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Abstract

We study how the predictive power of level-k models changes as we perturb the classical

beauty contest setting along two dimensions: the strength of the coordination motive and the

information symmetry. We use a variation of the Morris and Shin (2002) model as the unified

framework for our study, and find that the predictive power of level-k models varies considerably

along these two dimensions. Level-k models are successful in predicting subject behavior in

settings with symmetric information and a strong coordination motive. Their predictive power

weakens significantly when either private information is introduced or the importance of the

coordination motive is decreased.

1 Introduction

The experimental literature on beauty contests and related guessing games has documented sub-

stantial evidence that individuals tend to have a limited degree of strategic sophistication, especially

in settings where the strategic reasoning is not straightforward. The “p-beauty contest,” in which

participants choose a number between 0 and 100 and whoever picks the number closest to a multiple

p of the group average wins a prize, best illustrates this limited degree of strategic sophistication.

The p-beauty contest can be solved by iterated elimination of weakly dominated strategies, and

the unique equilibrium occurs when every player chooses 0. In order to reach this equilibrium sub-

jects need to go through a large number of rounds of elimination of dominated strategies. The

experimental literature on beauty contests, however, shows that subjects usually perform one to

three rounds of elimination and that their behavior is consistently different from the equilibrium

prediction.
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Stahl and Wilson (1995) and Nagel (1995) are seminal proponents of the theory of level-k

reasoning. Ho et al. (1998), Costa-Gomes et al. (2001), Bosch-Domenech et al. (2002), Costa-

Gomes and Crawford (2006), and Crawford and Iriberri (2007a,b), among others, have further

developed and applied level-k models to beauty contests and related settings. The level-k model is

based on the presumption that subjects’ behavior can be classified into different levels of reasoning.

The zero level of reasoning, L0, corresponds to non-strategic behavior when strategies are selected

at random without forming any beliefs about opponents’ behavior. In the literature L0 is typically

considered to be a person’s model of others rather than an actual person. Level-1 players, L1,

believe that all other players are L0 and play a best response to this belief. Level-2 players, L2,

play the best response to the belief that all other players are L1 and so on. For example, when p

is equal to 2/3 in the beauty contest, level-1 players choose 33 and level-2 players choose 22. As is

shown in Nagel (1995), Duffy and Nagel (1997), and many other papers, there is indeed a salient

pattern of levels of reasoning in the beauty contest setting.

While level-k thinking is not particularly unique to the beauty contest (see e.g. Costa-Gomes

and Crawford, 2006), the structure of the game and its simplicity are very conducive to this type

of behavior. Success in the beauty contest largely depends on a person’s ability to correctly predict

the average choice made by others which explicitly forces individuals to think about the decisions

of other players. Moreover, the symmetry of information makes this task relatively simple, which

can further encourage participants to focus on the behavior of others.

Most of the existing literature focuses on games with complete information. An early exception

is Crawford and Iriberri (2007a), who applied level-k reasoning to first- and second-price auctions.

In many real applications, however, market participants often have access to both public and private

information on the underlying fundamentals, and choose actions that are not only responsive to

peer action choices but also appropriate to the fundamentals. A natural question then arises: how

will level-k models perform beyond the classical beauty contest setting?

To answer this question, we introduce a framework that generalizes the classical beauty contest

setting along two dimensions. First, it allows players to have private information that is relevant

for their action choice. Second, it allows the importance of coordination to change so that the

ability of correctly guessing other players’ actions can have a different impact on players’ payoffs.

We then analyze how the predictive power of the level-k models varies along these two dimensions.

