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We present the analytic calculation of the cross-spectral density tensor of a thermally radiative planar
dielectric slab in extreme near-field, intermediate near-field, and far-field zones. We show that the spatial
coherence of the thermal field exhibits distinct features in these zones. At a given wavelength �, the coherence
length is many orders of magnitude smaller than � in the extreme near-field zone, and is roughly � /2 in the
far-field zone. In the intermediate near-field zone, the coherence length can be much longer than � /2 if the loss
is small. The physical origin of the short-ranged spatial coherence in the extreme near-field zone is the spatially
fluctuating surface charges at the air-dielectric interface. We also demonstrate that in the intermediate near-field
zone, the long-ranged spatial coherence is induced by the waveguide modes of the dielectric slab. When the
loss is small, the long-ranged coherence falls off approximately as 1/�x, in contrast to 1 /x for a blackbody
radiator, where x refers to displacement parallel to the slab surface.
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I. INTRODUCTION

An important property of a thermally radiative source is
its degree of coherence. In general, the coherence property of
such a source is characterized by the cross-spectral density
tensor �1�

WJ �r1,r2,����� − ��� � �E� �r1,�� � E� *�r2,���� , �1�

at a given frequency �. Here E� �r ,�� is the spectral Fourier

transform of the electric field E� �r , t�. The superscript � indi-
cates the complex conjugate, � is the direct-product of two
vectors and the brackets �¯� denote a thermal ensemble av-
erage.

It was recently recognized that the coherence properties of
a thermally radiative body can be drastically different from
the blackbody radiator in systems such as microcavities �2�,
photonic crystals �3–8�, or in systems exhibiting surface
modes �9,10�. Moreover, these changes can occur both in the
near- and the far-field zones. In particular, Carminati et al.
�10� have shown that in the near field of a polaritonic me-
dium, the range of coherence can be larger than that of the
far field and is directly related to the propagating surface
polariton mode at the interface between the polaritonic me-
dium and air �9,10�. Such long-ranged coherence property
has been shown to be useful, for example, in generating co-
herent thermal radiation in grating structures �11�. Shchegrov
et al. �12� demonstrated the spectral changes of the energy
density I�r ,�� of the electric field in the near- and far-field
zones of a semi-infinite bulk polaritonic material in the fre-
quency range that supports surface waves. Also, the coher-
ence property of thermal emission in the far field from a
dielectric slab has been investigated �13�.

Motivated by these recent developments, here we investi-
gate the spatial coherence of the thermal field in the vicinity
of a dielectric slab with finite thickness. In general, one
might expect that the waveguide modes in the dielectric slab
play an analogous role as the surface waves in the polaritonic
media, and thus long-ranged coherence should also be ob-
served in this class of structures. One might further speculate
the occurrence of significant differences in the behaviors of
the cross-spectral density tensor WJ �r1 ,r2 ,�� at near- and far-
field zones, analogous to the spectral changes in the energy
density I�r ,�� for semi-infinite media as in Ref. �12�. Our
detailed calculations, as shown in this paper, confirm these
expectations. Moreover, our calculations reveal three differ-
ent zones of coherence behavior:

�1� Extreme near-field zone �z0�d�, where the spatial co-

herence length of WJ �r1 ,r2 ,�� is much less than the wave-
length �. Here d is the 1/e amplitude decay length in air of
the evanescent tail associated with the slab guided modes at
frequency �, r1 and r2 are chosen at the same height z0 from
the dielectric slab, and �=2�c /� is the wavelength in
vacuum.

�2� Intermediate near-field zone, where the field shows
long-ranged coherence behavior with coherence length larger
than � /2 when the loss is small. In this low-loss case, the
envelope of the trace of the cross-spectral density tensor de-
cays approximately as 1/�x for large x, where x refers to
displacement parallel to the slab surface.

�3� Far-field zone �z0�d�: in which the coherence length
is 	� /2. The envelope of the cross-spectral density tensor
decays approximately as 1/x.

This paper is organized as follows: In Sec. II we present
and develop the formalism to compute the cross-spectral
density tensor. We then discuss in Sec. III the results and the
physical interpretations. Finally, we present our conclusions
in Sec. IV.

II. FORMALISM

To begin with, we recapitulate the general notions as in
Refs. �10,12�, and then develop the formalism for the spe-*shanhui@stanford.edu
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cific planar slab geometry of interest. We consider the geom-
etry as shown schematically in Fig. 1. The homogeneous
lossy dielectric slab has a finite thickness a in the z direction
�−a�z�0�, and extends infinitely in the x and y directions.
The slab is kept at a uniform temperature T. From the
fluctuation-dissipation theorem �14,15�, the presence of loss
directly leads to the existence of a fluctuating current density
j��r , t� at any point r= �x ,y ,z� inside the slab. Such fluctua-
tions are a time-stationary random process. The spectral rep-
resentation j��r ,�� is related to its temporal representation by
�16�

j��r,t� = 

−	

	 d�

2�
j��r,��e−i�t, �2�

and j��r ,�� satisfies the fluctuation-dissipation theorem �10�,

�j��r,�� � j�*�r�,���� = 4��
0
����

����,T��3�r − r����� − ���IJ,

�3�

where IJ is the 3�3 identity matrix, ��� ,T�=� / �e�/kBT

−1� is the mean energy above the zero-point energy of a
quantum harmonic oscillator in thermal equilibrium at tem-
perature T, and 
���� is the imaginary part of the dielectric
constant 
���. The form here differs from Ref. �10� by a
factor of �2��2 due to the Fourier transform convention that
is used in Eq. �2�.

