
Spatial Search

—Online Appendix—

Xiaoming Cai∗ Pieter Gautier† Ronald Wolthoff‡

January 29, 2025

Appendix B Additional Results

B.1 Derivations for Section 2.5

As in the case of homogeneous sellers, we can analyze the effect of making goods more niche.

To do so, we again increase z and simultaneously reduce x(z), keeping the distribution G(q) of

expected buyer value q = zx(z) fixed. Because we fix the distribution of q, the correspondence

between sellers and locations does not depend on γ and can thus be denoted by q∗(s), which

is given by a variant of equation (8), i.e., 1−G(q∗(s)) = 1− L(s).

Let γ∗ = 0 for the first example, and γ∗ = α/β for the second example; then the first-order

approximation of equation (9) is

Y (λ, γ∗ + ∆γ) ≈ Y (λ, γ∗) +

∫
s

q∗(s)
1− e−λsx∗(s) − λsx∗(s)e−λsx∗(s)

(x∗(s))2
∆x∗(s) dL(s), (B.1)

where ∆x∗(s) = x(q∗(s), γ∗ + ∆γ)− x(q∗(s), γ∗). Given x(q, γ) = (q/z0)
−γ/(1−γ), we have

∆x∗(s) = − 1

(1− γ∗)2

(
z0
q

) γ∗
1−γ∗

log

(
q

z0

)
∆γ. (B.2)

First-order approximation for Example 1. We now consider a first-order approxi-

mation around γ = 0 for Example 1 above. To simplify the analysis we set s0 = 0, so

L(s) = 1 − e−s. Furthermore, we fix the distribution of expected buyer value (q = zx(z)):

G(q) = 1−
(
z0
q

)α
with α > 1 and q ≥ z0. By equation (11), the assignment between sellers
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and locations is then q∗(s) = z0e
s/α, which, by equation (B.2), implies that ∆x∗(s) ≈ s/α·∆γ.

The first-order approximation in (B.1) then becomes

Y (λ,∆γ) = z
αλ

αλ+ α− 1
+ z

α2λ2(αλ+ 3(α− 1))

(α− 1)(αλ+ α− 1)3
∆γ,

where z = z0α/(α − 1), and the first term on the right-hand side corresponds to Y in

equation (12) with s0 = 0. Note that we have included ∆γ as an argument of Y to emphasize

its dependence on γ. By the above equation, the percentage increase in Y is then given by

∂ log Y (λ, γ)

∂γ

∣∣
γ=0

=
αλ(αλ+ 3(α− 1))

(α− 1)(αλ+ α− 1)2
, (B.3)

which is strictly positive since α > 1. Note that the above equation is strictly decreasing

in α.1 Recall that a higher γ leads to a higher percentage change of z(q) for a higher q.

Therefore, the effect of γ on total surplus is stronger when α is smaller (when the quality

distribution G(q) is more dispersed). When the quality distribution is concentrated at z0

(α→∞), equation (B.3) converges to zero, since x(z0) is always 1 for any γ.

First-order approximation for Example 2. At γ∗ = α/β, the distribution of the ex-

pected buyer value q = zx(z) is given by 1−G(q) = P(zx(z) ≥ q) = P(z/z0 ≥ (q/z0)
1/(1−γ∗),

which implies that G(q) = 1 − (z0/q)
α/(1−γ∗). Furthermore, by equation (14), we have

q∗(s) = z0(
s
s0

)
1−γ
γ and x∗(s) = (q∗(s)/z0)

−γ/(1−γ) = s0/s.

We now fix G(q) and increase γ from γ∗ to γ∗ + ∆γ. Since q∗(s) = z0(
s
s0

)
1−γ
γ , by equa-

tion (B.2) we have

∆x∗(s) = −
s0 log( s

s0
)

sγ∗(1− γ∗)
∆γ

which implies that the percentage reduction ∆x∗(s)/x∗(s) = −∆γ · log( s
s0

)/γ∗(1−γ∗), which

is higher for sellers with higher quality.