The generalized framework for our study is a modification of the Morris and Shin (2002, hereafter

MS) model on the social value of public information.1 In our setting, just as in MS, the agent’s

payoff is determined by two criteria: how well an agent’s action matches an unknown state of the

world and how well it matches the average actions of other agents. The relative importance of

both factors can be varied within the model. In particular, as the latter becomes more important

it makes the coordination motive of the game stronger. Agents in our model receive two signals

1Subsequently, Angeletos and Pavan (2007) generalize the MS analysis of the social value of information by allowing

both strategic complementarity and strategic substitutability among agents’ actions. The MS framework has been

applied to many different settings including asset pricing (Allen et al., 2006, Bacchetta and Wincoop, 2005), venture

capital (Angeletos et al., 2007) and political science (Dewan and Myatt, 2007, 2008).
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about the (unknown) underlying state. If both signals are public the information is symmetric. If

one signal is public and the other is private (as in the original MS setting) then the information is

asymmetric and, in particular, different participants have different information.

Based on this framework we design several experimental treatments that differ from each other

in the symmetry of information and the importance of predicting the average action of other

players. Our main findings are as follows. First, in aggregate subjects place less weight on the

public signal than the MS model predicts, a result that is consistent with the theoretical prediction

of level-k models. An important implication is that, if agents have limited cognitive ability, the

detrimental effect of increased public disclosure on social welfare may not be as strong as the MS

model predicts. The MS setting is also used by Cornand and Heinemann (2014), who conduct

two-player experiments within the MS framework and also find that subjects put less weight on

the public signal than the theory predicts. While similarities exist between our paper and theirs,

the two papers were developed contemporaneously and independently and differ substantially in

both experimental design and research focus. In particular, they exclusively focus on the welfare

implications of public disclosure, whereas our main focus is to test the performance of level-k models

across settings with different information and payoff structures.

Second, we use the data to determine which (expected) value of level-0 maximizes the predictive

power of the level-k model. For most of the treatments the value is very close to the average of

the two signals, which would correspond exactly to 50 in the standard beauty contest. There

is, however, an important difference between the public information treatment with the strongest

coordination motive (the one closest to the beauty contest) and the others. In the former the share

of level-0 players is negligible as is usually assumed. In other treatments many subjects routinely

choose an action equal to the average of their two signals, as if they were ignoring the strategic

aspect of the game entirely and simply focusing on matching the underlying state of the world.

Typically these players would be classified as level-0 players, and there are a non-negligible number

of them. Ignoring this behavior that looks like a level-0 action in the standard setting substantially

decreases the performance of the level-k model in those treatments. Two recent experimental

studies on level-k models, Agranov, Caplin and Tergiman (2013) and Burchardi and Penczynski

(2014), find that there are a substantial fraction of subjects who are L0 players in their experiments,

and the average action of L0 subjects are around 50.

Third, after determining the appropriate L0 definition for the experimental treatments, we

compare the performance of the level-k model in explaining subjects’ behavior. Treatments with

public information in which available actions are restricted to be between the two signals are the

most consistent with level-k predictions. For the restricted public treatments with the strongest

coordination motive, the level-k model can explain more than 60% of the data. For the restricted

public treatments with lower coordination motives the level-k model explains more than 40% of the

data in all treatments other than the one with the lowest coordination motive. The performance

of the level-k model is slightly worse in treatments with public information when the restriction on

the action set is removed, save for the treatment with strong coordination motives. When private

information is introduced, the performance of level-k model is much worse than its performance
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in corresponding public information treatments, with the exception of treatments with the lowest

coordination motive.

Finally, because level-k behavior is viewed as an appropriate framework for subjects’ initial

behavior before any learning takes place, we redo our analysis using only first round data. In

treatments with public information and a restricted action set, the level-k model performed better

for the first round only data than for the full data set. In particular, the values of L0 that can best

explain the data are very close to the average between two signals (equivalent to 50 in the beauty

contest) and, with the exception of the treatment with the lowest coordination motive, the success

rates varied between 56% and 76%. In all other treatments, however, the results were considerably

weaker. The level-k model often explained the entire data better than the first round data.

Overall, the data suggest that subject behavior in public information treatments with a re-

stricted action set (i.e. the setting closest to the classical beauty contest) is the most consistent

with level-k predictions. The average of the two signals serves as a focal point for subjects’ initial

beliefs, a large share of chosen actions can be explained by the level-k models, and in the first round

the explanatory power of the level-k model is higher. Furthermore, by any criterion that we use

in the paper, the level-k models perform the best in the treatment with the strongest coordination

motive and public information.