The field radiated into the two half-spaces z�0 and z
�−a is itself a fluctuating quantity described by a time-

stationary random process E� �r , t�. The basic quantity of in-
terest is the second-order coherence of vector fields in the
space-time domain �17�

�J�r1,r2,�� � �E� �r1,t� � E� *�r2,t + ��� , �4�

which obeys the symmetry property, �J�r1 ,r2 ,��=�J†�r2 ,r1 ,
−��, where a dagger denotes the Hermitian conjugate.

According to the Wiener-Khintchine theorem �16,18�, we
can define the cross-spectral density tensor as

WJ �r1,r2,�� = 

−	

	

�J�r1,r2,��ei��d� , �5�

�J�r1,r2,�� =
1

2�



−	

	

WJ �r1,r2,��e−i��d� . �6�

It then follows that

WJ �r1,r2,����� − ��� = �E� �r1,�� � E� *�r2,���� .

Due to mirror symmetry of our system, we only focus in the
region z�0 hereafter. The electric field at a given point in
the half-space z�0 is given by

E� �r,�� = i�0�

V

GJ�r,r�,��j��r�,��d3r�, �7�

where the integration is performed over the volume V of the
slab. j��r� ,�� again is the spectral representation of the ran-

dom current density, and GJ�r ,r� ,�� is the Green dyadic of
the considered geometry.

Inserting Eq. �7� into Eq. �1�, we obtain

WJ �r1,r2,����� − ��� = �2�0
2


V

d3r�

V

d3r���GJ�r1,r�,��j��r�,��� � �GJ�r2,r�,���j��r�,����*�

= �2�0
2


V

d3r�

V

d3r�GJ�r1,r�,���j��r�,�� � j�*�r�,����GJ†�r2,r�,��� , �8�

z = -a

z = 0
z = z’

r1=(x,0,z0)z
y

x

(0,0,0)

r2=(0,0,z0)

FIG. 1. �Color online� Schematics of the geometry. The gray
region represents the dielectric slab. The slab is surrounded by air
with unity dielectric constant. It has thickness a in the z direction,
and extends infinitely in the x and y directions. r1 and r2 are the two
observing points above the slab. The coordinates are chosen such
that r1= �0,0 ,z0� and r2= �x ,0 ,z0�. A plane z=z� with −a�z��0 is
highlighted by the dashed line. This infinitesimal source plane is to
be integrated out to give the contribution to the cross-spectral den-
sity tensor between r1 and r2.
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and using Eq. �3�, we get

WJ �r1,r2,�� = 4��3�0
2
0
�������,T�

�

V

d3r�GJ�r1,r�,��GJ†�r2,r�,�� . �9�

Thus to compute WJ �r1 ,r2 ,��, we need to obtain the expres-

sion for GJ�r ,r� ,��, which is described below.
Due to the homogeneity of the slab in the x and y direc-

tions, GJ�r ,r� ,�� can be written as

GJ�r1,r�,�� � GJ�R1 − R�,z0,z�,�� , �10�

where r= �R ,z�0�, r�= �R� ,−a�z��0�, and R=xx̂+yŷ is
a vector in the x-y plane. We can then further represent

GJ�R1−R� ,z0 ,z� ,�� as

GJ�R1 − R�,z0,z�,�� = 

−	

	 d2�

4�2gJ��,z0,z�,��ei�·�R1−R��,

�11�

where � is a two-dimensional real wave vector in the x-y
plane. Here for simplicity we assume that z1=z2�z0. By
inserting Eq. �11� into Eq. �9�, we get

WJ �r1,r2,�� = 4��3�0
2
0
�������,T�


−a

0

dz�

−	

	

d2R�

�

−	

	 d2�1

4�2 

−	

	 d2�2

4�2 gJ��1,z0,z�,��

�gJ †��2,z0,z�,��ei�1·�R1−R��e−i�2·�R2−R��.

�12�

Using



−	

	

d2R�ei��1−�2�·R� = 4�2�2��1 − �2� , �13�

we obtain

WJ �r1,r2,�� � WJ �R1 − R2,z0,��

= 4��3�0
2
0
�������,T�


−a

0

dz�

−	

	 d2�

4�2

�gJ��,z0,z�,��gJ †��,z0,z�,��ei�·�R1−R2�.

�14�

Hence, the sources in the slab collectively excite modes of
different in-plane wave vector �. These plane waves then
interfere and affect the degree of coherence.

From Eq. �14�, the cross-spectral density tensor is thus
determined from gJ�� ,z0 ,z� ,��. In order to evaluate
gJ�� ,z0 ,z� ,��, it is useful to consider a solution to Maxwell’s

equations in a homogeneous medium: E� eik·r where k ·k
= �n� /c�2. Here n is the refractive index of the medium. Due

to the transversality constraint, we have k ·E� =0. Therefore,
for a given two-dimensional wave vector �, the three-
dimensional wave vector k can be written as

k = ��x

�y

�
� = �� cos �

� sin �

�
� , �15�

where � is given by

� = ��n�/c�2 − �2 �16�

and ���. If n is real, � is imaginary when ��n� /c, and
the wave becomes evanescent in the z direction.

