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1 Introduction

Real-life markets display a large degree of heterogeneity in the way in which economic agents

meet and trade with each other: for example, in traditional bazaars, meetings between buyers

and sellers tend to be bilateral; in real estate markets, multiple buyers may bid on the same

house; and in labor markets, a typical vacancy receives a large number of applications but

only interviews a subset.1 Similarly, there is variation over time as the internet has made

it easier for agents to meet multiple potential trading partners simultaneously; prominent

examples of platforms utilizing this feature include eBay in the product market, Match.com

in the dating market, CareerBuilder in the labor market, and Google AdWords in the market

for online advertising.

In this paper, we present a search model to study how the way in which market par-

ticipants meet each other affects equilibrium outcomes, including trading mechanisms and

allocations. We focus on an environment in which identical sellers post mechanisms to com-

pete for buyers with ex-ante heterogeneous private valuations.2

Economic theory has been mostly silent on the question of how market participants get to

meet each other and how this meeting process affects equilibrium outcomes. This silence is

most apparent in work that sidesteps a detailed description of the meeting process altogether

by assuming a Walrasian equilibrium. Perhaps more surprisingly, the search literature—

which aims to analyze trade in the absence of a Walrasian auctioneer—does not provide

much more guidance: without much motivation, the vast majority of papers in this literature

simply assumes one of two specific meeting technologies: either meetings between agents are

one-to-one (bilateral) or they are n-to-1, where n follows a Poisson distribution (urn-ball).3

1See Geertz (1978) for a characterization of the market interaction at a bazaar, Han and Strange (2014)
for empirical evidence on bidding wars in real estate markets, and Wolthoff (2018) and Davis and de la Parra
(2017) for evidence on applications and interviews in the labor market.

2The fact that buyers know their valuation before visiting a seller distinguishes our work from Lester et al.
(2015). See below for a more detailed comparison.

3Bilateral meetings can be found in e.g., Albrecht and Jovanovic (1986), Moen (1997), Guerrieri et al.
(2010), and Menzio and Shi (2011). Urn-ball meetings are used in e.g., Peters (1997), Burdett et al. (2001),
Shimer (2005), Albrecht et al. (2014) and Auster and Gottardi (2017). In addition, some papers in the
mechanism design literature explore urn-ball meetings in a finite market, making n binomial rather than
Poisson, by allowing for entry of buyers into a monopolistic auction (e.g., Levin and Smith, 1994).
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This approach seems restrictive for a number of reasons. First, assuming a particular

meeting technology inevitably affects equilibrium outcomes like trading mechanisms or allo-

cations: within our environment, bilateral meetings give rise to a separating equilibrium in

which buyers sort themselves by type across different posted prices, while urn-ball meetings

lead to a pooling equilibrium in which trade is governed by auctions in which all buyers partic-

ipate (Eeckhout and Kircher, 2010b; Cai et al., 2017). Second, neither bilateral meetings nor

urn-ball meetings are necessarily an adequate description of real-life markets; in many cases

(e.g., in the labor market described above), it appears necessary to consider alternatives.

We aim to make progress by presenting a unified framework that allows for a wide class of

meeting technologies. The class of technologies that we consider allows for various degrees of

meeting externalities: a buyer meeting a seller may make it harder for the seller to meet other

buyers (as in the labor market, where an applicant may crowd out other, better applicants

if firms cannot screen everyone due to time constraints), or have no impact (as in internet

auctions), or even facilitate other meetings. The well-known bilateral and urn-ball meeting

technologies as well as other meeting technologies in the literature are all special cases of our

general setup.

Our framework thus allows us not only to clarify existing results but also to analyze

which of them carry over to our more general setting. For example, we establish that the

finding of Albrecht et al. (2012) that reserve prices are driven to sellers’ valuation in an

environment with competing auctions and ex-ante heterogeneous buyers only holds for some

meeting technologies but not for others, which complements a similar finding by Lester et al.

(2015) in an environment with ex-post buyer heterogeneity. In addition, we show that some

meeting technologies give rise to partial separation rather than complete pooling or complete

separation, which have been the focus of the literature so far (see Eeckhout and Kircher,

2010b; Cai et al., 2017).

The equilibrium mechanism that we identify includes both auctions without fees or explicit

reserve prices (when meetings are urn-ball) and posted prices (when meetings are bilateral)
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as special cases.4 Varying the degree of search frictions in our model thus changes the optimal

mechanism. This feature contrasts with much of the search literature, which assumes that

the trading mechanism (e.g., bilateral bargaining) is independent of the frictions. However,

changes in mechanisms due to changes in the meeting process are frequently observed in real-

life. For example, as soon as eBay provided a platform for sellers and buyers to meet, auctions

quickly gained popularity for the sale of second-hand products.5 Similarly, companies like

Upwork (previously oDesk) or Freelancer provide online platforms that facilitate many-to-

one meetings between employers from high-income countries and contractors from mainly

low-income countries.6 These platforms have created scope for wage mechanisms other than

bilateral bargaining. In particular, contractors apply to posted jobs by submitting a cover

letter and a bid indicating the compensation that they demand for the job, after which

procurers select one of the applicants.7 These examples nicely illustrate how a new technology

can affect the meeting process and how the market responds by adjusting the price or wage

mechanism accordingly.

Our paper makes three main contributions. First, we go further than the existing lit-

erature on competing mechanisms and characterize equilibrium for a wide class of meeting

technologies. The pioneering work in this area (McAfee, 1993; Peters, 1997; Peters and Sev-

erinov, 1997; Albrecht et al., 2014) has generally focused on urn-ball meetings. Eeckhout

and Kircher (2010b) were the first to show that the meeting technology matters for posted

mechanisms and market segmentation by contrasting two classes of technologies. Relative

4When meetings are bilateral, buyers either bid the reserve price or pay the entrance fee and bid 0; both
are equivalent to a posted price.

5Lucking-Reiley (2000) presents various statistics regarding the growing popularity of online auctions in
the late 1990s. Although Einav et al. (2017) argue that the popularity of auctions on eBay has declined
relative to posted prices in recent years, their study restricts attention to sellers selling multiple units of the
same product (mostly retail items). They acknowledge that auctions remain the trading mechanism of choice
for most sellers with a single unit, which is the case that we consider here. Various other platforms (e.g.,
Catawiki or LiveAuctioneers) continue to exclusively use auctions.

6See Agrawal et al. (2015) for a detailed description.
7A more exotic example from the dating market is the following case where Amir Pleasants, a

21-year woman from New Jersey invited 150 men on a Tinder date to meet in Union square where
she organized a pop-up dating competition where first all guys who were shorter than 5 foot 10
were eliminated and after a number of other rounds she ultimately selected a single winner. See
https://www.nytimes.com/2018/08/20/style/tinder-dating-scam-union-square.html
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to their work, we contribute by characterizing the equilibrium for a wider class of meeting

technologies and fully describing the different forms of market segmentation that may arise.

Lester et al. (2015) also provide a full characterization of equilibrium for arbitrary meeting

technologies, but in a simpler environment in which all buyers are ex ante identical and learn

their type only after meeting a seller, which results in all agents participating in the same

(sub)market in equilibrium. In contrast, models with ex ante heterogeneity, as we consider

here, yield very different equilibrium outcomes: buyers and sellers must determine with whom

they are willing to interact and multiple submarkets may arise.

In particular, we show that when a seller can meet multiple but not all buyers—so low-

type buyers may crowd out high-type buyers—partial market segmentation can arise: all

high-type buyers and a subset of the low-type buyers form a submarket, while the remaining

low-type buyers form a separate submarket. Whether this outcome is obtained depends

both on the meeting technology and the distribution of buyer types. We provide a precise

characterization of when each type of equilibrium (complete pooling, complete separation,

partial pooling, or low-type buyers staying out of the market) arises. Motivated by the above

real-world life examples, we then show how the meeting technology affects the optimal selling

mechanism and market segmentation. For example, we discuss how the equilibrium changes

when sellers can screen more buyers or when they can better distinguish the low-valuation

from the high-valuation buyers. We also consider how a change in the high type’s valuation

affects equilibrium. This exercise could be interpreted as an increase in the dispersion of

buyers’ valuations.

Cai et al. (2017) apply the tools that are developed in this paper (which we discuss in

more detail below) to derive conditions on the meeting technology for which the equilibrium

features either perfect separation or perfect pooling of different types of buyers. They find

that perfect separation occurs if and only if meetings are bilateral, while perfect pooling

arises if and only if the meeting technology is jointly concave.8 They do not discuss more

8They also relate those conditions to other properties of meeting technologies that have been derived in
the literature, like invariance Lester et al. (2015) and non-rivalry Eeckhout and Kircher (2010b).
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realistic meeting technologies where sellers can meet multiple but not all buyers, which are

the main focus of our work here. We show that the partial segmentation that may arise

for such technologies nests the perfect separation and perfect pooling in Cai et al. (2017) as

special cases.

Second, we make a methodological contribution. In particular, we introduce an alternative

representation of meeting technologies which keeps the analysis tractable. This representation

is the probability φ that a seller meets at least one buyer from a given subset; usually, the

relevant subset consists of buyers with a valuation above a certain threshold. This probability

depends on two arguments: the total queue length λ that the seller faces as well as the queue

of buyers µ belonging to the subset. We show that using φ instead of the more standard

representation of meeting technologies offers a few important advantages. First, the partial

derivatives of φ have natural interpretations corresponding to key variables such as a buyer’s

winning probability and the degree of meeting externalities. Second, expected surplus is

linear in φ, which makes it straightforward to relate the objective of a planner to properties

of φ.9 Finally, the use of φ guarantees that the expression for a seller’s payoff retains a

similar structure as in the seminal work by Myerson (1981), i.e., as the integral of buyers’

virtual valuation with respect to the distribution of highest valuations, with the difference

that this distribution now also depends on how likely each buyer is to meet a seller which in

turn depends on the meeting technology. In other words, the introduction of φ adds a lot of

generality to the competing mechanism literature at relatively low cost.

Finally, our efficiency result contributes to the literature on directed search. In particular,

it extends the result by Albrecht et al. (2014) that all agents earn their marginal contribution

to surplus in the special case in which meetings are urn-ball and sellers post regular auctions.10

In that environment, there are no meeting externalities, so a buyer contributes to surplus only

if he has the highest valuation among all buyers meeting a seller. The general case is more

complicated because now a buyer can also impose positive or negative meeting externalities on

9Cai et al. (2017) exploit this feature in their work.
10Although we assume a fixed number of sellers to simplify exposition, our results carry over to an envi-

ronment with free entry of sellers, as in Albrecht et al. (2014), in a straightforward manner.
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meetings between the seller and other buyers, which should be reflected in the equilibrium

payoffs. We show that an appropriate reserve price or meeting fee/subsidy is both profit

maximizing and socially efficient.11 As a result, all agents continue to receive their marginal

contribution to surplus and efficiency survives.

After describing the environment and the alternative representation of the meeting tech-

nology in detail in Section 2, we start our analysis in Section 3 by solving the problem of

a social planner. It provides a full characterization of the planner’s solution and discusses

comparative statics. Section 4 shows how the planner’s solution can be decentralized. In

Section 5, we show how our results can be generalized to N buyer types.

2 Model

2.1 Environment

Agents and Preferences. A static economy is populated by risk-neutral buyers and sell-

ers. Each seller possesses a single unit of an indivisible good, for which each buyer has unit

demand. All sellers have the same valuation for their good, which we normalize to zero. Buy-

ers are heterogeneous in their valuation x, which takes one of two different values, satisfying

0 < x1 < x2. We will generally normalize x1 to 1. The measure of sellers is 1; the measure of

buyers with value xk is Bk for k ∈ {1, 2}. Buyers’ valuations are private information and the

market is anonymous in the sense that buyers and sellers cannot condition their strategies

on the identities of their counterparties.

Mechanisms. In the first stage, each seller posts and commits to a direct anonymous

mechanism to attract buyers. The mechanism specifies, for each buyer i, a probability of

trade and an expected payment as a function of: (i) the total number n of buyers that

successfully meet with the seller; (ii) the valuation vi that buyer i reports; and (iii) the

11The reserve price or fee can vary across sellers in equilibrium. This is a key difference with Lester et al.
(2015), where the fee is the same for all sellers as it only depends on exogenous parameters.