Our analysis highlights the strengths and limitations of level-k models. The modified MS

framework used in our study is considerably more complicated than those typically used in the

level-k literature. Despite this complexity level-k models are very successful in predicting subjects’

behavior in settings that are close to the classical beauty contest, such as when the coordination

motive is strong and information is symmetric. At the same time the predictive power of level-k

models diminishes as we move away from the classical setting by either weakening the coordination

motive or by introducing private information.

Our experimental findings also have important policy implications. The key insight in the

analysis of Morris and Shin (2002) is that in equilibrium players often place too much weight

on the public signal relative to the weight that would be used by the social planner. Therefore,

individual information aggregation is not socially efficient and enhanced public disclosure could hurt

social welfare. However, our theoretical analysis of level-k reasoning shows that limited cognitive

ability, either due to limited level of reasoning or incapability of Bayesian updating, necessarily

leads to subjects underweighting the public signal compared to the equilibrium prediction. In our

experiment subjects indeed put less weight on the public signal than the theory predicts, implying

that limited cognitive ability can limit the detrimental effect of increased public disclosure.

The rest of the paper is organized as follows. In Section 2 we provide a theoretical background

for our study which is largely based on the MS model. We derive the prediction of level-k models

in this setting and show that subjects with limited cognitive ability will put less weight on the

public signal than the equilibrium predicts. Section 3 provides details of our experimental design

and various treatments. Our experimental results are reported in Section 4 and alternative models

are considered in Section 5. Section 6 concludes. The experimental instructions are given in the

Appendix.
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2 Theoretical Background

This section provides a theoretical background for our study. The primary goal of our paper is to

analyze performance of level-k reasoning in a setting that is similar to the classical beauty contest

yet allows us to vary the importance of the coordination motive and information structure. For this

purpose we use the MS framework as a basis for our experimental analysis. We cannot implement

the original MS model directly in the lab, however, because it uses assumptions such as a continuum

of agents and an improper uniform distribution. In section 2.1 we modify the original MS model

to adapt it to an experimental environment. In section 2.2 we use the modified MS framework to

derive predictions of the level-k model, and in section 2.3 we discuss different options for specifying

L0.

2.1 Modified Morris-Shin Model

There are I ex-ante identical agents, i = 1, ..., I. Agent i chooses an action ai ∈ R. The payoff

function for agent i is given by

ui (ai, a−i,θ) = C − (1− r) (ai − θ)2 − r (ai − λa−i)
2 , (1)

where C is a constant, θ represents the underlying state, r and λ are constants between 0 and 1,

and a−i is the average action of i’s opponents: a−i =
1

I−1

∑
j ̸=i aj .

The payoff function has three terms. The first term is a constant C and is the highest payoff the

individual can possibly receive. The second term reflects the loss from mismatching the underlying

state θ and is simply the square of the distance between θ and ai. The third term is the “beauty

contest” term. It measures the loss from mismatching the average action of opponents, a−i, which

is scaled by λ. The parameter r measures the relative importance of coordinating with opponents’

actions versus matching the underlying state. When λ = 1 and C = 0 the game becomes the

coordination game specified in MS. When r = 1 and λ < 1 the game becomes similar to the beauty

contest in the sense that subjects only need to match λ times the average of other players’ actions.

Unlike the beauty contest, however, everyone, not just the player whose guess is the closest to the

target, receives a non-negative payoff.

Our payoff function differs from the MS one in three ways. First, we consider a setting with

a finite number of players while in MS there is a continuum of players. Second, we introduce the

term λ inside the payoff function to match the classical p-beauty contest. Third, the payoff function

in MS is always negative, which is difficult to implement in the laboratory. By adding a positive

constant C to the original payoff function we allow participants’ payoffs to be positive without

altering equilibrium predictions.