Also, at a given �, the solution can be either a s-polarized
�TE� or a p-polarized �TM� wave. The unit polarization vec-
tors for TE and TM modes can be expressed as

ŝ �
ẑ � k

��ẑ � k� · �ẑ � k�
=

1

��− �y

�x

0
� = �− sin �

cos �

0
� , �17�

p̂ �
k

�k · k
� ŝ =

c

n��− � cos �

− � sin �

�
� . �18�

These vectors are normalized according to ŝ · ŝ=1 and p̂ · p̂
=1. Note that ŝ is real, lies on the x-y plane, and is medium
independent, while p̂ can be complex and is medium depen-
dent. ŝ and p̂ are orthogonal �i.e., ŝ · p̂=0� in all media.

Using the vectors ŝ and p̂, gJ�� ,z0 ,z� ,�� can be written as
�19�

gJ��,z0,z�,�� = −
i

2�II
�Ts��,z�,��ŝ � ŝ

+ Tp��,z�,��p̂I � p̂II�ei�Iz0, �19�

where T��� ,z� ,�� ��=s , p� is the transmission coefficient of
the s- or p-polarized field to free space �denoted by subscript
I�, from the source plane at z=z� inside the slab �denoted by
subscript II�, and is given by �19�

T���,z�,�� =
t���,���e−i�IIz� + r���,��ei�II�2a+z���

1 − �r���,���2ei2�IIa
. �20�

Here t��� ,��, r��� ,�� are, respectively, the Fresnel trans-
mission and reflection coefficients at a single dielectric-air
interface,
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ts��,�� =
2�II

�II + �I
, �21�

rs��,�� =
�II − �I

�II + �I
, �22�

tp��,�� =
2nInII�II

nI
2�II + nII

2�I
, �23�

rp��,�� =
nI

2�II − nII
2�I

nI
2�II + nII

2�I
. �24�

Thus Eq. �14� can be reexpressed as

WJ �r1,r2,�� = 4��3�0
2
0
�������,T�

�

−	

	 d2�

4�2

ei��I−�I
*�z0ei�·�R1−R2�

4�II2

�

−a

0

dz��Ts��,z�,��2�ŝ · ŝ�ŝ � ŝ

+ Tp��,z�,��2�p̂II · p̂II
* �p̂I � p̂I

*� , �25�

where

ŝ � ŝ = � sin2 � − cos � sin � 0

− cos � sin � cos2 � 0

0 0 0
� �26�

�note that ŝ vector is the same in both media�,

p̂i · p̂i
* = � c

�
�2��2 + �i2

ni2
� � 1, �27�

p̂i � p̂i
* = � c

�
�2 1

ni2�
�i2 cos2 � �i2 cos � sin � − �i� cos �

�i2 cos � sin � �i2 sin2 � − �i� sin �

− �i
*� cos � − �i

*� sin � �2 � , �28�

for i=I , II.
As a further simplification, we can express Eq. �25� in polar coordinates, �= �� ,��. Without loss of generality, we choose

our coordinates such that the two points are aligned on the x axis, i.e., r1= �x ,0 ,z0�, r2= �0,0 ,z0�, as in Fig. 1. Then

WJ �x,z0,�� = 4��3�0
2
0
�������,T�


0

	 �d�

2�



0

2� d�

2�

ei��I−�I
*�z0ei�x cos �

4�II2

�

−a

0

dz��Ts��,z�,��2� sin2 � − sin � cos � 0

− sin � cos � cos2 � 0

0 0 0
�

+ Tp��,z�,��2� c

�
�4��2 + �II2

nII2
�� �I2 cos2 � �I2 cos � sin � − �I� cos �

�I2 cos � sin � �I2 sin2 � − �I� sin �

− �I
*� cos � − �I

*� sin � �2 �� . �29�

All off-diagonal elements of WJ �x ,z0 ,�� in Eq. �29� are zero after the integration over �. Hence WJ �x ,z0 ,�� is diagonal with our
choice of coordinate axes. Therefore, for electric fields of two points displaced along the x axis, only field components of the
same direction correlate.

The diagonal elements of WJ �x ,z0 ,�� are evaluated to be

WXX�x,z0,�� = 4��3�0
2
0
�������,T�


0

	 �d�

2�

ei��I−�I
*�z0

4�II2



−a

0

dz��Ts��,z�,��2
J1��x�

�x

+ Tp��,z�,��2� c

�
�4��2 + �II2

nII2
��I2�J0��x� −

J1��x�
�x

�� , �30�
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WYY�x,z0,��

= 4��3�0
2
0
�������,T�


0

	 �d�

2�

ei��I−�I
*�z0

4�II2

�

−a

0

dz��Ts��,z�,��2�J0��x� −
J1��x�

�x
�

+ Tp��,z�,��2� c

�
�4��2 + �II2

nII2
��I2

J1��x�
�x

� ,

�31�

WZZ�x,z0,�� = 4��3�0
2
0
�������,T�

�

0

	 �d�

2�

ei��I−�I
*�z0

4�II2



−a

0

dz�

�Tp��,z�,��2� c

�
�4��2 + �II2

nII2
��2J0��x� .