6



valuations v−i reported by the n− 1 other buyers.12

Search. After observing all mechanisms, each buyer chooses the one at which he wishes to

attempt to match. To capture the idea that coordination is not feasible in a large market,

we follow the literature (e.g., Montgomery, 1991; Burdett et al., 2001; Shimer, 2005) and

restrict buyers to symmetric strategies. We refer to all buyers and sellers choosing a particular

mechanism as a submarket.

Meeting Technology. Consider a submarket with a measure b of buyers and a measure

s of sellers. The meetings within the submarket are frictional and governed by a meeting

technology, which we model analogous to Eeckhout and Kircher (2010b). In particular,

the meeting technology treats all buyers (sellers) symmetrically, i.e., independent of their

identity or type.13 A buyer can meet at most one seller, while a seller may meet multiple

buyers. Define λ = b/s as the queue length in this submarket.14 The probability of a

seller meeting n buyers, n = 0, 1, 2, . . . , is then given by Pn(λ), which is assumed to be

continuously differentiable. Because each buyer can meet at most one seller,
∑∞

n=1 nPn(λ) ≤

λ. By an accounting identity, the probability for a buyer to be part of an n-to-1 meeting is

Qn(λ) ≡ nPn(λ)/λ with n ≥ 1; the probability that a buyer fails to meet any seller is then

Q0(λ) ≡ 1 −
∑∞

n=1Qn(λ). Finally, we define m(λ) ≡ 1 − P0(λ) as the probability that a

seller meets at least one buyer, which is a necessary and sufficient condition for the seller to

trade in our environment.15 To avoid potential pathological cases, we require that m(λ) is

not linear in any interval.16

12In line with most of the literature, we abstract from mechanisms that condition on other mechanisms
present in the market. See Epstein and Peters (1999) and Peters (2001) for a detailed discussion.

13Meetings being type independent is a natural benchmark since it creates a distinction between meetings
and matches: matches can be type dependent if the mechanism selects the buyer with the highest valuation.
Of course, firms can also increase the likelihood of meeting a particular type by adjusting the mechanisms
they post and offering that type a better deal.

14This assumes, for simplicity, that a positive measure of buyers and sellers visit the submarket. If this is
not the case, we can use Radon-Nykodym derivatives to define queue lengths.

15It is straightforward to allow buyers to observe only a fraction of the sellers. If the fraction of sellers that
a buyer observes is type independent, this will not change our results.

16In other words, m′(λ), the marginal effect of a higher queue length on sellers’ matching probability,
cannot stay constant when we increase λ slightly. This requirement is always satisfied when m(λ) is an
analytic function (note that m(λ) cannot be always linear because it must be between 0 and 1).
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2.2 Alternative Representation of Meetings

In most of our analysis, we will remain agnostic about the exact nature of the meeting

technology and just impose the minimal structure we need to prove our results. To deal

with this level of generality, we first present a transformation of the meeting technology

that greatly simplifies the analysis. In particular, we introduce a new function φ(µ, λ) with

0 ≤ µ ≤ λ, defined as

(1) φ(µ, λ) = 1−
∞∑
n=0

Pn(λ)
(

1− µ

λ

)n
.

To understand this function, consider a submarket in which sellers face a queue length λ.

Suppose that a fraction µ/λ of the buyers in the submarket has the high value x2. Since

the meeting technology treats different buyers symmetrically, φ(µ, λ) then represents the

probability that a seller meets at least one high-value buyer. Naturally, φ (λ, λ) = m (λ).

The function φ(µ, λ) allows us to study competing mechanisms with general meeting

technologies in a way that is both more tractable and more intuitive than with Pn(λ), n =

0, 1, . . . . Appendix A.1 establishes that no information is lost by considering φ(µ, λ) instead

of Pn(λ), since we can always recover one from the other.

To develop intuition for φ(µ, λ), suppose that ∆λ more buyers visit this submarket, then

the probability that the seller meets at least one incumbent high-value buyer becomes φ(µ, λ+

∆λ), where µ is the measure of the incumbent high-value buyers. Therefore, φλ(µ, λ) ≡

∂φ(µ, λ)/∂λ measures the effect of the new entrants on the meeting probabilities between

sellers and incumbent high-value buyers: φλ(µ, λ) < 0 (resp. > 0) represents negative (resp.

positive) meeting externalities. In the special case of φλ(µ, λ) = 0, there are no meeting

externalities among buyers.

For future reference, note that

φµ(µ, λ) ≡ ∂φ(µ, λ)

∂µ
=
∞∑
n=1

Qn(λ)
(

1− µ

λ

)n−1
.(2)
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That is, φµ(µ, λ) is the probability for a buyer to be part of a meeting in which all other buyers

(if any) have low valuations. In this case, a high-type buyer increases social surplus directly,

since the good would have been allocated to a low-type buyer in his absence. In a second-

price auction, this is also the probability that a high-type buyer wins the auction with strictly

positive payoff, which we define to be the winning probability of high-type buyers.17 Since for

each n, (1− µ/λ)n−1 is decreasing in µ, φµ(µ, λ) is then also decreasing in µ, implying that

φ(µ, λ) is concave in µ, which holds strictly (φµµ(µ, λ) < 0) if and only if P0(λ)+P1(λ) < 1.18

Two special cases of equation (2) are worth mentioning: i) φµ(0, λ) = 1 − Q0(λ), i.e., the

probability that a buyer meets a seller, and ii) φµ(λ, λ) = Q1(λ), i.e., the probability that a

buyer meets a seller without other buyers.

3 Social Planner

3.1 Surplus and Planner’s Problem

Surplus. We start our analysis with the following lemma which derives total surplus and

agents’ marginal contribution to this surplus in a submarket with queue (µ, λ), where µ is

the queue length of buyers with value x2 and λ is the total queue length.

Lemma 1. Consider a submarket with a measure 1 of sellers and a queue (µ, λ) of buyers.

Total surplus in the submarket then equals

S(µ, λ) = m(λ) + (x2 − 1)φ(µ, λ)(3)

17Because buyers types are discrete, buyers’ winning and trading probability are different: a buyer may
compete with another buyer with the same value. But as we will see later, this difference is not important
for our analysis. The use of this winning probability is a canonical technique developed by McAfee (1993)
and Peters and Severinov (1997). They show that buyers’ winning probability must be equal at competing
sellers. Our function φ(µ, λ) incorporates their approach by its first partial derivative φµ(µ, λ) and does more
because its second partial derivative φλ(µ, λ) represents meeting externalities. Moreover, the function φ(µ, λ)
itself is intimately linked with surplus. See Lemma 1 and also Lemma 3 for the formal statements.

18For each n ≥ 0, −(1 − µ/λ)n is increasing and concave in µ, and it is strictly concave in µ if and only
if n ≥ 2. Therefore, φ(µ, λ) is strictly concave in µ if and only if there exists at least one n ≥ 2 such that
Pn(λ) > 0.
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The marginal contribution to surplus of low-type and high-type buyers are, respectively,

T1(µ, λ) = m′(λ) + (x2 − 1)φλ(µ, λ)(4)

T2(µ, λ) = m′(λ) + (x2 − 1) (φµ(µ, λ) + φλ(µ, λ)) .(5)

A seller’s marginal contribution to surplus equals

R(µ, λ) = m(λ)− λm′(λ) + (x2 − 1) (φ(µ, λ)− µφµ(µ, λ)− λφλ(µ, λ)) .(6)

Proof. See Appendix A.2.

The first term in equation (3) accounts for the fact that a surplus of (at least) 1 is

generated whenever a seller meets at least one buyer. The second term captures that an

additional surplus of x2 − 1 is realized when a seller meets at least one high-type buyer.

To understand (4), note that T1(µ, λ) = Sλ(µ, λ) since adding a low-type buyer to the

submarket increases λ but has no effect on µ. The first term of (4) reflects the effect of the

extra buyer on the number of matches, while the second term represents the externalities that

he may impose on meetings between sellers and high-type buyers. Since m′(λ) = φµ(λ, λ) +

φλ(λ, λ), equation (4) can also be written as

T1(µ, λ) = φµ(λ, λ) + φλ(λ, λ) + (x2 − 1)φλ(µ, λ),

where the first term describes the buyer’s direct contribution to surplus which arises when

there are no other buyers, as discussed below equation (2). The second term and third term

represent the externalities that the buyer may impose on sellers’ meetings with, respectively,

other low-type and high-type buyers.

To understand (5), note that T2(µ, λ) = Sµ(µ, λ) + Sλ(µ, λ) since adding an additional

high-type buyer to the submarket increases both µ and λ. Therefore, T2(µ, λ) = T1(µ, λ) +

(x2 − 1)φµ(µ, λ). That is, the additional high-type buyer creates the same meeting exter-
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nalities as an extra low-type buyer, but creates additional surplus when there are no other

buyers or only low-type buyers, which happens with probability φµ(µ, λ).

Finally, to understand equation (6), define z = µ/λ to be the fraction of high-type buyers

in the queue. If we add λ more buyers to the submarket while keeping z fixed, then adding

one more seller increases surplus by S(λz, λ). Therefore, R(λz, λ) = S(λz, λ)− λ∂S(λz,λ)
∂λ

, or,

alternatively R(µ, λ) = S(µ, λ)− µT2(µ, λ)− (λ− µ)T1(µ, λ).

Planner’s Problem. One can think of the planner’s problem as a three-step optimization

problem: first, the planner chooses the number of submarkets to open; second, he determines

the allocation of buyers and sellers to the different submarkets; third, he decides on the

allocation of the good after meetings have taken place. The third step is trivial: at each

seller, the good is always allocated to the buyer with the highest valuation. The first two

steps will depend on the meeting technology and the distribution of valuations. Suppose that

the planner creates L submarkets with positive seller measures α1, . . . , αL, respectively, and

potentially an additional submarket with no sellers but only buyers. Of course, this additional

submarket generates no surplus but could be useful for reducing meeting externalities. The

queue in submarket ` = 1, . . . , L is (µi, λi). The planner’s problem is thus

S∗(B1, B2) = sup
L≥1

sup
{(α`,µ`,λ`) | `=1,...,L}

L∑
`=1

α`S(µ`, λ`)(7)

subject to the accounting constraints
∑L

`=1 α
` = 1,

∑L
`=1 α

`µ` ≤ B2, and
∑L

`=1 α
`(λ`−µ`) ≤

B1.
19

3.2 Preliminary Results

In this section, we present a few preliminary results regarding the planner’s solution.

Number of Submarkets. It is not clear a priori that there is an upper bound on the

number of submarkets L for any endowment of buyers (B1, B2). However, the following

19The inequalities reflect that the planner may require some buyers to be inactive and not visit any seller.
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Proposition shows that such an upper bound exists. To state the result, we define an idle

submarket as a market that either contains only buyers or only sellers (as opposed to an

active submarket in which both buyers and sellers are present).20

Proposition 1. When there are two buyer types, the planner’s problem can be solved by

opening at most three submarkets. At most one of those submarkets can be idle.

Proof. See Appendix A.3.

Proposition 1 serves two goals. First, it is a technical result on existence in the sense

that it establishes that the supremum of surplus over all possible allocations can indeed be

reached as a maximum. At this level of generality, the planner’s solution is not necessarily

unique: multiple allocations that generate the same surplus may exist. However, these cases

are rather special. Below, we will introduce two mild conditions that hold for all commonly

used meeting technologies and that guarantee uniqueness.

Second, Proposition 1 limits the complexity of the planner’s problem by bounding the

number of submarkets. By equation (7), total surplus is a convex combination of the surpluses

generated by individual submarkets. The planner chooses the number of submarkets to find

the maximum value that such convex combinations can reach, which simply corresponds to

finding the least concave majorant of the surplus function S in equation (3), i.e., the smallest

concave function that is greater than S. As a result, the Fenchel-Bunt Theorem provides an

upper bound for the number of submarkets needed to solve the planner’s problem.21

To understand this result, consider first the case of homogeneous buyers, where the plan-

ner’s problem can be solved by opening at most two submarkets. Suppose that the planner

opens three submarkets with queue lengths λ1 < λ2 < λ3. Then, the marginal contribution

to surplus by both sellers and buyers must be the same across the three submarkets. Since

20The planner will of course never simultaneously choose an idle market for buyers and one for sellers.
21The classical Caratheodory theory states that any point in the convex hull of a set A ⊂ Rn (i.e., the

smallest convex set containing A) can be represented as a convex combination of n + 1 points of A. The
Fenchel-Bunt Theorem states that if the set A is connected, then for the above construction we only need
n points instead of n + 1. Since the graph of S : R2 → R is a connected subset in R3, the Fenchel-Bunt
Theorem implies that we only need three points to construct the planner’s solution since it belongs to the
convex hull of the graph.
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the meeting technology exhibits constant returns to scale, total surplus is simply the sum of

buyers’ and sellers’ marginal contributions to surplus multiplied by their respective measure

(Euler’s theorem). This implies that the planner can reallocate the buyers and the sellers in

the submarket with queue length λ2 to the other two submarkets such that the queue lengths

in those two submarkets remain λ1 and λ3, respectively, and total surplus stays the same.