Plugging the above expression of ∆x∗(s) into (B.1) yields

Y (λ, γ∗ + ∆γ) ≈
(
1− e−λs0

)
z +

z
(
1− e−λs0 − λs0e−λs0

)
(1− γ∗)(α− 1)

∆γ

Again, increasing γ while holding the distribution of q constant increases the expected total

1To see this, note that the derivative of (B.3) with respect to α is given by

− ∆γλ3

(α− 1)2(αλ+ α− 1)3
−

∆γλ
(
(α− 1)2(λ+ 1)(λ+ 3) + (α− 1)(3λ2 + 7λ+ 6) + 3λ(λ+ 1)

)
(α− 1)(αλ+ α− 1)3

which is strictly negative since α > 1.
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surplus. The effect is smaller when α is higher.

B.2 Price Posting

Below we assume that G(z̃, z) is a continuous distribution function, the support of G(z̃, z) is

[a(z), b(z)], and the density of G(z̃, z) is g(z̃, z), i.e., g(z̃, z) = ∂G(z̃, z)/∂z̃.

B.2.1 The Planner’s Problem

The expected surplus for a seller type z in location s is given by

S(s, z) =
∞∑
n=1

e−λs
(λs)n

n!

∫ b(z)

a(z)

z̃dG (z̃, z)n =

∫ b(z)

a(z)

z̃d

(
∞∑
n=1

e−λs
(λs)n

n!
G (z̃, z)n

)

=

∫ b(z)

a(z)

z̃d
(
e−λs(1−G(z̃,z))

(
1− e−λsG(z̃,z)

))
=

∫ b(z)

0

1− e−λs(1−G(z̃,z))dz̃ (B.4)

where for the last equality we used integration by parts. The above equation generalizes

equation (2) where G(·, z) is a two-point distribution.

The partial derivative of S(s, z) with respect to s is then given by

∂S(s, z)

∂s
=

1

s

∫ b(z)

0

λs (1−G(z̃, z)) e−λs(1−G(z̃,z))dz̃, (B.5)

where the integrand above is the probability that a seller meets exactly one buyer with a

value above z̃.

Denote the inverse function of G(z̃, z) with respect to z̃ by G−1(t, z). That is, if G(z̃, z) =

t, then z̃ = G−1(t, z). With the above notation, we can then rewrite equation (B.5) as follows.

∂S(s, z)

∂s
=

1

s

(
λse−λsa(z) +

∫ b(z)

a(z)

1−G(z̃, z)

g(z̃, z)
d
(
1− e−λs(1−G(z̃,z))

))

=
1

s

(
λse−λsa(z) +

∫ 1

0

1− t
g(G−1(t, z), z)

d
(
1− e−λs(1−t)

))
(B.6)

where for the second equality we changed the variable of integration.

Therefore, if i) a(z) is weakly increasing, and ii) g(G−1(t, z), z) is weakly decreasing in

z for any t ∈ [0, 1], then the two terms in the parenthesis of equation (B.6) are increasing

in z, and hence S(s, z) is supermodular. If either condition is strict, then S(s, z) is strictly

supermodular.
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B.2.2 The Decentralized Equilibrium

The problem of an (s, z) seller is to choose p to maximize expected profit:

π(s, z) ≡ max
p

p
∞∑
n=1

e−λs
(λs)n

n!
(1−G (p, z)n) = pQ(p, s, z)

where

Q(p, s, z) = 1− e−λs(1−G(p,z)). (B.7)

The seller’s problem above is similar to a standard profit maximization problem of a monop-

olist where the demand function is given by Q(p, s, z). Denote the seller’s optimal price by

p∗(z) (we ignore its dependence on s to simplify notation). By the envelope theorem,

∂π(s, z)

∂s
= p∗(z)Qs (p∗(z), s, z) = p∗(z)λ(1−G(p∗(z), z))e−λs(1−G(p∗(z),z)) > 0 (B.8)

where Qs is the partial derivative with respect to s.