�32�

To obtain the above expressions, we have used the following
identities:



0

2� d�

2�
ei�x cos � = J0��x� , �33�



0

2� d�

2�
ei�x cos � cos2 � = J0��x� −

J1��x�
�x

, �34�



0

2� d�

2�
ei�x cos � sin2 � =

J1��x�
�x

, �35�

where J0 and J1 are the zeroth- and first-order Bessel func-
tions of the first kind, respectively.

The cross-spectral density tensor can also be expressed by
the angular spectrum expansion �16,20�

WJ �x,z0,�� � 

−	

	 d2�

4�2W̃
J ��,z0,��ei�x cos �

= 

0

	 d�

2�
�


0

2� d�

2�
ei�x cos ��W̃J ��,�,z0,��� .

�36�

W̃
J

is the two-dimensional Fourier transform of WJ . This ex-
pansion, as we will show below, gives considerable physical
insights to the underlying physical mechanisms that deter-
mine the coherence behavior.

From Eqs. �32� and �33�, W̃ZZ�� ,z0 ,�� can be derived as

W̃ZZ��,z0,��

= 4��3�0
2
0
�������,T�

ei��I−�I
*�z0

4�II2

�

−a

0

dz��Tp��,z�,��2� c

�
�4��2 + �II2

nII2
��2� ,

�37�

which is independent of �. On the other hand, W̃XX and W̃YY
vary with � in the following manner:

W̃XX��,�,z0,�� � sin2 �Ts��,z0,��2

+ cos2 �Tp��,z0,��2� c

�
�4�2 + �II2

nII2
�I2,

�38�

W̃YY��,�,z0,�� � cos2 �Ts��,z0,��2

+ sin2 �Tp��,z0,��2� c

�
�4�2 + �II2

nII2
�I2.

�39�

The sum of W̃XX and W̃YY is � independent,

W̃XX��,�,z0,�� + W̃YY��,�,z0,��

= 4��3�0
2
0
�������,T�

ei��I−�I
*�z0

4�II2



−a

0

dz��Ts��,z�,��2

+ Tp��,z�,��2� c

�
�4��2 + �II2

nII2
��I2� . �40�

Finally we define the coherence length as follows:

��z0,�� �

2

0

	

dxTr�WJ �x,z0,���2

Tr�WJ �x = 0,z0,���2

=

2

0

	 d�x

2�
�


−	

	 d�y

2�
Tr�W̃J ��x,�y,z0,����2

�

0

	 �d�

2�
Tr�W̃J ��,z0,����2

=

2

0

	 d�x

2�
�2


�x

	 d�

2�

�

��2 − �x
2
Tr�W̃J ��,z0,����2

�

0

	 �d�

2�
Tr�W̃J ��,z0,����2 ,

�41�

where �=��x
2+�y

2, Tr�WJ �=WXX+WYY +WZZ, and Tr�W̃J �
=W̃XX+W̃YY +W̃ZZ.
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III. RESULTS AND INTERPRETATIONS

A. Spatial coherence at various separations from the slab

We now use the formalism developed in Sec. II to inves-
tigate the coherence properties for the slab geometry. We are
interested in the case where the absorption in the slab is
small, since in this case the guided modes attenuate slowly.
As we will show in the following, these guided modes play a
significant role in the coherence properties of the thermal
fields. The dielectric constant of the slab is chosen as 12

+0.001i, which approximates that of heavily doped silicon
�21�. The slab is assumed to be in air with dielectric constant
of 1.

In Fig. 2 we show the dispersion relation of a lossless slab
for both polarizations. The horizontal line indicates the fre-
quency �=0.075�2�c /a�, where most of the calculations in
this paper are taken. At this frequency, the slab is single
moded for both polarizations. For the guided modes, the
fields outside the slab �in air� are evanescent away from the
slab, with a decay length �d�=1/ i��=1/���

2− �� /c�2, where
�=s , p� of 6.81a for the s-polarized mode, and 49.25a for the
p-polarized mode.

The thermal fields at z0 contain contributions from waves
that are either propagating or evanescent in the direction nor-
mal to the slab surface. To highlight the contributions from
different wave components, with reference to Eq. �29�,
WJ �x ,z0 ,�� can be written in the following form with inte-
gration range separated into �� �Re�nII�� /c ,	�, �
� �� /c ,Re�nII�� /c�, and �� �0,� /c�,

WJ �x,z0,�� = ��

Re�nII��/c

	

+ 

�/c

Re�nII��/c �
�

�d�

2�
ei��I−�I

*�z0ei�x cos ��¯��
+ 


0

�/c �d�

2�
ei�x cos ��¯� = �WJ �A� + WJ �B�� + WJ �C�.

