market utility and the sellers are residual
claimants of the output. Competition forces sellers to post an efficient mechanism, i.e. a mech-
anism in which the buyer with the highest value trades if and only if his valuation exceeds that
of the seller. In other words, efficient mechanisms are the cheapest way to offer buyers their
market utility.

Consider a submarket with an efficient mechanism and a queue µ ≡ (µ1, . . . , µN) where
the lowest type of buyers visiting the submarket is ι. Consider a buyer with value x strictly
between xk−1 and xk with k ≥ ι + 1. Since the posted mechanism is efficient, his winning
probability is φµ(µk, µ1), which, by equation (2), is the probability that the buyer meets a
seller and has the highest value among all buyers who arrived at the seller. As in a monopolistic
auction, buyers’ expected value is a summation (or with continuous types, an integral) over their
winning probabilities. The expected value for the buyer is V (x) = Vk−1 + (x− xk−1)φµ(µk, µ1).
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Since V (x) must be continuous, the expected payoff for a buyer with valuation xk visiting this
submarket is Vk = Vk−1 + (xk − xk−1)φµ(µk, µ1), which then implies

Vk = Vι +
k∑

j=ι+1

(xj − xj−1)φµ(µj, µ1).(D.3)

The expected payoff for buyers in equation (D.3) is similar to the corresponding payoff in a
monopolistic auction. Equation (D.3) also shows that φµ(µk, µ1) and φµ(µk+1, µ1) are subgra-
dients at point xk for the market utility function U(x), since V (x) lies below U(x) and the
slope for V (x) with x ∈ (xk−1, xk) is φµ(µk, µ1), and the slope for V (x) with x ∈ (xk, xk+1) is
φµ(µk+1, µ1). Two special cases are worth mentioning. Suppose that the lowest and the highest
value of buyers who visit the submarket are x and x, respectively. Then Q1(µ1) = φµ(µ1, µ1)
and 1−Q0(µ1) = φµ(0, µ1) are subgradients at point x and x, respectively. A buyer with value
x > x will always trade as long as he successfully meets a seller, which happens with probability
1−Q0(µ1) = φµ(0, µ1).

Since the mechanism is assumed to be efficient, the expected seller value is given by

π = S(µ)−
N∑
k=ι

(µk − µk+1)Vk

=
N∑
k=ι

(xk − xk−1)φ(µk, µ1)−
N∑
k=ι

(µk − µk+1)

(
Vι +

k∑
j=ι+1

(xj − xj−1)φµ(µj, µ1)

)

= −µ1Vι +
N∑
k=ι

xk(φ(µk, µ1)− φ(µk+1, µ1))−
N∑

j=ι+1

µj(xj − xj−1)φµ(µj, µ1).

where in deriving the last equality we changed the order of summation. Rewriting the above
equation yields

π = −µ1Vι +
N+1∑
j=ι+1

(
xj−1 −

µjφµ(µj, µ1)(xj − xj−1)
φ(µj−1, µ1)− φ(µj, µ1)

)(
φ(µj−1, µ1)− φ(µj, µ1)

)
.(D.4)

To make the comparison with the classic auction literature more clear, we take the limit of
the discrete buyer value distribution so that it converges to a continuous distribution F with
density f . Then let λ ≡ µ1 and we have µj = λ(1 − F (xj)). Let xj = x and xj−1 = x − ∆x,
then the summand in equation (D.4) becomes(
x−∆x− λ(1− F (x))φµ(λ(1− F (x)), λ)∆x

φ(λ(1− F (x−∆x)), λ)− φ(λ(1− F (x)), λ)

)(
φ(λ(1− F (x−∆x)), λ)− φ(λ(1− F (x)), λ)

)
.

Letting ∆x→ 0, the first term becomes

x−∆x− λ(1− F (x))φµ(λ(1− F (x)), λ)∆x

φµ(λ(1− F (x)), λ)λf(x)∆x
→ x− 1− F (x)

f(x)
,

and the second term is the measure of the distribution function 1− φ(λ(1− F (x)), λ) between
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x and x+ ∆x. Therefore, we can rewrite equation (D.4) in the more familiar integral form

π = −λVι +

∫ xN

xι

(x− 1− F (x)

f(x)
)d (1− φ(λ(1− F (x)), λ)) ,(D.5)

where λ = µ1.
In a standard auction with n bidders, a seller’s expected payoff equals the virtual valuation

function integrated against the distribution of the highest valuation, see Myerson (1981). Our
setting is different in two ways: (i) because the buyer value distribution is discrete, the virtual
value function takes a slightly more complicated form, and (ii) the distribution of the highest
valuation of bidders depends on the meeting technology and is given by 1 − φ(µj, µ1), i.e. the
probability that there are no buyers with valuations above xj.