When there are two types of buyers, the above logic still works if, for example, all three

submarkets have the same queue length but different fractions of high-type buyers. However,

if the submarket with an intermediate fraction of high-type buyers has the largest queue

length, then the above reallocation is not possible and the planner needs three submarkets.

Opening four submarkets will make one submarket redundant because the planner can then

always reallocate buyers and sellers in one of the two submarkets with an intermediate fraction

of high-type buyers to the other three submarkets such that total surplus remains constant.

Concavity. If the surplus function S(µ, λ) is jointly concave in (µ, λ) then its least concave

majorant is of course S itself. In this case, merging any two submarkets always increases total

surplus and the planner’s unique solution is simply to pool all buyers and sellers into a single

submarket (see Cai et al., 2017). However, as we show below, joint concavity of S(µ, λ) is

often violated. In these cases, the planner needs to solve a non-concave optimization problem,

which is notoriously difficult. As mentioned, we make progress below by formulating two weak

restrictions on the meeting technology. Under those restrictions, the first-order conditions

are both necessary and sufficient, and a simple algorithm provides their solution.

Even if concavity of S(µ, λ) fails globally, it still needs to hold locally in any submarket

(µ, λ) satisfying 0 < µ < λ. Otherwise, by definition, we can break the submarket into two

and reallocate sufficiently small measures of buyers ∆µ and ∆λ to increase total surplus, i.e.,

1

2
S(µ−∆µ, λ−∆λ) +

1

2
S(µ+ ∆µ, λ+ ∆λ) > S (µ, λ) .

The Hessian matrix of the surplus function S (µ, λ) must therefore be negative semi-definite

at the point (µ, λ). This normally requires two inequalities to hold since the Hessian is a
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2 × 2 matrix. However, the surplus function S (µ, λ) is linear in φ(µ, λ), which in turn is

always concave in µ. The only remaining condition therefore is that the determinant of the

Hessian is positive, which implies the following result.

Lemma 2. A submarket (µ, λ) with 0 < µ < λ can be part of the planner’s solution only if

i) φµµ(µ, λ) < 0 (or equivalently P0(λ) +P1(λ) < 1) and ii) the Hessian matrix of the surplus

function (3) is negative semi-definite at (µ, λ), which is equivalent to:

(x2 − 1)

(
φλλ(µ, λ)− φµλ(µ, λ)2

φµµ(µ, λ)

)
≤ −m′′(λ)(8)

Proof. See Appendix A.4.

To understand equation (8), recall that φ(µ, λ) is the probability that high-type buyers

generate additional surplus (x2−1). If φ is concave in (µ, λ), or equivalently φλλ−φ2
µλ/φµµ ≤

0, then merging different submarkets will increase the probability that high-type buyers

generate additional surplus (see Cai et al., 2017). However, when φ is not concave in (µ, λ),

then the left-hand side of (8) is positive and represents the maximal marginal gain that can

be achieved by increased separation of the two types of buyers.22 This gain is small if x2 is

close to 1, i.e., the buyer types are almost identical. Since m′′(λ) is negative for all common

meeting technologies (see Assumption 1 below), we can interpret the right-hand side as the

marginal gain of pooling buyers (in terms of increasing the aggregate number of matches).

When condition (8) fails, the planner prefers to break up a submarket since that would

increase total surplus.23

22To see this, suppose that we divide a submarket (µ, λ) into two submarkets (µ − ∆µ, λ − ∆λ) and
(µ+ ∆µ, λ+ ∆λ) with ∆λ > 0 and ∆µ of indeterminate sign. Then, the reduction in the number of matches
is m(λ)− 1

2m(λ+∆λ)− 1
2m(λ−∆λ), which equals −m′′(λ)∆λ2 > 0. The marginal gain from a higher probabil-

ity of matching with high-type buyers is (x2 − 1)
[
1
2φ(µ−∆µ, λ−∆λ) + 1

2φ(µ+ ∆µ, λ+ ∆λ)− φ(µ, λ)
]

=

(x2 − 1)
(
φµµ∆µ2 + 2φµλ∆µ∆λ+ φλλ∆λ2

)
/2. The gain is maximized when ∆µ = −∆λφµλ/φµµ, and the

maximum gain is (x2 − 1)(φλλ − φ2µλ/φµµ).
23We thank an anonymous referee for suggesting the above interpretation of equation (8).
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3.3 Some Mild Restrictions on the Meeting Technology

Assumptions. We now present two weak assumptions regarding φ(µ, λ) which provide the

minimal structure we need to prove our results. To introduce the assumptions, we apply a

change of notation and define z = µ/λ as the fraction of high-type buyers in the queue.

Assumption 1. φ(λz, λ) is concave in λ for any given z. Furthermore, limλ→0m
′(λ) = 1

and limλ→∞m(λ)− λm′(λ) = 1.

The first part of Assumption 1 states that if we hold the fraction of high-type buyers

constant, the marginal effect of an extra buyer on the seller’s probability of meeting at least

one high-type is decreasing in the total queue length. This assumption has a number of

important implications. First, since φ(λz, λ) is always between 0 and 1, it implies that

φ(λz, λ) is increasing in λ for given z. Second, because m(λ) ≡ φ(λ, λ), it implies that

m(λ) is concave; the concavity is strict, i.e. m(λ) > λm′(λ), since we require that m(λ)

is not linear in any interval. Third, Assumption 1 implies that φ(λz, λ) ≥ λ∂φ(λz,λ)
∂λ

=

µφµ(µ, λ)+λφλ(µ, λ) and thus that sellers’ marginal contribution to surplus R in equation (6)

is always strictly positive, which means that no sellers should be idle in the planner’s solution.

Fourth, the assumption implies that R(λz, λ) is strictly increasing in λ for a given z, since

∂
∂λ
R(λz, λ) = −λm′′(λ) + (x2 − 1) ∂2

∂λ2
φ(λz, λ) > 0. Fifth, Assumption 1 also implies that

T2(λz, λ), the marginal contribution to surplus by high-type buyers given by equation (5),

is strictly positive, because m′(λ) > 0 and φµ(λz, λ) + φλ(λz, λ) ≥ zφµ(λz, λ) + φλ(λz, λ) =

∂φ(λz,λ)
∂λ

≥ 0.

The second part of Assumption 1 is more a normalization than an assumption. It implies

that in a submarket with only buyers with valuation xk, the marginal contribution of these

buyers is xk when λ→ 0, while for sellers it is xk when λ→∞.

Level Curves. If the planner creates multiple active submarkets, then sellers’ contribution

to surplus must be equal in all those submarkets. In other words, these submarkets must lie
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z

H(λ z, λ) =
1
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R(λ z, λ) = R*

S0

S1

S2

A different level curve of R

Figure 1: Illustration of Assumption 2 (Single Crossing)

on some level curve R(λz, λ) = R∗. Figure 1 illustrates two of such level curves.24

Similarly, buyers’ marginal contribution to surplus must be equal in all submarkets that

they visit. A key question is therefore how a buyer’s marginal contribution T1(λz, λ) or

T2(λz, λ) varies along level curves of R(λz, λ). Lemma 5 in Appendix A.6 establishes that

the answer depends on the sign of the determinant of the Hessian of the surplus function.

In Figure 1, the red solid curve is where the determinant is zero; the area to its left is where

the determinant is positive and the area to its right is where the determinant is negative. As

a result, high-type buyers’ marginal contribution T2(λz, λ) is non-monotonic along the level

curve R(λz, λ) = R∗. It increases as we move from point S0 to S1 and decreases as we move

from S1 to S2. In other words, it reaches its maximum at point S1. Intuitively, when z is

large, a high-type buyer is unlikely to be the only high type that sellers meet even though

the queue is short. When z is small, the queue length is large. The large number of low-type

buyers reduces the likelihood that a seller meets a high-type buyer and hence reduces the

marginal contribution to surplus by high-type buyers. The reverse holds for T1(λz, λ).

24For illustrative purposes, the level curves in Figure 1 are downward sloping in the λ-z plane. This is
accurate under the weak additional assumption that φµ(λz, λ) is strictly decreasing in λ for 0 < z < 1, i.e.,
Assumption 3 introduced later. Although it is satisfied by all common meeting technologies, we abstain from
making this assumption here because it is not required for our main results.
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Inspection of Figure 1 shows that for T1(λz, λ) and T2(λz, λ) to have a unique extremum,

the level curves of R(λz, λ) must intersect with the red curve only once and from the left.

For this to hold in general, we require one additional assumption on the meeting technology,

which is weak in the sense that it is trivially satisfied for the two most common classes of

meeting technologies: bilateral and invariant (see the discussion of Figure 2 below).

Assumption 2 (Single Crossing). For λ with P0(λ)+P1(λ) < 1 (or equivalently φµµ(µ, λ) <

0), define

H(µ, λ) ≡ 1

−m′′(λ)

(
φλλ(µ, λ)− φµλ(µ, λ)2

φµµ(µ, λ)

)
.(9)

At any point (z, λ) where H(λz, λ) > 0, we have i) ∂H(λz, λ)/∂λ > 0 and ii)

−∂φµ(λz, λ)/∂z

∂φµ(λz, λ)/∂λ
< −∂H(λz, λ)/∂z

∂H(λz, λ)/∂λ
.(10)

It is worth highlighting that—like Assumption 1—Assumption 2 concerns the meeting

technology only. As discussed after (8), the function H represents the relative magnitude of

marginal gain from separation and that from pooling. The first part of Assumption 2 requires

that whenever there is marginal gain from separation (H(λz, λ) > 0), then a longer queue

(while fixing the fraction of high-type buyers) will make the relative gain from separation

even higher. The left-hand side and right-hand side of (10) denote the slope of the level

curves of φµ(λz, λ) and H(λz, λ), respectively (in the λ-z plane). Thus, the second part

of Assumption 2 states that any level curve of φµ(λz, λ) crosses any positive level curve of

H(λz, λ) at most once and from the left.

Recall that φµ(λz, λ) is the probability that a high-type buyer contributes to the sur-

plus directly. One can increase λ and adjust z accordingly to make φµ constant, so that

the difference between marginal contributions to surplus by the two types of buyers also

remains constant. Assumption 2 states that in doing so, the relative gain from separation

will increase. This single-crossing condition implies that each level curve of R(λz, λ) can be

17



divided into two segments: the determinant of the Hessian is positive when z is large and

negative when z is small, as in Figure 1. At point S1, the determinant is exactly zero, so that

the maximum marginal gain from separation exactly cancels out the corresponding marginal

loss in matching probability. The maximal marginal gain is obtained by equalizing sellers’

marginal contribution to surplus in the two submarkets. Therefore, at point S1 along the

level curve of R(λz, λ), the marginal changes in both the low-type and the high-type buyers’

marginal contributions to surplus are exactly zero. In other words, the three level curves

of R(λz, λ), T1(λz, λ) and T2(λz, λ) are tangent to each other at point S1. Note that since

T1(λz, λ) and T2(λz, λ) have the same slope along the level curve, this common slope must

be given by the left-hand side of (10), the slope of T2(λz, λ) − T1(λz, λ). These claims are

made precise in Lemma 6 in Appendix A.6.

Examples of Meeting Technologies. We now describe three classes of meeting tech-

nologies that satisfy Assumption 1 and 2. The first two classes have been the focus of earlier

literature (see e.g., Cai et al., 2017) and are presented for completeness. The third class

is novel and bridges the distance between the first two classes. Figure 2 presents a Venn

diagram illustrating this idea.

1. Bilateral. With a bilateral technology, each seller meets at most one buyer, i.e., P0 (λ)+

P1 (λ) = 1 with P1(λ) strictly concave, such that φ (µ, λ) = m (λ)µ/λ. A well-known

example is telephone-line matching, where P1(λ) = λ/(1 + λ), i.e., φ (µ, λ) = µ/(1 + λ).