�42�

In Eq. �42�, the first and second terms are both exponentially

decaying functions of z0. The first term WJ �A�, with the range
of integration �� �Re�nII�� /c ,	�, describes contributions
from waves that are evanescent both inside and outside the
slab. This term is significant only when z0 is very close to
zero. Below, we refer to such a regime as the “extreme near
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FIG. 3. �a� Components of the normalized cross-spectral density tensor Wnn�x ,z0 ,�� /Wnn�x=0,z0 ,��n=X,Y,Z of the dielectric slab in Fig.
1, as defined in Eqs. �30�–�32� at z0=0.001a from the slab surface with �=0.075�2�c /a�. �b� Corresponding normalized � spectra for

the in-plane �XX+YY� and ZZ field components, ��W̃XX�� ,� ,z0 ,��+W̃YY�� ,� ,z0 ,��� / �WXX�x=0,z0 ,��+WYY�x=0,z0 ,��� and

�W̃ZZ�� ,z0 ,�� /WZZ�x=0,z0 ,��, as defined in Eq. �40� and Eq. �37�. Note that WXX and WYY are equal at x=0 and the sum W̃XX+W̃YY is
independent of �. For each of the �-spectral curves f���, the integrated area underneath the curve, i.e., �0

	 d�
2� f���, is 1. The �-space is

divided in the same manner as in Fig. 2 with region �A�, ��Re�nII�� /c; region �B�, � /c���Re�nII�� /c; and region �C�, ��� /c, where
nII

2 is the complex dielectric constant of the slab. The arrows denote the boundaries of the regions.
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field.” In this range of �, the integrand in Eq. �42� appears as
a broadband spectrum of � with local maximum located at a

large � value. This gives rise to a narrow peak in WJ �x ,z0 ,��
around x=0 and a very short coherence length. In the second

term WJ �B�, �� �� /c ,Re�nII�� /c� covers the wavenumber
range where guided modes exist. In this range, the waves are
propagating inside the slab. The wavenumber � of the
guided modes manifests as poles in the transmission coeffi-
cients T�=s,p�� ,z� ,��2. These poles result in the oscillatory

behavior of WJ �x ,z0 ,�� as a function of x, when z0 is com-
parable to the evanescent decay lengths of the guided modes.
We refer to this regime as the “intermediate near-field” re-

gime. The third term WJ �C� is independent of z0, as �I is real
for �� �0,� /c�. This term represents the contribution from
propagating waves and dominates in the far field. The clas-
sification of the extreme near-, intermediate near-, and far-
field regimes by relative dominance in the � spectrum is
consistent with our definition in Sec. I based on comparing z0
with the decay lengths of waveguide modes.

In Figs. 3–6, we plot all components of the normalized
cross-spectral density tensor Wnn�x ,z0 ,�� /Wnn�x
=0,z0 ,��n=X,Y,Z at various z0, z0=0.001a ,0.02a ,1a ,200a,
where z0=0.001a�d belongs to the extreme near-field
zone; z0=200a�d belongs to the far field; while
z0=0.02a and z0=1a are at the intermediate near-field zone.

The normalized � spectra, ��W̃XX�� ,� ,z0 ,��
+W̃YY�� ,� ,z0 ,��� / �WXX�x=0,z0 ,��+WYY�x=0,z0 ,��� and

�W̃ZZ�� ,z0 ,�� /WZZ�x=0,z0 ,��, are also plotted. For each of
the �-spectral curves f���, the integrated area underneath the
curve, i.e., �0

	 d�
2� f���, is 1.

Figure 3�a� shows WJ �x ,z0 ,�� as a function of x, at z0
=0.001a which amounts to 7.5�10−5� when �
=0.075�2�c /a�. It is clearly seen that, in this extreme near-

field zone, WJ �A� dominates and the degree of coherence de-
creases rapidly with x for all WXX, WYY, and WZZ. The coher-
ence length, as defined in Eq. �41� is �=1.51�10−3a=1.13
�10−4�	z0. This is much smaller than the thickness of the
slab and the skin depth of the material. �The skin depth
� / �2� Im�nII�� is equal to 1.47�104a for our operating
wavelength and is the 1/e amplitude decay length in the
uniform material.�

The extremely short coherence length here reflects the
domination of the first term in Eq. �42�. In Fig. 3�b�, we plot

�W̃
J �� ,z0 ,�� as a function of �. The integral of �W̃

J �� ,z0 ,��
with respect to � is clearly dominated by region �A�. In ad-
dition, the extent of this integrated area can be characterized

by the local maximum of �W̃
J �� ,z0 ,�� in the range �

� �Re�nII�� /c ,	�, which is approximately at ��3/ �2z0� as
shown in the Appendix. Therefore, the smaller z0 is, the

larger the contribution from WJ �A� and the smaller the coher-
ence length �.

Physically, the short range of coherence in the extreme
near field can be understood as follows: For p-polarized
field, the electric field has a z-component that is perpendicu-
lar to the dielectric-air interfaces. Due to the dielectric con-
stant discontinuity at these interfaces, there are thermally in-
duced fluctuating charges at the interface. Since the electric
field diverges in the vicinity of a point charge, the coherence
length becomes very small for the electric field. For
s-polarized field, the electric field is parallel to the interface
and there is no corresponding charge at the interface. Hence
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the coherence length does not approach zero in the extreme
near field for the purely s-polarized field. WXX, WYY, and
WZZ, however, all have contributions from the p-polarized
field �Eqs. �25�–�28��, and hence all have very small coher-
ence length in this regime. For magnetic field, similar rea-
soning leads to vanishing coherence length in the extreme
near-field zone for the s polarization, since, in such a case,
there is a fluctuating current in the surface.