As in MS, before taking actions, agent i will receive two signals about θ and we assume that

both signals have the same precision α. The first signal y is always public and is given by

y = θ + η, η ∼ N (0, 1/α) . (2)
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As for the second signal, xi, it can be either public or private. If it is private, then

xi = θ + εi, εi ∼ N (0, 1/α) , (3)

where η and εi are independent. If it is public, then it is the same across agents and is given by

xi = θ + ε, ε ∼ N (0, 1/α) .

Again η and ε are independent. After receiving xi and y, agent i chooses action ai. MS assume

that θ is distributed with the improper uniform distribution over the real line in which case the

expected value of θ given xi and y is

Ei(θ|xi, y) =
y + xi

2
. (4)

Following the same procedure as in MS we can show that when xi is private the unique equi-

librium is linear and is given by

ai (y, xi) =
1− r

2− λr
xi +

1− r

(2− λr)(1− λr)
y. (5)

When signal xi is public, the unique Nash equilibrium (NE) is

ai (y, xi) =
1− r

2− 2λr
xi +

1− r

2− 2λr
y. (6)

Notice, in particular, that when λ < 1 and r = 1 the NE is 0, as in the beauty contest.

A major difficulty of implementing the MS setup in the lab is to generate θ according to the

improper uniform distribution. To deal with this problem we adopted the following strategy. We

generate θ using the uniform distribution on interval [a, b] and then given θ we generate the signals

y and xi according to (2) and (3). We then normalize state θ and signals (xi, y) by subtracting y

from each of them, so that θ∗ = θ − y, x∗i = xi − y and y∗ = 0.

Because the prior of θ has a bounded support, the formula (4) to obtain E(θ|xi, y) may not

be valid, and thus the NE would no longer be given by (5) and (6). However, normalized signals

are immune to this problem. By the definition of y, we have θ∗ = −η and x∗i = εi − η. As both

−η and εi − η are normally distributed, by the standard formula for the conditional distribution of

normally distributed random variables we have

E(θ∗|x∗i ) = E(−η|εi − η) =
1

2
(εi − η) =

x∗i
2
.

Given y∗ = 0, this is the same as (4). Therefore, when agents observe normalized signals the MS

logic and the equilibrium derivations remain valid. In the experimental design section we provide

more details on how the normalization is implemented.

2.2 Calculating Levels of Reasoning

Within the setting introduced in the previous section we derive actions that correspond to different

levels of reasoning. From now on we assume that signals and the state are normalized, and with
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slight abuse of notation, will use θ, xi, and y(= 0) to denote the normalized state and signals. Note

that the posterior estimate of the state θ for player i with private signal xi is Ei[θ] =
1
2xi.

Player i chooses ai to maximize (1). It follows from the first-order condition that the best

response is

a∗i = (1− r)Ei [θ] + rλEi [ā−i] .

Except for the non-strategic L0 type, agents with different levels of reasoning will form different

beliefs about Ei [ā−i] and will choose an action accordingly.

The first step in calculating Lk actions is to define the behavior of L0. In the literature type

L0 is usually viewed as the starting point of a player’s analysis of others’ actions, so it should be

unsophisticated and non-strategic (see e.g. Crawford and Iriberri, 2007). According to the standard

level-k model, an L1 agent expects that other players are L0 players. Different L0 specifications

will affect L1 players’ beliefs about the average action of other players.

Fix an L0 specification. Suppose, under this L0 specification, an L1 player (say player i, who

by definition thinks all other players are L0 players) believes that the average action of player i’s

opponents is a fraction π of the average of the signals received by i’s opponents:

ā−i = πx−i, (7)

where x−i denotes the average of signals received by player i’s opponents. Player i’s estimate about

the average action of other players is then Ei [ā−i] = πEi [x−i]. For example, if player i believes that

her opponents’ actions are uniformly distributed between 0 and their private signals, then π = 1
2

and Ei [ā−i] =
1
2Ei [x−i].