2. Joint Concavity. Cai et al. (2017) define joint concavity as the φ (µ, λ) of a meeting

technology being concave in (µ, λ), i.e., φµµφλλ − φ2
µλ ≥ 0, which they show implies

either positive (φλ > 0) or no meeting externalities (φλ = 0). The absence of meeting

externalities (φλ(µ, λ) = 0 for all µ and λ) is known as invariance, which is a special

case of joint concavity since φλ = 0 implies φµλ = 0 and φλλ = 0.25 Perhaps the

best-known example of a technology satisfying invariance—and thus joint concavity—

is urn-ball (Butters, 1977). A second example is the geometric technology of Lester

25Lester et al. (2015) first introduced invariant meeting technologies in terms of Pn(λ). Cai et al. (2017)
show that their definition is equivalent to φλ(µ, λ) = 0.
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et al. (2015), where Pn (λ) is a geometric probability distribution with mean λ, i.e.,

Pn (λ) = ( 1
1+λ

)
(

λ
1+λ

)n
or φ (µ, λ) = µ/(1 + µ). A micro-foundation for this meeting

technology is that finitely many buyers and sellers are uniformly and independently

positioned on a circle and buyers walk clockwise to the nearest seller; then let the

number of buyers and sellers approach infinity while keeping their ratio constant at λ.

3. Stochastic Capacity. This class is similar to the geometric technology, except sellers

may face time or capacity constraints, preventing them from meeting all buyers that

try to visit them. The maximum number of buyers that a seller can meet follows a

geometric distribution with parameter σ and support {1, 2, 3, . . . }. The number of

meetings taking place is therefore the minimum of two geometric variables, the number

of buyers that try to meet/contact the seller and the seller’s capacity. This technology

reduces to a bilateral one (telephone-line) when σ = 0 and an invariant one (geometric)

when σ = 1.26 We show in Appendix B.2 that φ(µ, λ) = µ/(1 + σµ+ (1− σ)λ).

A1

A1 & A2

Stochastic
Capacity

Bilateral Joint
Concavity

Invariance

σ = 0 σ = 1

Figure 2: Venn Diagram of Meeting Technologies

Although it is possible to construct exotic meeting technologies that violate Assumption 1,

26For a similar technology with Poisson applications, see Wolthoff (2018).
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we view it as a basic and reasonable requirement. That is, this assumption defines the

universe of meeting technologies that we consider (see Figure 2). In Appendix A.5, we

show that the above examples all satisfy Assumption 1. Assumption 2 becomes void for

bilateral technologies (since P0(λ) + P1(λ) = 1 for all λ) and jointly concave technologies

(since H(λz, λ) ≤ 0 for all λ and z), so it is trivially satisfied in those cases.27 We show in

Appendix A.5 that Assumption 2 is satisfied by the stochastic capacity technology as well,

but also provide an example of a technology that violates it.

3.4 Full Characterization

Two Submarkets. We can now further tighten the bound on the number of submarkets.

We illustrate the argument in Figure 1. Suppose that at the social optimum, the marginal

contribution to surplus of sellers is R∗ and the black dashed level curve R(λz, λ) = R∗

intersects the red curve H(λz, λ) = 1/(x2 − 1) at point S1 = (λ∗z∗, λ∗). The first part of

Assumption 2 ensures that the second-order condition (8) is satisfied left of the red line and

violated right of the red line. In other words, submarkets with 0 < z < z∗ (i.e., points on

the S1S2 trajectory) cannot be part of the planner’s solution. The only feasible submarket

on this side is therefore the corner S2 where z∗ = 0.

In contrast, the second-order condition is satisfied in submarkets with z ≥ z∗, i.e., points

on the S0S1 trajectory. However, by Lemma 5, T2(λz, λ) is strictly decreasing in z along this

trajectory. Since the marginal contribution of high-type buyers must be the same among

all submarkets containing such buyers, there can therefore only exist one submarket with

z ≥ z∗. To sum up, there exist at most two submarkets in the social optimum: one with

z ≥ z∗ and one with z = 0.

The above observation greatly simplifies the analysis because it implies that there are only

three possible solutions: (i) complete pooling, i.e., all agents are in one market; (ii) complete

separation, i.e., there is one submarket for all high-type buyers and one (possibly idle) for

27By equation (8), H(λz, λ) > 0 if and only if φµµφλλ − φ2µλ < 0 at the point (z, λ). In this paper, we
consider the more realistic case where φ is not always or never concave in (µ, λ).
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all low-type buyers; (iii) mixing, i.e., there is one submarket that contains all high-type and

some low-type buyers, and one (possibly idle) submarket with the remaining low-type buyers.

From Cai et al. (2017), we know that jointly concave technologies imply complete pooling,

while bilateral technologies imply complete separation. The third possibility, which spans the

range between these extremes, is new. It allows the planner to take advantage of multilateral

meetings to screen ex post by pooling high types with some low types, while reducing the

degree of crowding out by separating other low types.

The optimal extent of separation depends on the magnitude of the meeting externalities,

the measures of high and low types, and the relative valuations, i.e., x2/x1, which is simply

x2 since we normalize x1 = 1. To solve for it, assume, without loss of generality, that the

planner opens two submarkets, one with a high average valuation containing all high-type

buyers, and one with a low average valuation without high-type buyers. Two decisions then

remain: i) how to allocate low-type buyers and ii) how to allocate sellers. We solve these

decisions sequentially.

Allocation of Sellers. Suppose the planner assigns a measure b1 of low-type buyers to

the submarket with the high average valuation. The optimal allocation of sellers, denoted by

α∗(b1), then solves

S(b1) = max
α

αS

(
B2

α
,
B2 + b1
α

)
+ (1− α)S

(
0,
B1 − b1
1− α

)
.(11)

Of course, α∗(B1) = 1. For b1 < B1, both terms on the right-hand side are concave in α

by Lemma 4 in Appendix A.6, such that α∗(b1) is uniquely characterized by the first-order

condition, i.e.,

(12)
α∗ = 1 if R(B2, B2 + b1) ≥ 1

R

(
B2

α∗
,
B2 + b1
α∗

)
= R

(
0,
B1 − b1
1− α∗

)
if R(B2, B2 + b1) < 1
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The first case in (12) describes a corner solution, where sellers’ marginal contribution to

surplus is higher in the submarket with the high average valuation even when all sellers are

allocated to this submarket. The second case describes an interior solution, where sellers’

marginal contributions must be the same across the two submarkets. Note that α∗(b1) can

never be 0, because the planner will never leave high-type buyers idle.

Allocation of Low-Type Buyers. Having solved for α∗(b1), we next consider the alloca-

tion of low-type buyers. By the envelope theorem, S(b1) is differentiable and for b1 < B1,

S
′
(b1) = T1

(
B2

α∗(b1)
,
B2 + b1
α∗(b1)

)
− T1

(
0,

B1 − b1
1− α∗(b1)

)
.(13)

That is, the additional surplus generated by moving one low-type buyer from the low-average-

valution to the high-average-valuation submarket is simply the difference between the buyer’s

marginal contributions to surplus in the two submarkets.

The special case b1 = B1 warrants discussion as it is not defined by the above equation

(because it leads to 0/0 in the final argument). In this case, the planner allocates all sellers

and buyers to the submarket with the high average valuation, and considers the welfare effect

of moving an ε number of low-type buyers to a separate submarket. Whether the planner

also moves sellers to this separate submarket depends on R(B2, B2 + B1). In particular,

if R(B2, B2 + B1) ≥ 1, then the planner will keep all sellers in the submarket with the

high average valuation, because sellers’ contribution to surplus in the second submarket is

bounded by 1; in contrast, if R(B2, B2 +B1) < 1, then the planner will move a small number

of sellers to the separate submarket to equalize sellers’ contribution to surplus across the two

submarkets. Regardless,

S
′
(B1) = T1(B2, B2 +B1)− T1(0, λ)(14)

where λ is such that R(B2, B2 +B1) = R(0, λ) if R(B2, B2 +B1) < 1, otherwise λ =∞.
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The optimal b1, b
∗
1, must then satisfy the first-order condition, i.e.,

(15) S
′
(b∗1) ≤ 0 if b∗1 = 0; S

′
(b∗1) = 0 if 0 < b∗1 < B1; S

′
(b∗1) ≥ 0 if b∗1 = B1.

It turns out that the first-order condition is sufficient even though S(b1) is not necessarily

concave. The following proposition formalizes our results.28

Proposition 2. Under Assumption 1 and 2, at the social optimum, all sellers are active, and

there are at most two submarkets, one of which contains all high-type buyers and has a shorter

queue. Furthermore, the planner’s solution is unique, and the first-order conditions (12)

and (15) are necessary and sufficient.

Proof. See Appendix A.7.

The role of Assumption 1 is technical. It implies that if multiple submarkets were to have

the same fraction of high-type buyers, then the planner should always merge the market

since total surplus is always concave in λ. Hence, different submarkets must have different

fractions of high-type buyers. In other words, Assumption 1 implies that the sellers’ marginal

contribution to surplus R(λz, λ) is strictly decreasing in λ for a given z, such that the level

curves of R(λz, λ) are well defined.

The fact that all high-type buyers visit the same submarket then follows from Assump-

tion 2. As discussed above, this assumption implies that each level curve of R(λz, λ) consists

of two segments. Submarkets in the segment where z is small cannot be part of an equilib-

rium because there is always marginal gain from separation (the determinant of the Hessian

matrix of the surplus function is negative which means that the second-order condition is

violated). In the segment where z is large, the marginal contribution to surplus of high-type

buyers is strictly decreasing in z along the level curve, which means that they can be present

in at most one submarket.
28As we show later, the market equilibrium decentralizes the planner’s solution and therefore features

endogenous market segmentation where both sellers and low-type buyers are indifferent between different
segments. Barro and Romer (1987) give a nice example that illustrates how sellers can promise utility by
either a low price or fewer other buyers: the Paris metro used to sell expensive first-class tickets for wagons
which were physically similar to the second-class ones but which were less crowded in equilibrium.
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Algorithm. Our analysis suggests a simple numerical algorithm to solve the planner’s

problem: start with b1 = B1 (i.e., pooling) and compute S
′
(B1) according to equation (14); if

S
′
(B1) ≥ 0, then b1 = B1 is the solution, otherwise decrease b1 until the first-order condition

is satisfied or b1 = 0.

The knife-edge case S
′
(B1) = 0 deserves special attention because it pins down the bound-

ary between areas of pooling and partial segmentation. The detailed analysis of this special

case is technical and delegated to Appendix B.1.

3.5 Example: Stochastic Capacity

We now briefly discuss the social planner’s solution for the stochastic capacity technology;

the details are relegated to Appendix B.2.29 For this technology, the model has 4 parameters:

x2, which measures the dispersion of buyer values, B1 and B2, the number of low-type and

high-type buyers (recall that the number of sellers is normalized to be 1), and σ, which

captures the extent to which sellers can meet multiple buyers. We distinguish between three

regions that follow from two cutoff values for σ, i.e., σ0(x2) and σ1(x2), where

(16) σ0(x2) ≡
√
x2 − 1
√
x2 + 1

<

√
x2√

x2 + 1
≡ σ1(x2)

Case 1: Low σ. Consider first the case in which σ ≤ σ0(x2), where the cutoff σ0(x2) follows

from the condition that the infimum of H(µ, λ) equals 1/(x2−1). The second-order condition

(8) can never be satisfied in this case, i.e., a submarket (µ, λ) where 0 < µ < λ cannot be

part of the planner’s solution. Instead, perfect separation is obtained: to prevent strong

congestion effects of low-type buyers on high-type buyers, the planner sends the two types

of buyers to different submarkets. We thus prove analytically that for any given x2, there

exists a meeting technology such that full separation is always optimal for any endowment

of buyers. This proves the conjecture in Section 5.3 of Eeckhout and Kircher (2010b) who

only showed the existence of such a meeting technology numerically.

29In that appendix, we also characterize the planner’s solution for a second example of a meeting technology.
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Case 2: Intermediate σ. The case σ ∈ (σ0(x2), σ1(x2)] is illustrated in Figure 3a. First,

consider the scenario where (B2, B1 +B2) belongs to the brown area. In that case, the plan-

ner’s solution consists of two active submarkets: 1) a submarket located on the line segment

AC with only low-type buyers, and 2) a submarket located on the curve AB with all high-type

buyers and possibly some low-type buyers. Denote the queue length in the first submarket

by λ0 (which is between 2 and 7 in the figure). The queue lengths in the second submarket

are then a function of λ0, i.e., (µ(λ0), λ(λ0)), such that the marginal contribution to surplus

of sellers and that of low-type buyers are equal across both submarkets. Graphically, both

submarkets and (B2, B1 +B2) all lie on the same straight line.