Figure 4�a� shows WJ �x ,z0 ,�� at z0=0.02a, which
amounts to 1.5�10−3� at �=0.075�2�c /a�. In this case,

both WJ �A� and WJ �B� contribute significantly. As shown in Fig.
4�b�, the areas under the curves of �W̃mm�� ,z0 ,�� in the
range �� �Re�nII�� /c ,	� and �� �� /c ,Re�nII�� /c� are of

the same order. As a result, WJ �x ,z0 ,�� shows both features:

a narrow peak for small x due to WJ �A� and an oscillating
behavior for larger x attributed to WJ �B�. A kink shows up
where the narrow peak connects to the oscillatory part. The
coherence pattern is therefore characterized by two length
scales: one characterizes the width of the narrow peak, and
another one characterizes the decaying oscillatory behavior.

Figure 5�a� shows WJ �x ,z0 ,�� as a function of x at z0
=1a, which amounts to 7.5�10−2� at �=0.075�2�c /a�.
This is consistent with Fig. 5�b�, which shows that WJ �B�, i.e.,

the area under the curves �W̃
J �� ,z0 ,�� in the range �

� �� /c ,Re�nII�� /c�, dominates the integral in Eq. �42�. The
coherence length, �=17.87a=1.34�, as calculated from Eq.
�41�, is longer than � /2 of the blackbody �22�. Such en-
hancement of coherence is due to the slab waveguide modes,
as indicated by the dominance of WJ �B�. Also shown in Fig.
5�a� is that coherence enhancement occurs in all field com-
ponents, though with a varying degree. This is distinct from
the polaritonic-induced coherence enhancement which oc-
curs only for field components in the x-z plane �10�.

In this regime, nevertheless, all components of the cross-
spectral density tensor still decay as a function of x because
of the following two factors:

�1� In the range �� �� /c ,Re�nII�� /c�, guided modes de-
termine the location of the poles of Ts�� ,z���2 and
Tp�� ,z� ,��2. These resonance peaks result in the long-
ranged oscillatory behavior in the cross-spectral density ten-
sor. When loss is present in the slab, however, these peaks
gain finite width and the range of coherence is thus limited.

�2� The second factor for the decay is in fact purely geo-
metrical due to the three-dimensional nature of the problem,

and is therefore independent of the loss. In the case where
loss in the waveguide is very small, at the lowest order,
�−a

0 dz�Ts�� ,z���2 and �−a
0 dz�Tp�� ,z���2 can be approxi-

mated as �−a
0 dz�Ts�� ,z� ,��2	as���−�s� and

�−a
0 dz�Tp�� ,z� ,��2	ap���−�p� with 0�ap ,as�1. as and

ap are proportional to the area of the bounded regions by the

curve W̃XX+W̃YY around the s and p poles. Hence from Eqs.
�30�–�32�, the components of the cross-spectral density ten-
sor take the following forms:

WXX�x,z0,��Im�nII�→0 = fXX�z0,���as�z0,��
J1��sx�

�sx

+ ap�z0,���J0��px� −
J1��px�

�px
�� ,

�43�

WYY�x,z0,��Im�nII�→0 = fYY�z0,���as�z0,���J0��sx�

−
J1��sx�

�sx
� + ap�z0,��

J1��px�
�px

� ,

�44�

WZZ�x,z0,��Im�nII�→0 = fZZ�z0,��J0��px� , �45�

where fXX�z0 ,��= fYY�z0 ,��. Since both J0��x� and
J1��x� / ��x� decrease as a function of x, the components
of the cross-spectral density tensor decrease with x
even when loss is infinitesimal. Moreover, since

from Eqs. �43�–�45�, Tr�WJ �x��=WXX�x�+WYY�x�+WZZ�x�
= fXXasJ0��sx�+ �fXXap+ fZZ�J0��px�, we see that the enve-
lope of the trace of the cross-spectral density tensor decays
asymptotically as 1/�x when the loss is small.

Figures 6�a� and 6�b� show WJ �x ,z0 ,�� at z0

=200a�=15��. At this far-field zone, all contributions from
evanescent waves �i.e., ��� /c� become negligible. Only
the radiative components from region �C� �i.e., ��� /c� sur-
vive, as seen from Fig. 6�b�. The coherence length as calcu-
lated from Eq. �41� is �=0.503�, which is close to the black-
body value �22�, and is smaller than that in the intermediate
near-field zone. The envelope of the trace of the cross-
spectral density tensor also decays approximately as 1/x,
which is similar to the behavior of a blackbody �22�.
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In Fig. 7, we plot the coherence length as a function of z0
at �=0.075�2�c /a�, which summarizes the coherence prop-
erties of the system. For comparison purposes, the case of a
semi-infinite block with the same dielectric constant is also
plotted. At far-field and the extreme near-field zones, the
coherence lengths for the two cases almost coincide. The
contribution of the waveguide modes is only prominent in
the intermediate near-field zone. For 
�=10−3, the maximum
coherence length is 1.4� at z0=6.3a.