One may have expected that allowing for general meeting technologies would severely com-
plicate the payoff functions in (competing) auction theory. We have shown here that our alter-
native representation φ avoids such complications. In particular, agents’ expected payoffs retain
the same structure but simply depend on transformations of φ.

D.3 Efficiency

Equivalence. To prove constrained efficiency of equilibrium, we show again that even if sellers
can buy queues directly in a hypothetical competitive market, they cannot do better than in the
decentralized environment. As in the case of two buyer types (see Proposition 5, the following
proposition shows that the relaxed problem and the constrained problem of the sellers are
equivalent.

Proposition 14. Given that the market utility function is convex, any solution µ to the sell-
ers’ relaxed problem is compatible with an auction with an entry fee in the sellers’ constrained
problem, where the fee is given by

t = −
∑N

j=1(xj − xj−1)φλ(µj, µ1)

1−Q0(µ1)
.(D.6)

It is also compatible with an auction with a reserve price in the sellers’ constrained problem,
where the reserve price is given by

r = −
∑N

j=1(xj − xj−1)φλ(µj, µ1)

Q1(µ1)
.(D.7)

Hence, the directed search equilibrium is constrained efficient for any meeting technology.

Proof. In their relaxed problem, sellers select a queue µ directly in a hypothetical competitive
market. The expected payoff for a seller in this market is the difference between the surplus that
he creates and the price of the queue. Suppose that a queue µ solves sellers’ relaxed problem.
If queue µ contains buyers of value xk, then Tk(µ) = Uk, where Tk(µ) is given by equation (24);
if queue µ does not contain buyers of value xk (µk = µk+1), then Tk(µ) ≤ Uk.

Note that when a seller posts a second-price auction with entry fee and t is given by equa-
tion (21), note that Vι = Tι(µ), where ι is the lowest buyer value in queue µ. The important
observation is that by equation (24) and (D.3), for all k ≥ 1 we have Vk = Tk(µ), where Vk is
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the expected payoff of buyers with value xk from the submarket and is given by equation (D.3).
Thus µ is also compatible with a second-price auction with entry fee t in the sellers’ constrained
problem.

The case with the reserve price is similar except for one difference. When a seller posts a
second-price auction with entry fee t given by equation (21), Vk = Tk(µ) for k ≥ 1. But when
a seller posts a second-price auction with reserve price r given by equation (22), Vι = Tι(µ)
where ι is the lowest buyer value in queue µ. For k > ι, Vk is again given by equation (D.3)
and we have Vk = Tk(µ). For k < ι, things are slightly more complicated: For r < xk < xι,
Vk = Q1(µ1)(xk − r) = Vι − φµ(µ1, µ1)(xι − xk), which implies Vk = Tk(µ). For xk < r, Vk = 0
and Tk(µ) < 0. In this case buyers with value xk will not visit the submarket. Thus queue µ is
compatible with a second-price auction with reserve price r in the sellers’ constrained problem.

The sellers’ relaxed problem boils down to a competitive market for buyer types. Therefore,
the first welfare theorem applies and the equilibrium is efficient. Since the sellers’ constrained
problem is equivalent to the sellers’ relaxed problem, the directed search equilibrium is also
efficient.

D.4 Queues Across Submarkets: Proof of Proposition 6

Again suppose that at the optimum, there are L active submarkets, and the lowest buyer type
is x` and the highest buyer type is x`. Suppose that the marginal contribution to surplus of
xk buyers is T ∗k for k = 1, 2, . . . , N . Thus T ∗k = max(max`=1,...,L Tk(µ

`), 0), where Tk(µ
`) is the

marginal contribution to surplus of xk buyers in submarket ` and is given by equation (24).
In the following we write it as T `k to simplify notations. Of course, if submarket ` contains xk
buyers at the optimum, we must have T ∗k = T `k .

Step 1: Since φ(µ, λ) is always concave in µ, by equation (24) T `k is convex in xk for each `

in the following sense:
T `2−T `1
x2−x1 ≤

T `3−T `2
x3−x2 ≤ · · · ≤

T `N−T
`
N−1

xN−xN−1
(if buyer types are continuous, then we

would have the usual notion of convexity). Since T ∗k is the maximum of a collection of convex
functions, it is also convex.