If (B2, B1 + B2) belongs to the blue area, then the optimum is full separation where

one submarket contains all high-type buyers and the other contains all low-type buyers.

Whether the submarket with low-type buyers contains sellers depends on B2: if the marginal

contribution to surplus by sellers in the segment with high-type buyer is greater than 1, then

this submarket contains all sellers, otherwise both submarkets contain sellers. Finally, when

(B2, B1 + B2) belongs to the white area, then the optimum is pooling where one market

contains all sellers and buyers.

As σ approaches σ1(x2), point C goes to λ0 = ∞, making the line BC horizontal in the

limit. Finally, the green curve represents the set of queues where the marginal contribution

to surplus by the low-type buyers equals zero, which only becomes relevant when σ > σ1(x2),

as we discuss next.

Case 3: Large σ. The case σ > σ1(x2) is illustrated in Figure 3b. If (B2, B1 +B2) belongs

to the brown area in Figure 3b, then it is again optimal to open two active submarkets, where

the queue in the first submarket lies on the curve AB and the second submarket lies on the

horizontal axis, characterized by the same marginal contribution to surplus of sellers and of

low-type buyers (same as case 2). If (B2, B1+B2) belongs to the yellow area, then it is optimal

to have one active submarket and one inactive submarket. The queue in the first submarket

lies on the curve BD, where the marginal contribution to surplus by the low-type buyers is
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(b) σ = 0.65 > σ1(x2)

Figure 3: Planner’s Solution for the Stochastic Capacity Technology with x2 = 2

zero, and the second submarket contains only low-type buyers and no sellers. If (B2, B1+B2)

belongs to the blue area, then the optimum is full separation where one submarket contains

all sellers and high-type buyers and the other contains all low-type buyers and no sellers.

Finally, when (B2, B1 + B2) belongs to the white area, then the optimum is pooling where

one market contains all sellers and buyers.

3.6 Comparative Statics

Having solved the planner’s problem, we now analyze comparative statics. To simplify ex-

position, we focus again on the example of the stochastic capacity meeting technology. In

Appendix B.3, we show that the same results hold for general meeting technologies under

certain assumptions. We are particularly interested in how the optimal allocation of buyers

and sellers varies with (i) the screening parameter σ, and (ii) the high-type buyer’s value x2.

The first comparative static can be thought of as analyzing the effect of new technologies

like automated resume screening, while the second comparative static can be thought of as

analyzing the effect of an increase in the dispersion of buyers’ values.

Changes in Screening Capacity. For the stochastic capacity technology, the extent to

which sellers can screen buyers is captured by the parameter σ. Note that φ(µ, λ) is increasing

in σ, while φ(λ, λ) is independent of σ. That is, a better screening technology increases the
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probability that a seller finds a high-type buyer, but does not change the probability that a

seller meets at least one buyer. The following results show that when the screening technology

improves, the separation area shrinks and the area where pooling is optimal increases.

Proposition 3. Given (x2, σ, B1, B2), if the optimal allocation is complete pooling, then for

(x2, σ
′, B1, B2) with σ′ > σ, the optimal allocation is again complete pooling.

Given (x2, σ, B1, B2), if the optimal allocation is complete separation, then for (x2, σ
′, B1, B2)

with σ′ < σ, the optimal allocation is again complete separation.

Proof. See the general results of Proposition 8 and 9 in Online Appendix B.3.

When σ = 0, meetings are always bilateral and the optimal allocation is always complete

separation, since a low-type buyer meeting a seller always crowds out high-type buyers.

When σ = 1, low-type buyers do not impose negative meeting externalities on high type

buyers and therefore it is optimal to pool all buyers and sellers in one market. Thus, for any

(x2, B1, B2), the above proposition shows that the optimal allocation changes smoothly from

complete separation to complete pooling as σ increases from 0 to 1.

Changes in the Dispersion of Buyer Values. Since we are mainly interested in the

optimal allocation of buyers and sellers, any variation of buyer values is equivalent to a

corresponding change in x2 while fixing x1 = 1 for this purpose, which implies that we can

use the parameter x2 to measure the dispersion in buyer values. As we increase x2, the

output loss due to low-type buyers crowding out high-type buyers becomes larger. One may

therefore expect that complete separation becomes a more likely outcome while complete

pooling becomes less likely. The following proposition presents the formal results.

Proposition 4. Given (x2, σ, B1, B2), if the optimal allocation is complete pooling, then for

(x′2, σ, B1, B2) with x′2 < x2, the optimal allocation is again complete pooling.

Given (x2, σ, B1, B2), if the optimal allocation is complete separation, then for (x′2, σ, B1, B2)

with x′2 > x2, the optimal allocation is again complete separation.

Proof. This result follows from Proposition 10 and 11 in Online Appendix B.3.
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When x2 → x1 = 1 and σ > 0, then the optimal allocation is complete pooling because

the gain from partial separation is negligible, and the planner prefers to pool all buyers

and sellers in one place to maximize the matching probability. When x2 is sufficiently large

and σ < 1, it is optimal to exclude the low-type buyers from participating and set up one

market for all sellers and high-type buyers. Thus, for any (σ,B1, B2) with 0 < σ < 1, the

above proposition shows that the optimal allocation always changes from complete pooling

to complete separation as x2 increases.

As we will show below, when the optimal allocation features complete separation, it can

be decentralized by sellers posting fixed prices, while when the optimal allocation is complete

pooling, then the decentralized equilibrium necessarily involves auctions with reserve prices

or fees. Thus as σ changes, the optimal trading mechanism changes accordingly.

4 Market Equilibrium

In this section, we show that the equilibrium is constrained efficient and that no seller can do

better than posting a second-price auction combined with either a reserve price or a meeting

fee. The reserve price can be positive or negative, where the latter just means that the seller

is willing to sell the good at a price below his valuation, which we normalized to 0. Similarly,

the meeting fee can be positive, in which case it is paid by each buyer meeting the seller, or

negative, in which case payments take place in the opposite direction.

4.1 Equilibrium Definition

Strategies. Let D be the set of all direct anonymous mechanisms equipped with some

natural σ-algebra D. A seller’s strategy is a probability measure δs on (D,D). A buyer

needs to decide on whether or not to participate in the market, and if he does, which sellers

(who are characterized by the mechanisms they post) to visit. To acknowledge that a buyer’s

strategy depends (only) on his value xk and the fact that—due to the lack of coordination—

buyers treat all sellers who post the same mechanism symmetrically, we denote his strategy
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by δbk, a measure on (D,D). If δbk(D) < 1, then buyers with value xk will choose not to

participate in the market with probability 1 − δbk(D), in which case their payoff will be

zero.30 To simplify the exposition, we require that the measure δbk is absolutely continuous

with respect to δs.31 The Radon-Nikodym derivative dδbk/dδ
s determines the queue length

and queue composition—i.e., how many buyers and what types of buyers are available per

seller—for each mechanism (almost surely) in the support of δs. Formally, for (almost every)

mechanism ω in the support of δs and k = 1, 2, the queue length of buyers with value xk,

qk(ω), is given by

qk(ω) = Bk
dδbk
dδs

.(17)

The queue (µ, λ) in the submarket is thus given by q(ω) ≡ (q2(ω), q1(ω) + q2(ω)).

Payoffs. Note that for any mechanism ω ∈ D, the expected payoff of a seller who posts

mechanism ω is completely determined by ω and its queue q(ω). Therefore, we can denote

it by π(ω, q(ω)). Similarly, let Vk(ω, q(ω)) denote the expected payoff of a buyer with value

xk from visiting a submarket with mechanism ω which has queue q(ω).

Market Utility and Beliefs. We now define conditions on buyers’ and sellers’ strategy

(δs, δb1, δ
b
2) which need to be satisfied in equilibrium. First, consider the optimality of buyers’

strategies. The market utility function Uk is defined to be the maximum utility that a buyer

with value xk can obtain by visiting a seller or being inactive.

Uk = max

(
max

ω∈supp(δs)
Vk(ω, q(ω)), 0

)
,

30The assumption that all sellers post a mechanism is without loss of generality, because they can stay
inactive by posting a sufficiently inattractive mechanism, e.g., a reserve price above x2.

31This rules out a scenario in which a zero measure of sellers attracts a positive measure of buyers of type
xk, in which case the probability for each of these buyers to obtain the good is zero, which violates optimality.

29



where q(ω) is given by equation (17). Of course, optimality of buyers’ choices requires that

buyers choose the mechanism that yields the highest payoff. Formally, we have

Vk(ω, q(ω)) ≤ Uk with equality if ω is in the support of δbk.

Next, we consider the optimality of sellers’ strategies. All posted mechanisms should

generate the same expected payoff π∗ and there should be no profitable deviations. A seller

considering a deviation to a mechanism ω̃ not in the support of δs needs to form beliefs

regarding the queue q(ω̃) that he will be able to attract. We call a queue q(ω̃) compatible

with the mechanism w̃ and the market utility function Uk if for any k ∈ {1, 2},

Vk(ω̃, q(ω̃)) ≤ Uk with equality if qk(ω̃) > 0.(18)

Of course, for any mechanism ω in the support of δs, q(ω) is compatible with mechanism

ω and the market utility function because of the optimal search behavior of buyers. The

literature usually assumes that when posting w̃, the seller is optimistic and expects the most

favorable queue among all queues that are compatible with ω̃ and the market utility function

(see, for example, McAfee, 1993; Eeckhout and Kircher, 2010a,b). That is,

q(ω̃) = arg max
q̃

π(ω̃, q̃)(19)

where the choice of q̃ is subject to the constraint in equation (18).32 For simplicity of

exposition, we adopt this convention, but we show in Appendix C that this assumption is

largely unnecessary because there is only one possible queue compatible with ω̃ and the

market utility function under mild restrictions on the meeting technology.

Equilibrium Definition. We can now define an equilibrium as follows.

32For some mechanism w̃ there may not exist a compatible queue because w̃ is either too attractive or too
unattractive. If w̃ is too unattractive, we can set q̃ to be the zero vector. In Section 4, we show that sellers
can not do better than posting a second-price auction with a reserve price, which implies that w̃ will not be
too attractive in the above sense.
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Definition 1. A directed search equilibrium is a tuple (δs, δb1, δ
b
2) of strategies with the fol-

lowing properties:

1. Each ω in the support of δs maximizes π(ω, q(ω)), where, depending on whether or not

ω belongs to the support of δs, q(ω) is given by equations (17) and (19), respectively.

2. For each buyer type xk, if δbk(D) > 0, every ω in the support of δbk maximizes Vk(ω, q(ω)).

If δbk(D) = 0, then for any mechanism ω in the support of δs the buyer value Vk(ω, q(ω))

is non-positive.

3. Aggregating queues across sellers does not exceed the total measure of buyers of each

type. That is,
∫
qk(ω)dδs(w) ≤ Bk for each k ∈ {1, 2}.

4.2 Efficiency

Equivalence. To prove constrained efficiency of equilibrium, we show that even if sellers

can buy queues directly in a hypothetical competitive market, they cannot do better than in

the decentralized environment.33 In other words, the following two problems are equivalent

for sellers.

1. Sellers’ Relaxed Problem, in which there exists a hypothetical competitive market for

queues, with the price for each buyer given by the market utility function. That is,

sellers choose a queue (µ, λ) to maximize

π(µ, λ) = m(λ) + (x2 − 1)φ(µ, λ)− µU2 − (λ− µ)U1,(20)

where the first two terms are total surplus (3) and the last two terms are the price of

the queue.

33A similar result appears in Cai et al. (2017), so it is worth emphasizing that the credit belongs with the
current paper: as they explicitly acknowledge in their article, Cai et al. (2017) borrow Proposition 4 directly
from our paper, of which a first draft was written in 2016. The same applies to a number of other results,
e.g., Lemma 3 here vs. Lemma 1 in Cai et al. (2017).
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2. Sellers’ Constrained Problem, in which sellers must post mechanisms to attract queues

of buyers, as described in detail in Section 4.1. For any mechanism, the correspond-

ing queue must be compatible with the market utility function, which means that it

needs to satisfy equation (18). In this case, a seller’s profit is again given by equa-

tion (20), assuming that sellers post efficient mechanisms, but now queue length and

queue composition depend on the posted mechanism.