In the settings where xi is private, Ei [x−i] = Ei [θ]. It follows that

Ei [ā−i] = πEi [x−i] = π

(
1

2
xi

)
=

1

2
πxi.

Therefore, an L1 player in the settings with private signals will play

aL1 = (1− r)
1

2
xi + rλ

1

2
πxi =

[
(1− r)

1

2
+

1

2
rλπ

]
xi.

We use induction to derive the action choice of a level-n agent. Let aLn denote the action taken

by an Ln player with private signal xi. Then it takes the following linear form: aLn = βnxi, where

βn is a coefficient depending on r, λ, and π. In particular

β0 = π and β1 = (1− r)
1

2
+

1

2
rλπ. (8)

Now consider an L (n+ 1) player with private signal xi. Then she expects that other players are

Ln players and

Ei [ā−i] = Ei [βnx−i] = βn
1

2
xi.

Therefore,

aLn+1 = (1− r)Ei [θ] + rλEi [ā−i] =
1

2
(1− r)xi + rλ

1

2
βnxi.
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It follows that

βn+1 =
1

2
(1− r) +

1

2
rλβn,

which implies the following difference equation:

(βn+1 − βn) =
1

2
rλ (βn − βn−1) .

Using the initial condition (8), we can solve2

βn =
1− r

2− rλ
+

(1− λπ) r + 2π − 1

2− rλ

(
1

2
rλ

)n

. (9)

When signal xi is public, by following a similar procedure we can show that an Ln agent with

signal (xi, 0) will choose action β̃nxi, where β̃n is given by

β̃n =
1− r

2− 2rλ
+

(1− 2λπ) r + 2π − 1

2− 2rλ
(rλ)n . (10)

It follows from (5) and (9) that, if xi is private and π ≥ 1−r
2−rλ , βn is decreasing in n and converges

to the NE prediction in MS as n → ∞. Similarly, for all π ≥ 1−r
2−2rλ , with both signals public, β̃n

is decreasing in n and converges to the NE prediction given by (6) as n → ∞. Therefore, we have

proven the following result:

Proposition 1 In our modified MS model with private signals, all level-k players choose higher

actions than the NE prediction for any L0 specification with π ≥ 1−r
2−rλ . In the model with both signals

public, all level-k players choose higher actions than the NE prediction for any L0 specification with

π ≥ 1−r
2−2rλ .

When λ = 1 the weights on the public and private signals sum to 1. Therefore, it follows from

Proposition 1 that when λ = 1, level-k agents put less weight on the public signal when compared

to the theoretical prediction in the MS model. This result has an important policy implication.

MS argue that the coordination motive forces players to place too much weight on the public signal

relative to the weight that would be chosen by the social planner. Consequently, information is not

aggregated efficiently and public disclosure of more information could be detrimental to the social

welfare. Our Proposition 1, however, shows that the detrimental effect of public disclosure may be

smaller than predicted by MS if agents have limited levels of reasoning. In particular, all level-k

players with π ≥ 1/2 put a higher weight on the private signal – and consequently a lower weight

on the public signal – than MS predicts.

2From the difference equation, we obtain

βn − β0 =
1

2
rλ (βn−1 − βn−2) + ...+

1

2
rλ (β1 − β0) + (β1 − β0)

=

((
1

2
rλ

)n−1

+ ...+
1

2
rλ+ 1

)
(β1 − β0)

=
1−

(
1
2
rλ
)n

1− 1
2
rλ

(β1 − β0)

Equation (9) then follows by substituting β0 and β1 from (8).
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2.3 L0 Specifications

As Crawford and Iriberri (2007) mention, the specification of L0 is the key to the explanatory power

of level-k models. The natural candidate, which we call “random L0”, assumes that L0’s actions

are uniformly distributed between the two signals, which implies π = 1/2. Under this assumption,

L0’s behavior is unsophisticated and serves as a natural focal point for higher level players to start

their reasoning (see discussion in Crawford, Costa-Gomes, and Iriberri, 2013). Furthermore, this

L0 assumption is also directly related to the L0-specification in the standard beauty contest. In

particular, when r = 1 and signals are public, our game is reduced to a beauty contest game and

the two L0 definitions coincide.