B. Local energy spectral density at constant separation
from the slab

The trace of the cross-spectral density tensor at x=0 is
proportional to the local energy spectral density I�z0 ,��,

I�z0,�� �

0

2�2Tr�WJ �x = 0,z0,��� =
1

2

�2

�2c3���,T�

�� 4��
����
c



0

	 �d�

2�

ei��I−�I
*�z0

4�II2



−a

0

dz�

��Ts��,z�,��2 + Tp��,z�,��2

�� c

�
�4��2 + �II2

nII2
���2 + �I2��� . �46�

I�z0 ,�� is defined such that the energy density at z0 is
�0

	d�I�z0 ,��. The contribution of each field component to
the total local energy spectral density can be seen by express-
ing Eq. �46� as I�z0 ,��=


0

2�2 �n=X,Y,ZWnn�x=0,z0 ,�� with
WXX=WYY at x=0. The quantity I�z0 ,�� is of interest, for
example, in thermally induced forces between nanodevices,
as well as in near-field spectroscopy �23,24�. Below we focus
on the behavior of I�z0 ,�� as a function of the normalized
frequency ��a� / �2�c�, at z0=1a for our slab structure. As
we will see below, the variation of the normalized frequency
allows one to span the extreme near-field, intermediate near-
field, and the far-field zones, as previously described.

We define the temperature-independent normalized local
energy spectral density I�norm��z0 ,�� as

I�norm��z0,�� =
I�z0,��

1

2

�2

�2c3���,T�
, �47�

where the normalization factor 1
2

�2

�2c3 ��� ,T� is equal to the
energy spectral density from a semi-infinite blackbody block
with dielectric constant 
=lim
�→1,
�→0 
�+ i
�. �The 1/2
factor is due to the fact that the radiation only propagates
outward from the blackbody.� I�norm��z0 ,�� is dimensionless
and is less than or equal to one at far field. At near field, it
can exceed 1 due to the contributions from evanescent waves
�23�.

In Fig. 8 we plot the normalized

0

2�2 WZZ�x=0,z0=1a ,��
and


0

2�2 WYY�x=0,z0=1a ,�� as a function of ��a� / �2�c�. In
the intermediate near-field zone 0.01� ��a� / �2�c��10, os-
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cillations arise as a function of frequency. The oscillation
pattern can be understood by considering the corresponding
dispersion relation of the waveguide modes shown in Fig.
9�a� and Fig. 9�b� for the frequency range of 0.2
� ��a� / �2�c��0.7, where oscillation pattern is discernible.
For the Ey field, which is primarily dominated by contribu-
tions from the s-polarized wave �and in fact is completely
dominated by the s-polarized wave at the cutoff�, the peaks
in energy spectral density coincide with the cutoff frequen-
cies of the s-polarized waveguide modes, since at the cutoff
of each mode the decay length of the guided mode in air is
infinitely large. As the operating frequency moves away from
the cutoff, the guided mode shifts away from the light line
and the vertical decay length decreases. Thus the local en-
ergy spectral density drops accordingly until the cutoff of the
next-order guided mode appears.

We also note a significant difference in the oscillatory
patterns between the Ez and Ey contributions to the total
energy spectral density. Note that Ez is totally attributed to
the p-polarized field, while Ey is related to both s- and
p-polarized fields. Although the s- and p-polarized modes
have the same cutoff frequency, in the immediate vicinity
above the cutoff frequency, the dispersion relation for the
p-polarized guided modes stays very close to the light line.
Hence the energy spectral density from Ez continues to in-
crease as frequency increases, until the dispersion relation of
the p-polarized guided modes significantly deviates from the
light line, and therefore, while the peaks from Ey are located
approximately at the cutoffs, the maxima from Ez are located
away from the cutoffs. We also note that there are secondary
maxima for Ey, with locations that approximately coincide
with that of the Ez field. Such maxima arise from the contri-
bution of the p-polarized field. Finally, the total energy spec-
tral density spectrum I�z0=a ,��=


0

2�2 �2WYY +WZZ� also os-
cillates in the intermediate near-field zone with the same
oscillation period in frequency.

In the low-frequency limit, when the slab is in the single
mode regime, no oscillatory pattern exists and the local en-
ergy spectral density increases monotonously at decreasing
frequency. This is in fact a signature of the region of extreme
near field. As we will prove in the Appendix, at constant
frequency, the energy spectral density increases exponen-
tially with decreased vertical separation from a slab at the
extreme near-field regime. In the high-frequency limit, the
oscillatory pattern gradually disappears as all evanescent
components no longer contribute. Only the propagating wave
components remain, and there is no vertical intensity varia-
tion. In fact, the high-frequency limit of the normalized en-
ergy spectral density is determined by the emissivity of the
slab.

IV. CONCLUSION

In summary, we have derived from first principles the
coherence property of the radiative thermal field from a uni-
form dielectric slab with loss. For a given frequency �, co-
herence length is extremely short at close proximity from the
slab. At a distance of roughly the evanescent length of the
waveguide resonances, long-ranged coherence is possible
due to slab waveguide modes. At the far-field zone, the co-
herence length is reduced to approximately � /2, which is
close to the blackbody value �22�. Also, in the case of small
loss �for example, 
�=10−3 as in this paper�, the envelope of
the trace of the cross-spectral density tensor decays approxi-
mately as 1/�x at the intermediate near field, in contrast to
	1/x in the far field, where x refers to displacement parallel
to the slab surface.