In the relaxed problem, a seller will “buy” queues of buyers with valuation xk until their

expected marginal contribution Tk to surplus is equal to their marginal cost Uk, where k =

1, 2. Hence, if sellers can post a mechanism which delivers buyers their marginal contribution

to surplus, then buyers’ payoffs are equal to their market utility and the queue is compatible

with the mechanism and the market utility function, as defined by (18). The following

proposition establishes that auctions with an entry fee or a reserve price can achieve this.34

Proposition 5. Any solution (µ, λ) to the sellers’ relaxed problem is compatible with an

auction with an entry fee in the sellers’ constrained problem, where the fee is given by

t = −(x2 − 1)φλ(µ, λ) + φλ(λ, λ)

1−Q0(λ)
.(21)

It is also compatible with an auction with a reserve price in the sellers’ constrained problem,

where the reserve price is given by

r = −(x2 − 1)φλ(µ, λ) + φλ(λ, λ)

Q1(λ)
.(22)

Hence, the directed search equilibrium is constrained efficient for any meeting technology.

Proof. See Appendix A.8.

Uniqueness. As shown before, the planner’s solution is unique under Assumption 1 and 2.

By Proposition 5, the equilibrium mechanism is not unique: the planner’s solution can be

34As mentioned before, when Assumption 1,and 2 do not hold, the planner’s solution is not necessarily
unique. The above proposition then implies that any optimal allocation can be decentralized (different
optimal allocations are then associated with different equilibrium entry fees or reserve prices).
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decentralized in multiple ways, either by auction with meeting fees or by auctions with reserve

prices. In a submarket with low-type buyers only, a second-price auction with a reserve price

is equivalent to price posting; so, price posting can also be an equilibrium mechanism.

When Assumption 1 or 2 does not hold, the planner’s solution is not necessarily unique

either. Proposition 5 then implies that any optimal allocation can be decentralized, each one

associated with different equilibrium entry fees or reserve prices.

Auctions with Meeting Fees. The intuition behind the case with meeting fees is the

following. Recall that a buyer’s marginal contribution Tk consists of two parts: (i) a direct

effect, representing the fact that the buyer may increase the maximum valuation among the

group of buyers meeting the seller,35 and (ii) an indirect effect, (x2 − 1)φλ(µ, λ) + φλ(λ, λ),

representing the externalities that the buyer may impose by making it easier or harder for the

seller to meet other buyers. As is well-known, auctions (without reserve prices or fees) provide

buyers with a payoff equal to their direct contribution.36 Buyers’ indirect effect on surplus

is independent of their type and can therefore be priced by an appropriate entry fee. Since

buyers pay the fee whenever they meet a seller, which happens with probability 1−Q0 (λ),

a meeting fee equal to (21) guarantees that their expected payoff from the mechanism equals

exactly Tk, which yields the desired result.

Auctions with Reserve Prices. Perhaps surprisingly, an auction with an appropriate

reserve price is also an efficient mechanism that can price all meeting externalities. After all,

in contrast to meeting fees, reserve prices may prevent efficient trade. To see this, consider

a seller who sets a reserve price r ∈ (1, x2). Low-type buyers have a zero trading probability

at this seller, while their trading probability would be strictly positive at an auction by the

same seller with a meeting fee. However, this difference between the two mechanisms only

affects out-of-equilibrium behavior; in equilibrium, low-type buyers would visit neither seller.

35For low-type buyers, the direct effect is given by φµ(λ, λ) = Q1(λ), and for high-type buyers, the direct
effect is given by (x2 − 1)φµ(µ, λ) + φµ(λ, λ).

36This is easiest to see in a second-price auction. Suppose that the highest and the second highest value are
x2 and x1. Then, the payoff for the highest value buyer is x2 − x1, which is also his contribution to surplus.
Other bidders receive zero and their contributions to the surplus of the auction are also zero. Extension of
this result to other auction formats follows from revenue equivalence.
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High-type buyers are only affected by the reserve price when they are the only bidder, which

happens with probability Q1 (λ). A reserve price equal to (22) therefore guarantees that

buyers’ expected payoff again equals Tk.

Meeting Fees vs. Reserve Prices. Although the meeting fee is a useful instrument

from a theoretical point of view, one could argue that it may be difficult to implement in

practice. For example, if the meeting fee is positive, fake sellers with no intent to sell could

open phantom auctions to collect the meeting fees from interested buyers, which would then

discourage buyers from visiting sellers who charge fees in the first place.37 Those concerns do

not apply to auctions with reserve prices. The optimal reserve price has the same sign and

plays a similar role as the optimal meeting fee, but is easier to implement because all buyers

who do not win, pay (or receive) nothing. If, however, some buyers have valuations below

the sellers’ reservation value and the meeting externalities are positive, then auctions with

negative reserve prices are not efficient, while auctions with entry subsidies and a reserve

price equal to the sellers’ valuation remain efficient.

Finally, consider Lester et al. (2015), where buyers are ex ante identical and learn their

valuation only upon meeting the seller. In their framework, just as in ours, pricing negative

meeting externalities would require a positive reserve price. However, unlike in our setup,

a positive reserve price in their model would actually prevent mutually beneficial trade in

equilibrium: as buyers’ valuations are only revealed ex post, the highest buyer valuation

is between the seller’s own valuation and his reserve price with positive probability. This

inefficiency prevents sellers from adopting reserve prices in equilibrium, instead they always

opt for meeting fees. In Albrecht et al. (2014), who restrict attention to urn-ball meetings

(φλ = 0), this inefficiency does not arise, because sellers always choose to set their reserve

price equal to their valuation.

Restricted Mechanism Space. We have shown that despite the potential presence of

spillovers in the meeting process, business stealing externalities and agency costs, the com-

37Similarly, negative meeting fees are subsidies that could attract fake buyers with no intent to purchase.
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peting mechanisms problem reduces to one where sellers can buy queues in a competitive

market. This result, of course, requires a sufficiently large mechanism space. If it is not

possible for sellers to either commit to a reserve price above their valuation or charge fees,

the decentralized equilibrium will only be efficient for invariant meeting technologies (i.e.,

φλ = 0). If φλ < 0 (resp. > 0), buyers impose negative (resp. positive) externalities on other

meetings and will receive more (resp. less) than their marginal social contribution.38

5 N Buyer Types

5.1 Surplus

In this section, we consider the case with N buyer values: 0 < x1 < · · · < xN . The measure

of xk buyers is Bk for k = 1, . . . , N . The rest of the model remains the same, including

the planner’s problem and the definition of the decentralized equilibrium. Let qk denote

the number of xk buyers per seller in a submarket. To use our alternative representation

of meeting technologies, we apply a change of notation and define µk as the queue length

of buyers with value xk or higher, i.e., µk = qk + · · · + qN for k = 1, . . . , N . The queue in

the submarket can then be represented by µ ≡ (µ1, . . . , µN), where µ1 is the total queue

length. Thus φ(µk, µ1) is the probability that a seller meets at least one buyer with value xk

or higher. We further adopt the convention x0 ≡ 0 to simplify notation.

The following Lemma extends Lemma 1 and 2 to the case of N buyer values. It turns out

that this general case does not add much complexity. The interpretation of equations (23) to

(26) closely resembles the corresponding interpretation in the two-type case. Here, we only

discuss equation (24) as an example and omit the others.

In equation (24), the first term of Tk(µ) reflects the direct contribution to surplus of a

buyer with valuation xk when this buyer has the highest value in an n-to-1 meeting; this

contribution equals the difference between the highest and the second-highest buyer values.

The second term of Tk(µ) represents the externalities that the buyer may impose on other

38With free entry of sellers, the buyer-seller ratio would be too high (resp. too low) in this case.
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buyers and the seller. It does not depend on k, because the meeting function treats all buyers

symmetrically. Specifically, if a buyer makes it easier for the other buyers to meet the seller

(φλ ≥ 0), he increases total surplus through a positive meeting externality, even if he does not

have the highest value. A similar logic applies for negative meeting externalities (φλ ≤ 0).

Lemma 3. Consider a submarket with a measure 1 of sellers and a queue µ ≡ (µ1, . . . , µN)

of buyers. Total surplus in the submarket then equals

S(µ) =
N∑
j=1

(xj − xj−1)φ(µj, µ1)(23)

The marginal contribution to surplus of a buyer with valuation xk equals

Tk(µ) =
k∑
j=1

(xj − xj−1)φµ(µj, µ1) +
N∑
j=1

(xj − xj−1)φλ(µj, µ1).(24)

A seller’s marginal contribution to surplus equals

R(µ) =
N∑
j=1

(xj − xj−1) [φ(µj, µ1)− µjφµ(µj, µ1)− µ1φλ(µj, µ1)] .(25)

The Hessian matrix of the surplus function S(µ) is negative definite if and only if

−m′′(µ1)x1 −
N∑
k=2

(xk − xk−1)
(
φλλ(µk, µ1)−

φµλ(µk, µ1)
2

φµµ(µk, µ1)

)
> 0.(26)

Proof. See Appendix D.1.

Equilibrium. We can again show that in equilibrium, sellers can do no better than posting

second-price auctions with an entry fee or a reserve price, and their relaxed problem and con-

strained problem are equivalent so that the decentralized equilibrium is constrained efficient.

For the proofs and derivations, we refer to Appendix D.2 and D.3.
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5.2 Queues Across Submarkets

A larger number of buyer types increases the complexity of the planner’s problem. Although

the result in Proposition 1 generalizes in a straightforward way—i.e., with N types of buyers,

no more than N + 1 submarkets are required—a full characterization of these submarkets

quickly becomes intractable.39 Nevertheless, we provide a partial characterization by showing

that we can compare queue compositions between any two submarkets in terms of first-order

stochastic dominance under Assumption 1 and one additional mild assumption.

This additional assumption concerns the probability φµ(λz, λ) that a high-type buyer

increases surplus directly—i.e., faces no competition from other high-type buyers. We assume

that this probability decreases if we add more buyers to the queue, holding the fraction of

high-type buyers constant at z.

Assumption 3. φµ(λz, λ) is strictly decreasing in λ for 0 < z ≤ 1.

As mentioned after equation (2), φµ(λ, λ) = Q1(λ) and φµ(0, λ) = 1 − Q0(λ). Thus,

Assumption 3 implies that (i) in submarkets with longer queues, it is strictly less likely that

a buyer turns out to be the only one present, and, by continuity, (ii) buyers are weakly

less likely to meet a seller if the queue length in the submarket increases, which could be

interpreted as a form of congestion.

First-Order Stochastic Dominance. Consider two arbitrary submarkets, indexed by

` ∈ {a, b}, that attract a queue µ` of buyers. The following proposition compares queue

compositions between the submarkets in terms of first-order stochastic dominance.

Proposition 6. Consider two submarkets a and b with respective queues µa and µb, satisfying

39Unless, of course, the meeting technology is bilateral or jointly concave, which lead to perfect separation
and perfect pooling, respectively. We conjecture that the following result, which is similar to Proposition 2,
continues to hold: At the social optimum, there will be one submarket for all xN buyers. Note that this
conjecture has sharp predictions. If we take the submarket for xN buyers out, then by the same logic, in the
remaining submarkets there will be exactly one which contains all the remaining xN−1 buyers. Repeating
this logic, implies then that there will be N submarkets where the highest buyer type in the `-th submarket
is xN+1−` and some submarkets can be idle. However, we were unable to prove this conjecture.
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µa1 > µb1. If Assumption 1 and 3 hold, then for any k,

µbk
µb1
≥ µak
µa1
.(27)

Proof. See Appendix D.4.

This result is quite remarkable. It shows that under two weak assumptions on the meeting

technology, the buyer value distribution of a short queue always first-order stochastically

dominates that of a long queue. A simple consequence of this result is that the shorter queue

always has a weakly higher upper and a weakly higher lower bound.

To understand the above proposition, assume that buyers with valuations xk−1 and xk

both visit submarkets a and b with positive probability. Since at the planner’s solution, the

marginal contribution of buyers with valuations xk−1 and xk must be the same across the two

submarkets, by equation (24) we have φµ(µak, µ
a
1) = φµ(µbk, µ

b
1). If µa1 > µb1, by Assumption 3,

queue a must have a lower proportion of buyers with values weakly greater than xk.

Proposition 6 offers some testable implications that do not require characterization of the

entire model. Also, since the assumptions are rather weak, they apply to almost all meeting

technologies that are currently used in the literature. Consider for example two identical

goods that are offered on eBay where the queue lengths and the buyer value distributions

differ. Our theory derives a sharp prediction on the relation between the queue length and

the buyer value distribution.