If for some seller type z, the optimal price p∗(z) = a(z), the corner solution, then equa-

tion (B.8) becomes πs(s, z) = a(z)λe−λs, which implies that πsz(s, z) > 0 if and only if

a′(z) > 0.

If the optimal price p∗(z) is interior, then it must satisfy the following first-order condition,

0 = 1− e−λs(1−G(p,z)) − pg(p, z)λse−λs(1−G(p,z)). (B.9)

From the above first-order condition we can solve for the derivative dp∗(z)/dz.

dp∗(z)

dz
= −Gz(p

∗, z) (λsp∗g(p∗, z) + 1) + p∗gz(p
∗, z)

g(p∗, z) (λsp∗g(p∗, z) + 2) + p∗gp(p∗, z)
(B.10)

where the subscripts refer to partial derivatives, e.g., Gz(p
∗, z) = ∂G(p∗, z)/∂z. To determine

the supermodularity of π(s, z), differentiating equation (B.8) with respect to z yields

∂2π

∂s∂z
= λe−λs(1−G)

(
dp∗

dz
(1−G)− p∗

(
dp∗

dz
g +Gz

)
(1− λs(1−G))

)
, (B.11)

where dp∗/dz is given by equation (B.10), and we have suppressed the arguments of G(p∗, z).

In general, it is difficult to sign (B.11). Below we discuss three special cases where we can

analyze it.

Finally, we show that if G(p, z) is a uniform distribution, then the first-order condition

for p∗(z) is both necessary and sufficient. Furthermore, we derive the condition under which
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p∗(z) is interior. Assume that G(p, z) is U [a(z), b(z)], the uniform distribution between a(z)

and b(z). Then

∂

∂p

(
Q(p, s, z)

−Qp(p, s, z)

)
= eλs

b(z)−p
b(z)−a(z)

where Q(p, s, z) is the demand function defined by equation (B.7), and Qp is its derivative

with respect to p (density function). Since the above equation is strictly decreasing in p, the

sellers’ first-order condition is both necessary and sufficient for the optimal price p∗(z).

The optimal price p∗(z) is interior if and only if at p = a(z), the right-hand side of

equation (B.9) is strictly positive, which is equivalent to

a(z)

b(z)− a(z)
<
eλs − 1

λs
. (B.12)

Hence, given λs, p∗(z) is interior if and only if a(z) is sufficiently small; similarly, given a(z)

and b(z), the same conclusion holds if and only λs is sufficiently large.

B.2.3 Efficiency: Three Examples

We now discuss three special cases where S(s, z) is always strictly supermodular, while π(s, z)

is strictly supermodular for the first two cases, and neither supermodular nor submodular

for the third case.

Case 1: z acts as a multiplicative shifter in G(z̃, z). In this case, we have G(z̃, z) =

H(z̃/z), a(z) = a0z, and b(z) = b0z, where a0 ≥ 0, b0 can be∞, and H(·) is a univariate cdf.

Note that z̃ = G−1(t, z) if and only if z̃/z = H−1(t). Furthermore, g(G−1(t, z), z) =

g(z̃, z) = 1
z
H ′(z̃/z) = 1

z
H ′(H−1(t)), which is inversely proportional to z, and hence strictly

decreasing. Hence, in the planner’s problem S(s, z) is always strictly supermodular.

In the decentralized market, p∗(z) and hence π(s, z) must be proportional to z, since z

scales up buyers’ values proportionally. Therefore, π(s, z) must be strictly supermodular.

Hence, the planner’s solution and the decentralized equilibrium coincide.

Case 2: z acts as an additive shifter in G(z̃, z). In this case, we have G(z̃, z) = H(z̃−z),

a(z) = a0 + z, and b(z) = b0 + z, where a0 ≥ 0, b0 can be ∞, and H(·) is a univariate cdf.

Note that z̃ = G−1(t, z) if and only if z̃ − z = H−1(t). Furthermore, g(G−1(t, z), z) =

g(z̃, z) = H ′(z̃−z) = H ′(H−1(t)), which is independent of z. Hence, the first term in between

parenthesis of equation (B.6) is strictly increasing in z, and the second term is independent

of z, which implies that in the planner’s problem S(s, z) is always strictly supermodular.