The existence of long-ranged coherence from a dielectric
slab is a significant result, since until now, this effect is
known to exist only with special type of materials that allow
the formation of surface polaritons �10�. In this paper, we
show that long-ranged coherence can be achieved for any
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dielectric slab. Such long-ranged coherence can be exploited
to control the spatial and polarization dependence of the co-
herence in the far field by introducing grating structures on
the surface of the dielectric slab. Furthermore, the strong
enhancement of the local energy spectral density in the ex-
treme near field may be useful in thermal photovoltaic appli-
cations �4,25�.
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APPENDIX

Here we provide a detailed derivation of the behavior of
the cross-spectral density tensor in the extreme near field.
The origin of the extreme near-field region can be traced
back to the complex nature of the unit vector p̂. The scalar
product p̂ · p̂*, as in Eq. �27�, is larger than unity and diverges
at large �. In Eq. �37� or Eq. �40�, this divergence dominates
the results of integration when z0�

1
Im��I�

, 1
Im��II�

.

When ��Re�nII�� /c, the terms Ts,p�� ,z0 ,��2 are
roughly constant, and we can take the following limit:

lim
��Re�nII��/c

Im���nI,II�/c�2 − �2� = Im��I,II� = �I,II = � ,

�A1�

with nI=1.

Therefore, by grouping all terms that are either indepen-
dent, or only slowly varying with � into a single
�-independent coefficient, Eq. �37� can be rewritten as

�W̃ZZ��,z0,����Re�nII��/c

= const �
�ei��I−�I

*�z0

�II2
� c

�
�4��2 + �II2

nII2
��2

= const �
�e−2�z0

�2 � c

�
�4� 2�2

nII2
��2

= const � � c

�
�4 2

nII2
�3e−2�z0. �A2�

Hence the maximum of �W̃ZZ�� ,z0 ,����Re�nII��/c occurs
approximately at

�max =
3

2z0
. �A3�

The same �max can be obtained for ��W̃XX

+W̃YY���Re�nII��/c from Eq. �40�.
As z0 gets smaller, the broad plateau in the spectral den-

sity continuum spans over a wider range in the � spectrum
and the coherence length becomes smaller.

�1� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-
tics �Cambridge University Press, Cambridge, England, 1995�,
p. 369.

�2� I. Celanovic, D. Perreault, and J. Kassakian, Phys. Rev. B 72,
075127 �2005�.

�3� C. M. Cornelius and J. P. Dowling, Phys. Rev. A 59, 4736
�1999�.

�4� S. Y. Lin, J. Moreno, and J. G. Fleming, Appl. Phys. Lett. 83,
380 �2003�.

�5� C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos,
Phys. Rev. Lett. 93, 213905 �2004�.

�6� D. L. C. Chan, M. Soljacic, and J. D. Joannopoulos, Phys. Rev.
E 74, 036615 �2006�.

�7� D. L. C. Chan, M. Soljacic, and J. D. Joannopoulos, Opt. Ex-
press 14, 8785 �2006�.

�8� M. Laroche, R. Carminati, and J.-J. Greffet, Phys. Rev. Lett.
96, 123903 �2006�.

�9� C. Henkel, K. Joulain, R. Carminati, and J.-J. Greffet, Opt.
Commun. 186, 57 �2000�.

�10� R. Carminati and J.-J. Greffet, Phys. Rev. Lett. 82, 1660
�1999�.

�11� J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy,
and Y. Chen, Nature �London� 416, 61 �2002�.

�12� A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet,
Phys. Rev. Lett. 85, 1548 �2000�.

�13� X.-G. Liang and M.-H. Han, Chin. Phys. Lett. 23, 1219

�2006�.
�14� H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 �1951�.
�15� S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of

Statistical Radiophysics 3 �Springer-Verlag, Berlin, 1989�, p.
118.

�16� In this paper the convention of Fourier transform is f�x�
=�−	

	 dk
2� f�k�eikx for spatial domain and f�t�=�−	

	 d�
2� f���e−i�t for

temporal domain.
�17� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-

tics �Cambridge University Press, Cambridge, England, 1995�,
p. 363.

�18� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-
tics �Cambridge University Press, Cambridge, England, 1995�,
p. 59.

�19� J. E. Sipe, J. Opt. Soc. Am. B 4, 481 �1987�.
�20� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-

tics �Cambridge University Press, Cambridge, England, 1995�,
p. 110.

�21� R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron.
QE-23, 123 �1987�.

�22� W. H. Carter and E. Wolf, J. Opt. Soc. Am. 65, 1067 �1975�.
�23� K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, Phys.

Rev. B 68, 245405 �2003�.
�24� Y. D. Wilde et al., Nature �London� 444, 740 �2006�.
�25� A. Narayanaswamy and G. Chen, Appl. Phys. Lett. 82, 3544

�2003�.

SPATIAL COHERENCE OF THE THERMAL … PHYSICAL REVIEW E 76, 016601 �2007�

016601-11