Proposition 6 is useful beyond the specific environment that we consider here. To see this,

suppose that we add an epsilon degree of seller heterogeneity to the model. The equilibrium

allocation of buyers and sellers will then change marginally. Without Proposition 6, we

cannot order the resulting buyer value distributions of different types of sellers, making an

analysis of sorting in terms of first-order stochastic dominance impossible.
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6 Conclusion

In this paper, we develop a framework to study how technological innovations that make it

easier for sellers to meet multiple buyers (e.g., the internet) may impact equilibrium trad-

ing mechanisms and allocations. In particular, we analyze an environment in which sellers

compete for heterogeneous buyers by posting trading mechanisms and meetings are governed

by a meeting technology from a wide class. We show how the equilibrium mechanism nests

posted prices when sellers can meet at most one buyer and standard auctions when they

are unconstrained in the number of buyers they can meet. Concerning market segmenta-

tion, when low-valuation buyers reduce the probability that sellers and high-valuation buyers

meet, sellers will discourage the low-valuation buyers from visiting. This can lead to complete

or partial market segmentation, depending on the dispersion of valuations and the degree

of congestion in the meeting process. All high-valuation buyers are always in one segment,

either with or without a subset of low-valuation buyers.

We also introduce a new function φ which makes the analysis of general meeting technolo-

gies tractable and allows us to generalize the competing mechanism literature. Using this

function, we show that in a large economy, despite the presence of private information and

possible search externalities, the directed search equilibrium is equivalent to a competitive

equilibrium (where the commodities are buyer types and the prices are the market utilities).

A seller can attract a desired queue by posting an auction with entry fee or by charging an

appropriate reserve price which establishes the equivalence between the two equilibria.
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Appendix A Additional Results and Omitted Proofs

A.1 Recoverability of Pn

Proposition 7. If φ(µ, λ) is generated by some {Pn(λ) : n = 0, 1, 2, . . . }, then we can recover

Pn(λ) from φ(µ, λ) by

Pn (λ) =
(−λ)n

n!

∂n

∂µn
(1− φ (µ, λ))

∣∣∣∣
µ=λ

.(A.1)

Proof. When n = 0, equation (A.1) is simply P0(λ) = 1 − φ(λ, λ). When n ≥ 1, by equa-

tion (1),

∂n

∂µn
(1− φ (µ, λ)) =

∞∑
k=n

Pk(λ)n!

(
−1

λ

)n (
1− µ

λ

)k−n
.

Evaluating the above equation at µ = λ yields equation (A.1).

A.2 Proof of Lemma 1

When a seller meets n ≥ 1 buyers, the surplus x from the meeting equals x1 = 1 with prob-

ability
(
1− µ

λ

)n
and equals x2 with the complementary probability 1−

(
1− µ

λ

)n
. Expected

surplus per seller in the submarket therefore equals

S =
∞∑
n=1

Pn (λ)
[(

1− µ

λ

)n
+ x2

(
1−

(
1− µ

λ

)n)]
=
∞∑
n=1

Pn (λ) +
∞∑
n=1

Pn (λ) (x2 − 1)
(

1−
(

1− µ

λ

)n)
= m (λ) + (x2 − 1)

(
∞∑
n=1

Pn (λ)−
∞∑
n=1

Pn (λ)
(

1− µ

λ

)n)

= m (λ) + (x2 − 1)

(
1−

∞∑
n=0

Pn (λ)
(

1− µ

λ

)n)

= m (λ) + (x2 − 1)φ (µ, λ) ,
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where we use the definition of m(λ) for the third equality, we add a term P0(λ) to both

summations in the large parenthesis and start the summation from n = 0 for the fourth

equality, and use the definition of φ from equation (1) for the last equality.

Adding ε more low-type buyers per seller will increase the total queue length λ by ε but

will not change µ, the queue length of high-type buyers. Thus, the marginal contribution to

surplus by low-type sellers is the partial derivative Sλ(µ, λ), which is given by (4). Similarly,

adding ε more high-type buyers per seller will not only increase the total queue length λ by

ε but also increase µ by the same amount. Thus the marginal contribution to surplus by

high-type sellers is the partial derivative Sµ(µ, λ) + Sλ(µ, λ), which is given by (5). Finally,

after adding ε more sellers, surplus will become (1 + ε)S
(

µ
1+ε

, λ
1+ε

)
. Taking the derivative

with respect to ε yields equation (6).

A.3 Proof of Proposition 1

Recall that the social planner’s problem is given by (7). Below, we rewrite (7) slightly by

introducing a new function Ŝ, total surplus per agent, which has two advantages: i) the

domain of Ŝ is compact, and ii) the accounting constraints for buyers and sellers hold with

equalities so that we can apply directly the Fenchel-Bunt Theorem.

Suppose that the planner creates L̃ submarkets, which may include an inactive one.

In submarket `, the measure of sellers is α̃` and the measure of buyers with value xj is

B̃`
j for j = 1, 2. Therefore,

∑L̃
`=1 α̃

` = 1 and
∑l̃

`=1 B̃
`
j = Bj for j = 1, 2. Define z̃`1 =

(B̃`
1 + B̃`

2)/(α
` + B̃`

1 + B̃`
2) and z̃`2 = B̃`

2/(α
` + B̃`

1 + B̃`
2), i.e., z̃`1 is the fraction of buyers and

z̃`2 is the fraction of x2 buyers in a submarket `.

Since total surplus in each submarket exhibits constant returns to scale with respect to

the number of sellers and the number of high-type and low-type buyers, we can normalize

the total number of buyers and sellers in each submarket (active or inactive) to 1, and define

the surplus per agent (both buyers and sellers) in submarket ` as Ŝ(z̃`1, z̃
`
2). When α̃` > 0, it
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is given by

Ŝ(z1, z2) =
1

α` + B̃`
1 + B̃`

2

· α̃`S

(
B̃`

2

α̃`
,
B̃`

2 + B̃`
1

α̃`

)
.

and when α̃` = 0, it is simply zero. The function Ŝ is well defined even in a submarket

with buyers only (z̃`1 = 1) and its domain is compact. The total surplus generated from all

submarkets is

L̃∑
`=1

(α` + B̃`
1 + B̃`

2)Ŝ(z̃`1, z̃
`
2).

Therefore, as in equation (7), total surplus is a convex combination of the individual submar-

kets’ surpluses, which are represented by Ŝ here. The planner’s solution is thus the supreme

of all such convex combinations. Because the function Ŝ is continuous and its domain is com-

pact, the graph of Ŝ is compact, which implies that the convex hull of the graph is also com-

pact (see, for example, Theorem 17.2 of Rockafellar, 1970). Thus the supreme can be reached

as a maximum. Furthermore, note that the domain of Ŝ is the set {(z1, z2) | 0 ≤ z2 ≤ z1 ≤ 1},

which is connected. By the Fenchel-Bunt Theorem (see Theorem 18 (ii) of Eggleston, 1958),

which is an extension of Caratheodory’s theorem, it suffices to create 3 submarkets.

A.4 Proof of Lemma 2

If P0(λ)+P1(λ) = 1, then total surplus per seller is given by m(λ) (1 + (x2 − x1)µ/λ). We can

obtain the same surplus by splitting the submarket in two: one contains only high-type buyers

and the other contains only low-type buyers, where the queue lengths in both submarkets

equal λ. We can further increase total surplus by moving sellers from the submarket with

only low-type buyers to the other submarket with only high-type buyers.
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The Hessian matrix of the surplus function is

Sµµ(µ, λ) Sµλ(µ, λ)

Sµλ(µ, λ), Sλλ(µ, λ)

 =

(x2 − x1)φµµ(µ, λ), (x2 − x1)φµλ(µ, λ)

(x2 − x1)φµλ(µ, λ), x1m
′′(λ) + (x2 − x1)φλλ(µ, λ)


Since φµµ < 0, by Sylvester’s criterion the Hessian matrix is negative semidefinite if and only

if its determinant is positive. That is,

(x2 − x1)φµµ(µ, λ) (x1m
′′(λ) + (x2 − x1)φλλ(µ, λ))− (x2 − x1)2φµλ(µ, λ)2 ≥ 0

Dividing both sides by (x2 − x1)φµµ(µ, λ) gives (8).

A.5 Verifying Assumptions 1 and 2

Consider first the case of bilateral technologies, where φ(µ, λ) = 1− P0(λ)− P1(λ)(1− µ
λ
) =

µm(λ)/λ (recall m(λ) ≡ 1 − P0(λ)). Thus φ(λz, λ) = zm(λ), which is strictly concave in λ

for any z ∈ (0, 1]. Next, since P0(λ) + P1(λ) = 1 for all λ, the requirement of Assumption 2

becomes void and is thus always satisfied.

Next, consider technologies exhibiting joint concavity. For γ ∈ (0, 1), γφ(λ1z, λ1) +

(1− γ)φ(λ2z, λ2) ≤ φ (γλ1z + (1− γ)λ2z, γλ1 + (1− γ)λ2) since φ(µ, λ) is concave in (µ, λ).

Thus for a given z, φ(λz, λ) is concave in λ, i.e., Assumption 1 is satisfied. Since φµµφλλ −

φ2
µλ ≥ 0 for all µ and λ, H(λz, λ) is always weakly negative and the requirement of Assump-

tion 2 becomes void and is thus always satisfied.

For the stochastic capacity example, we show that φ(µ, λ) = µ/(1 + σµ+ (1− σ)λ) in

Appendix B.2. Hence, φ(λz, λ) = λz/(1 +λ(1−σ+σz)), which is strictly concave in λ when

z > 0. For Assumption 2, note that H(λz, λ) is always positive:

H(λz, λ) =
(λ+ 1)3(1− σ)2

4σ(1 + (1− σ)λ)(1 + λ(1− σ + σz))
> 0.
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From the above equation, ∂H(λz, λ)/∂z < 0, and

∂H(λz, λ)

∂λ
=

(1 + λ)2(1− σ)2 (λ2(1− σ)(1− σ(1− z)) + 2λ (1− σ2(1− z)) + 1 + σ(2− z))

4σ(1 + (1− σ)λ)2(1 + λ(1− σ + σz))2
,

which is strictly positive. Hence, the level curve of H(λz, λ) is upward sloping. On the other

hand,

∂φµ(λz, λ)

∂λ
= −1− σ + 2σz + λ(1− σ)(1− σ(1− z))

(1 + λ(1− σ + σz))3
< 0,

which implies that the level curve of φµ(λz, λ) is downward sloping. Thus Assumption 2 is

trivially satisfied.

Finally, we present an example of a meeting technology which satisfies Assumption 1 but

not Assumption 2. This example is a mechanical combination of a bilateral and an invariant

meeting technology. There are two locations within a submarket. With probability α, all

buyers and sellers are in location 1 and meetings are dictated by a geometric technology;

with complementary probability, all buyers and sellers are in location 2 and meetings are

dictated by a telephone-line technology. In this case, φ(µ, λ) is a weighted average, i.e.,

φ (µ, λ) = (1− α)µ/(1 + λ) + αµ/(1 + µ).

Given this functional form, it is straightforward to check that φ(λz, λ) is strictly concave

in λ when z > 0 so that Assumption 1 is satisfied. For Assumption 2, note that

H(λz, λ) =
(1− α)

4α(λ+ 1)

[
λ3 (1− α) z3 + λ2

(
3z2(1− α) + 4αz

)
+ λ(3 + α)z + 1− α

]
> 0.

Direct computation yields that

lim
λ→0

∂H(λz, λ)

∂λ
=

(1− α)(−1 + α + (α + 3)z)

4α

which is strictly negative when z → 0. Hence, Assumption 2 is violated.
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A.6 Collection of Technical Lemmas

Below, we collect several technical lemmas which will be useful to characterize the planner’s

solution established in Proposition 2.

An alternative way of understanding Assumption 1 is the following. Holding fixed the

number of low-type and high-type buyers in a submarket, adding one more seller decreases

the queue length but keeps the fraction of high-type buyers constant. Assumption 1 then

implies that the total surplus in this submarket is always concave in the number of sellers.

Lemma 4. Consider a submarket where the measure of sellers, low-type buyers and high-

type buyers are α, b1, and b2 respectively. Under Assumption 1, total surplus αS
(
b2
α
, b1+b2

α

)
is strictly concave in α.