The analysis of the decentralized equilibrium is more complicated, since in general we can

not derive an explicit expression for p∗(z). Suppose that H(·) is uniform, U [a0, b0]. When
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both a0 and z are small, then p∗(z) is interior, i.e., p∗(z) > a0 +z; otherwise we have a corner

solution p∗(z) = a0 + z. When p∗(z) is interior, then by equation (B.10) and (B.11) we have

∂2π

∂s∂z
=

λ(b0 + z)

λsp∗(z) + 2b0 − 2a0
e
−λs(b0+z−p

∗(z))
b0−a0 > 0

When p∗(z) is a corner solution, as we argued before, πsz(s, z) > 0 if and only if the lower

bound a(z) is strictly decreasing, which holds trivially here. Thus π(s, z) is always strictly

supermodular.

Case 3: z acts as mean-preserving spread in G(z̃, z). Assume that G(z̃, z) is uniform,

U [1− z, 1 + z] with 0 ≤ z < 1; hence a(z) = 1− z and b(z) = 1 + z. The mean of z̃ is always

1 but as z increases, the distribution of z̃ becomes more dispersed, i.e., the goods become

more niche.

We first consider the planner’s problem. Since a(z) = 1− z, which is strictly decreasing,

we can not apply the conditions that are sufficient for S(s, z) to be supermodular. Instead,

we calculate S(s, z) directly. By equation (B.4), we have

S(s, z) = 2z
e−λs + λs− 1

λs

Since S(s, z) is linear in z, it is then strictly supermodular (recall that S(s, z) is always

increasing in s).

Next, consider the decentralized equilibrium. By equation (B.12), p∗(z) is interior if and

only if

z >
λs

λs+ 2eλs − 2
. (B.13)

Note that the right-hand side above is strictly decreasing in λs, and its maximum is 1/3.

Thus when z ≥ 1/3, the optimal p∗(z) is always interior.

When z is close to 0 (so that the distribution of buyers is highly concentrated), we have

a corner solution p∗(z) = 1− z. Since a(z) is strictly decreasing, πsz(s, z) < 0.

Now suppose that the optimal price p∗(z) is interior. By equation (B.10) and (B.11) we

have

∂2π

∂s∂z
= λe−

λs(1+z−p∗(z))
2z

(1 + z − p∗(z))p∗(z)(λsp∗(z) + 4z)− 2z(z + 1)

2z2(λsp∗(z) + 4z)
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which is strictly positive if and only if

λs >
2z(1 + z − 2p∗(z)(1 + z − p∗(z)))

(1 + z − p∗(z))p∗(z)2

Note that the optimal price p∗(z) also depends on λs. In Figure 1 we plot πsz(s, z) where

s ∈ [0, 2], z ∈ [0.5, 1], and we normalize λ = 1. In the figure we set z ≥ 0.5 to ensure that the

optimal p∗(z) is interior so that equation (B.11) is valid, and to increase the figure’s visibility.

In general, when s is small, πsz(s, z) < 0, πsz(s, z) is not supermodular and spatial sorting is

inefficient. This finding echoes the result of our benchmark model, where supermodularity

of π(x, z) failed when zx(z) is constant and λs is small.

Figure 1: Inefficient spatial sorting under price posting

B.3 Relation with Invariance

In our model, the probability that a seller meets n buyers is given explicitly by equation (16).

In earlier literature (see, e.g., Eeckhout and Kircher, 2010), it has been common to start

with Pn(λ) unspecified. An invariant meeting technology is then defined as one for which

equation (20) holds for any λ and x, with (set x = 1) m(λ) = 1 − P0(λ) (Lester et al.,

2015; Cai et al., 2017). Furthermore, the nth derivative of equation (20) with respect to x,

evaluated at x = 1, equals Pn(λ) = (−1)n+1 λn

n!
m(n)(λ).