Next, define k0 as the largest index k such that T ∗k = 0, or set k0 = 1 if T ∗1 > 0. Then we
show that T ∗k is strictly convex in the following sense: For k > k0 we have

T ∗k+1 − T ∗k
xk+1 − xk

>
T ∗k − T ∗k−1
xk − xk−1

.

To see this, note that since T ∗k > 0 for any i > i0, buyers of value xk must visit some submarket `
in which µ`k > µ`k+1, i.e. the queue length of buyers with value xk must be strictly positive in the
submarket. In this case, φµ(µ`k, µ

`
1) < φµ(µ`k+1, µ

`
1), T

`
k = T ∗k and T ∗k+1 ≥ T `k+1 and T ∗k−1 ≥ T `k−1,

which implies that

T ∗k+1 − T ∗k
xk+1 − xk

≥
T `k+1 − T `k
xk+1 − xk

= φµ(µ`k+1, µ
`
1) > φµ(µ`k, µ1) =

T `k − T `k−1
xk − xk−1

≥
T ∗k − T ∗k−1
xk − xk−1

.

Hence we have showed that T ∗k is strictly convex when i ≥ i0.
Step 2: Claim: If µa1 > µb1, then xa ≤ xb and xa ≤ xb. To see this, recall that Q1(µ1) =

φµ(µ1, µ1) by equation (2). By Assumption 3, µa1 > µb1 implies Q1(µ
b
1) > Q1(µ

a
1). Note that

by equation (24), that Q1(µ
`
1) is the slope of a supporting line (subgradient) for the function
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T `k and hence the function T ∗k at point x` for ` ∈ {a, b}. Because of the strict convexity of T ∗k
(see Step 1 of the proof), the subgradient determines point x` uniquely, and Q1(µ

b
1) > Q1(µ

a
1)

implies xb ≥ xa.
Similarly, recall that 1 − Q0(µ1) = φµ(0, µ1) by equation (2). By Assumption 3, µa1 > µb1

implies 1−Q0(µ
a
1) > 1−Q0(µ

b
1). Note that 1−Q0(µ

`
1) is a subgradient for the function T `k and

hence the function T ∗k at point x` for ` ∈ {a, b}. As before, the subgradient determines point x`

uniquely, and 1−Q0(µ
a
1) < 1−Q0(µ

b
1) implies xa ≤ xb.

Step 3: Claim: Suppose a submarket ` contains buyers of xk1 and xk2 with k2 > k1 + 1,
then it must also contain buyers in between, i.e. buyers of value xk with k1 < k < k2. To see
this, suppose otherwise (without loss of generality) that submarket ` contains no buyers with
values between xk1 and xk2 . Then µk1+1 = · · · = µk2 , which implies that T `k is a linear function
between xk1 and xk2 . We also know i) T `k = T ∗k for k = k1 and k2, and ii) from Step 1 that T ∗k
is a strictly convex function. The above two observations imply that T `k > T ∗k for k1 < k < k2,
which then leads to a contradiction.

Step 4: If xa ≤ xb, then the proposition is true automatically. In the following, we will
thus assume xb < xa. Therefore, we have xa ≤ xb < xa ≤ xb. We consider some xk with
xb < xk ≤ xa. By equation (24), T `k = T `k−1 + φµ(µ`k, µ

`
1)(xk − xk−1) for ` ∈ {a, b}. Note that

xk and xk−1 buyers visit both submarket a and b by Step 3, then T `k = T ∗k and T `k−1 = T ∗k−1 for
` = a or b. Therefore, we have

φµ (µak, µ
a
1) = φµ

(
µbk, µ

b
1

)
.(D.8)

We then prove the claim by contradiction. Suppose that µbk/µ
b
1 < µak/µ

a
1 for xb < xk ≤ xa. This

implies

φµ (µak, µ
a
1) < φµ

(
µa1
µbk
µb1
, µa1

)
< φµ

(
µb1
µbk
µb1
, µb1

)
= φµ

(
µbk, µ

b
1

)
,

where the first inequality is because φ (µ, µa1) is strictly concave in µ and the second is because
of Assumption 3. The above inequality is at odds with equation (D.8). Hence, we have reached
a contradiction.
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