Proof. First define b̃ = b1 + b2 and z = b2/b̃. Surplus generated from the submarket is

α
(
m( b̃

α
) + (x2 − 1)φ( b̃z

α
, b̃
α

)
)

. Then, for any γ ∈ (0, 1),

γα1

(
m

(
b̃

α1

)
+ (x2 − 1)φ

(
b̃z

α1

,
b̃

α1

))
+ (1− γ)α2

(
m

(
b̃

α2

)
+ (x2 − 1)φ

(
b̃z

α2

,
b̃

α2

))

> (γα1 + (1− γ)α2)

(
m

(
b̃

γα1 + (1− γ)α2

)
+ (x2 − 1)φ

(
b̃z

γα1 + (1− γ)α2

,
b̃

γα1 + (1− γ)α2

))
,

where we use the fact that m(λ) is strictly concave and φ(λz, λ) is concave in λ.

Our next lemma shows how T1(λz, λ) and T2(λz, λ) (the marginal contribution to surplus

by a buyer) vary along a level curve of R(λz, λ) and how this depends on the sign of the

determinant of the Hessian matrix of the surplus function.

Lemma 5. For any given R∗, let λ(z) be implicitly determined by the level curve R(λz, λ) =

R∗. Then, T2(λ(z)z, λ(z)) as a function of z is strictly decreasing at some point z0 if the

determinant of the Hessian of the surplus function in equation (3) is strictly positive for the

queue (z0λ(z0), λ(z0)) (and decreasing if the determinant is strictly negative). The reverse

result holds for T1(λ(z)z, λ(z)).
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Proof. Since T1(λz, λ) and R(λz, λ) are given by Equation (4) and (6), respectively, we have

dT1(λz, λ)

dz

∣∣
R(λz,λ)=R∗ =

∂T1(λz, λ)

∂z
+
∂T1(λz, λ)

∂λ

(
−∂R(λz, λ)/∂z

∂R(λz, λ)/∂λ

)
=

z(x2 − 1)λφµµ
m′′(λ) + (x2 − 1) (z2φµµ + 2zφµλ + φλλ)

(
−m′′(λ)− (x2 − 1)

(
φλλ −

φ2
µλ

φµµ

))
,

where in the second line we have suppressed the arguments (λz, λ) from the relevant functions.

The denominator in the first term on the right-hand side is negative because of Assumption 1,

and the second term corresponds to the sign of the determinant of the Hessian of the surplus

function, as demonstrated in equation (8).

The results regarding T2(λz, λ) follow from the equation

dT2(λz, λ)

dz

∣∣
R(λz,λ)=R∗ = −1− z

z

dT1(λz, λ)

dz

∣∣
R(λz,λ)=R∗ .

This equation uses the fact that the surplus function S(µ, λ) exhibits constant returns to

scale. To understand it, consider a marginal change in the queue and let ∆Tk = Tk(µ +

∆µ, λ + ∆λ)− Tk(µ, λ) for k = 1, 2. Since sellers’ marginal contribution to surplus remains

constant, we have S(µ, λ)−µT2(µ, λ)−(λ−µ)T1(µ, λ) = S(µ+∆µ, λ+∆λ)−(µ+∆µ)T2(µ+

∆µ, λ+ ∆λ)− (λ+ ∆λ−µ−∆µ)T1(µ+ ∆µ, λ+ ∆λ). Recall that T1 = Sλ and T2 = Sµ +Sλ.

A first-order Taylor approximation yields µ∆T2 = (λ − µ)∆T1, which is exactly the above

equation. Alternatively, it can be proved by direct computation.

Our last lemma shows the single-crossing result, which complements Lemma 5 and is

critical to the result that at the social optimum, there is one submarket for all x2 buyers.

Lemma 6. Under Assumption 2, each level curve of R(λz, λ) intersects with the curve

H(λz, λ) = 1/(x2 − 1) at most once and from the left in the z-λ plane.

Proof. Suppose that a level curve of R(λz, λ) intersects with the curve H(λz, λ) = 1/(x2−1)

at point (λz, λ) (with a slight abuse of notation). Then, x2 is given by 1 + 1/H(λz, λ). By
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direct computation we have,

∂R(λz, λ)/∂z

∂R(λz, λ)/∂λ

∣∣∣∣
x2=1+1/H(λz,λ)

=
λφµµ(λz, λ)

zφµµ(λz, λ) + φµλ(λz, λ)
=
∂φµ(λz, λ)/∂z

∂φµ(λz, λ)/∂λ
,

where the left-hand side of the above equation denotes the slope of the level curve of R(λz, λ)

at point (λz, λ) in the z-λ plane. Assumption 2 then implies Lemma 6. Finally, note that

∂T2(λz, λ)/∂z

∂T2(λz, λ)/∂λ

∣∣∣∣
x2=1+1/H(λz,λ)

=
∂T1(λz, λ)/∂z

∂T1(λz, λ)/∂λ

∣∣∣∣
x2=1+1/H(λz,λ)

=
∂φµ(λz, λ)/∂z

∂φµ(λz, λ)/∂λ
.

A.7 Proof of Proposition 2

Before moving to the main part of the proof, we need the following simple mathematical

fact. Suppose that f(x, y) is an arbitrary function and is strictly concave in y. Furthermore,

y as a function of x is implicitly defined by f2(x, y(x)) = 0 (subscripts of f indicate partial

derivatives). Then f(x, y(x)) is locally concave in x if and only if f(x, y) is locally concave

in (x, y).

To see this, differentiating with respect to x gives y′(x) = −f12(x, y(x))/f22(x, y(x)).

Therefore, d
dx
f(x, y(x)) = f1(x, y(x)), and

d2

dx2
f(x, y(x)) = f11(x, y(x))− f11(x, y(x))2

f22(x, y(x))
,

which then proves our claim above.

Recall that the two-step problem of the planner is

max
b1

max
α

S̃(b1, α) ≡ αS

(
B2

α
,
B2 + b1
α

)
+ (1− α)S

(
0,
B1 − b1
1− α

)
.(A.2)

Thus S(b1) = maxα S̃(b1, α). Note that by Lemma 4, S̃(b1, α) is always strictly concave in α.

We define the first term on the right-hand side as S̃a(b1, α) and the second term as S̃b(b1, α).
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Given b1, the optimal α∗(b1) is determined by the first-order condition: S̃2(b1, α) = 0 when

α ∈ (0, 1) and S̃2(b1, α) ≥ 0 when α = 1 (subscripts of S, S̃, S̃a, and S̃b indicate partial

derivatives), or equivalently equation (12).

We now prove Proposition 2 by showing that if S
′
(b1) = 0, then S

′′
(b1) < 0, which rules

out the scenario that S(b1) decreases first and then increases. Hence, there are only three

possibilities: S(b1) is monotonically increasing, monotonically decreasing, or increasing first

and then decreasing. In either case, the first-order condition is sufficient and implies a unique

solution.

Suppose that S
′
(b1) = 0. We first consider the case the case α∗(b1) < 1 or equivalently

R(B2, b1) < 1, where both submarkets contain sellers. Since the optimal α∗(b1) is character-

ized by the first-order condition S̃2(b1, α) = 0, S(b1) is locally concave if S̃(b1, α) is locally

concave in (b1, α). In the following, we will show both S̃a(b1, α) and S̃b(b1, α) are locally con-

cave in (b1, α). By Lemma 4, both S̃a(b1, α) and S̃b(b1, α) are strictly concave in α. Consider

S̃a(b1, α) first. Since both R and T1 are the same between the two submarkets, by Assump-

tion 2 and Lemma 5, S(µ, λ) must be strictly locally concave at point (B2

α
, B2+b1

α
), which then

implies that S̃a(b1, α) is locally concave due to the surplus function being constant returns

to scale. Since S̃b(b1, α) = (1− α)m(B1−b1
1−α ), again due to constant returns to scale, S̃b(b1, α)

is always concave in (b1, α). Therefore, we have S
′′
(b1) < 0.

Next, we consider the case α∗(b1) = 1, which then implies T1(
B2

α∗(b1)
, B2+b1
α∗(b1)

) ≥ 0 and

R( B2

α∗(b1)
, B2+b1
α∗(b1)

) ≥ 1. The following lemma shows that in this case surplus per seller is locally

strictly concave.

Lemma 7. Under Assumption 1 and 2, if at some point (µ0, λ0), R(µ0, λ0) ≥ 1 and T1(µ0, λ0) ≥

0, then the Hessian matrix of S(µ, λ) at point (µ0, λ0) is negative definitive.

Proof. Step 1: For any given z, limλ→∞ T1(λz, λ) = 0. To see this, note that limλ→∞m
′(λ) =

0, by equation 4 we only need to show that limλ→∞ φλ(λz, λ) = 0. Because φ(µ, λ) is always

concave in µ, we have φ(λz, λ) > λzφµ(λz, λ). For z > 0, this implies that limλ→∞ φµ(λz, λ) ≤

limλ→∞ φ(λz, λ)/λz = 0. Next, Assumption 1 implies that limλ→∞ zφµ(λz, λ)+φλ(λz, λ) = 0,
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which then implies limλ→∞ φλ(λz, λ) = 0 regardless of whether z = 0 or z > 0.

Step 2: Since R(µ0, λ0) ≥ 1, limλ→∞R(0, λ) = 1, and limλ→∞R(λ, λ) = x2, there exists

some z∗ such that limλ→∞R(λz∗, λ) = R(µ0, λ0). Along the level curve λ-z where R(λz, λ) =

R(µ0, λ0), we have T1(µ0, λ0) ≥ 0 and limz→z∗ T1(λz, λ) = 0. By Lemma 5, T1(λz, λ) is

first decreasing and increasing with z along the level curve of R(λz, λ). Therefore, T1(λz, λ)

crosses the x-axis at most twice, once from above and once from below. This implies that

around point (µ0, λ0), T1(λz, λ) is strictly decreasing in z along the level curve of R(λz, λ),

which implies the Hessian matrix of S(µ, λ) is negative definite by Lemma 5.

Again due to constant returns to scale, the above lemma implies that S̃a(b1, α) is locally

strictly concave at point (b1, 1). Hence, if S
′
(b1) = 0, then S

′′
(b1) < 0.

A.8 Proof of Proposition 5

In the relaxed problem, sellers select a queue directly in a hypothetical competitive market.

The expected payoff for a seller in this market is the difference between the surplus that

he creates and the price of the queue. Suppose that a queue (µ, λ) solves sellers’ relaxed

problem. If queue (µ, λ) contains buyers of value xk, then Tk(µ, λ) = Uk, where Tk(µ, λ)

is given by equations (4) and (5); if queue (µ, λ) does not contain buyers of value xk, then

Tk(µ, λ) ≤ Uk.

Note that when a seller posts a second-price auction with entry fee, t and attracts queue

(µ, λ), then the expected payoff of low-type buyers from visiting this seller is V1 = Q1(λ) −

(1 − Q0(λ))t = φµ(λ, λ) − (1 − Q0(λ))t, and the expected payoff of a high-type buyer from

visiting this seller is V2 = V1 + (x2− 1)φµ(µ, λ), which can be verified directly by considering

two different scenarios: a high-type buyer faces no competition from any other buyer types,

or he faces no competition from other high-type buyers but does compete with low-type

buyers.40 To summarize, the expected payoffs from a second-price auction with an entry fee

40Alternatively, we can use standard auction theory (see Myerson, 1981) and consider the integral of the
trading probability, which in our case is φµ(µ, λ).
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are

V1 = φµ(λ, λ)− (1−Q0(λ))t,

V2 = (x2 − 1)φµ(µ, λ) + φµ(λ, λ)− (1−Q0(λ))t.

An important observation is that if we set t according to equation (21) in the above equation,

then Vk = Tk(µ, λ) for k = 1, 2. Thus, buyers’ expected payoffs from the auction equal

their marginal contribution to surplus, which implies that the solution (µ, λ) to a seller’s

relaxed problem is also compatible with a second-price auction with entry fee t in the sellers’

constrained problem, where compatibility is defined by equation (18).

The reserve price case is similar except for one difference. When r < x1, then things are

exactly the same as the case with an entry fee and we have Vk = Tk(µ, λ), where k = 1, 2.

When r ∈ (1, x2), which happens only when there are no low-type buyers (µ = λ), then

V1 = 0 ≤ U1 and V2 = T2(µ, λ) = U2, in which case the queue is again compatible with a

second-price auction with reserve price r in the sellers’ constrained problem.

To prove efficiency, note that the sellers’ relaxed problem boils down to a competitive

market for buyer types. Therefore, the first welfare theorem applies and the equilibrium is

efficient. Since the sellers’ constrained problem is equivalent to the sellers’ relaxed problem,

the directed search equilibrium is also efficient.
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