Therefore, for any invariant meeting technology, its associated function m(λ) has the fol-

lowing properties: i) It is non-negative, and ii) it is infinitely differentiable and (−1)n+1 dn

dλn
m(λ) ≥

0 for n ≥ 1. That is, m(λ) is a Bernstein function. In addition, m(λ) is bounded between 0

and 1, m(0) = 0, and m′(0) ≤ 1. By Bernstein’s theorem, m(λ) has the following represen-

tation.2

2See page 21 of Schilling et al. (2012) for the definition of Bernstein functions and Bernstein’s Theorem.
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Theorem 1. A function m(λ) generates an invariant meeting technology if and only if there

exists a probability measure L̃(s) on [0,∞) (the positive real half-line) with
∫
[0,∞)

s dL̃(s) ≤ 1

such that

m(λ) =

∫
[0,∞)

(
1− e−λs

)
dL̃(s). (B.14)

Proof. Invariance implies (B.14). For the first part of the proof, consider an invariant

meeting technology defined by the condition that {P0(λ), P0(λ), . . . } satisfies equation (20).

As we argued before Theorem 1, m(λ) is a Bernstein function. By Bernstein’s theorem, the

function m(λ) has the following Lévy-Khintchine representation:

m(λ) = a1 + a2λ+

∫
(0,∞)

(
1− e−λs

)
dL(s),

where a1, a2 ≥ 0 and L is a measure on (0,∞) satisfying
∫
(0,∞)

min{1, t} dL(s) < ∞ (see

Theorem 3.2 of Schilling et al., 2012).

Since m(0) = 0, it follows that a1 = 0. Moreover, since m(λ) is bounded from above by 1,

a2 must equal 0 as well. Further, if λ→∞, we have 1−e−λs ↗ 1 for any t > 0, and therefore

m (λ) →
∫
(0,∞)

1 dL(s) by the monotone convergence theorem. Since m(λ) cannot exceed 1,

the total measure of L(·) must be less or equal to 1:
∫
(0,∞)

1 dL(s) ≤ 1. If the total measure

is strictly less than 1, without loss of generality we can assign measure 1−
∫
(0,∞)

1 dL(s) on

point s = 0. Therefore, it is without loss of generality to assume that L(·) is a probability

measure on [0,∞).

Next, the probability that a worker meets a firm is m(λ)/λ =
∫∞
0

(
1− e−λs

)
/λ dL(s),

which cannot exceed 1 for any λ ≥ 0. One can easily verify that when λ ↘ 0, we have(
1− e−λs

)
/λ ↗ s. Therefore, limλ→0m(λ)/λ =

∫∞
0
s dL(s) by the monotone convergence

theorem. Hence, L(·) must satisfy
∫∞
0
s dL(s) ≤ 1.

(B.14) implies invariance. For the second part of the proof, assume that m(λ) is given

by equation (B.14) where L is a probability measure on [0,∞) satisfying
∫
[0,∞)

sdL(s) ≤ 1.

Since this corresponds to our meeting process on the circle, the resulting meeting technology

is invariant (see equation (20)) and Pn(λ) is given by equation (16).

If
∫
[0,∞)

s dL̃(s) = 1, then the class of invariant technologies corresponds exactly to the

above search process on the circle with L̃(s) = L(s).3 We can also use our model to under-

stand the general case. If
∫
[0,∞)

s dL̃(s) < 1, then with probability 1−
∫
[0,∞)

s dL̃(s) buyers do

not arrive on the circle and are passive. This probability is independent of λ. Given the set

of buyers who arrive on the circle, the matching process specified by an invariant technology

3We use the notation
∫
[0,∞)

to emphasize that there can be a mass point at 0.
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is again equivalent to our search process on the circle. Thus it is without loss of generality

to assume that
∫
[0,∞)

s dL̃(s) = 1. Given the correspondence in Theorem 1, Pn(λ) can also

be calculated by equation (16) (a mixture of the corresponding Poisson probabilities).
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