Another L0-specification, which we call “non-strategic L0” and is related to “truthful L0” in

Crawford and Iriberri (2007), assumes that the L0 type ignores all strategic aspects of the game

(guessing other players’ actions) and focuses solely on the nonstrategic aspect of the game (guessing

the state). Again, under this specification, π = 1/2. The behavior of the random-L0 type and the

non-strategic L0 type is observationally different: observed choices for random L0 types would be

uniformly distributed between their two signals while observed choices for the non-strategic L0

types are always halfway between their two signals. Nonetheless, because both L0-specifications

imply π = 1/2, these two specifications yield the same prediction for the behavior of higher types.

Therefore, we will label both L0 specifications as “L050”. Other authors, notably Cornand and

Heinemann (2014) and Baeriswyl and Cornand (2014), argue that ignoring the strategic aspect

of the game and focusing on guessing the state can be considered L1 behavior. This notational

difference is primarily a manner of semantics when considering our “non-strategic L0” model as it

will only change the level of classification of the players.

These two L0-specifications are standard in the literature on beauty contests. Our generalized

beauty contest game, however, differs from the standard beauty contest game in several aspects.

First, subjects have private information in several of our treatments. Second, subjects have to

choose actions to match not only the average actions or a fraction of the average actions, but also

the fundamentals. Third, but not least, unlike the standard beauty contest in which subjects are

restricted to choose a number in an interval, in the MS framework agents can choose any real

number as their action. Therefore, it is not clear that our subjects will anchor their beliefs in the

same way as in the much simpler beauty contest game.

Later we introduce several different alternatives to the L050 specification, including one esti-

mated from the data. However, all L0-specifications considered in this paper have the property of

π ≥ 1/2 and, therefore, Proposition 1 holds.

3 Experimental Design

The design of all treatments in our study is based on the modified MS framework as described

above. This section contains our experimental implementation of the MS framework as well as

similarities and differences across treatments.
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3.1 Payoff Function and Signals

In all treatments the payoff function of subject i is given by

ui(ai, a−i) = 2000− (1− r)(ai − θ)2 − r(ai − λa−i)
2, (11)

where ai is the action of subject i, θ is the true state of the world, a−i is the average of all other

subjects’ actions, λ ∈ [0, 1] is the weight on a−i, and r ∈ [0, 1] is the relative importance of matching

the weighted average of other players’ actions. Note that negative values of ui(ai, a−i) are possible

and so we publicly announce to participants that negative payoffs count as 0. Otherwise, subjects

may incur a large loss in a single period of the experiment that would be impossible to recover even

if they receive the maximum of 2000 each period afterwards.3

To ensure participants’ understanding of the payoff structure we took advantage of the fact that

each term had a very simple and intuitive interpretation. We began by verbally explaining that

three factors determine the payoff: mismatching the underlying state, mismatching λa−i, and their

relative importance r. After these factors are explained, we present the actual mathematical form,

explain the meaning of each term, and go through several numerical examples. Finally, during the

actual experiment at the end of each period the second and third terms in (11) are calculated and

displayed together with ai, θ, and λa−i.

The information available to subject i is given by two signals: y and xi. The signals and state

θ are generated prior to the experiment according to the following procedure. For each round t,

state θ is generated randomly according to U [400, 700]. Given θ, the signals are independently

drawn from N (θ, 3600). Signal y is public and the same for all subjects. Signal xi can be public

or private. In treatments with private xi different subjects in a group observe different signals. In

treatments with public xi all subjects observe the same signal. Signals and the state are generated

in such a way so that each period all groups of subjects receive the same signals and the underlying

state is the same. If, say, members of group 1 received private signals 105, 72, 41, and 36 then in

all other groups there would be a member who receives signal 105, a (different) member with signal

72 and so on.

After the state and signals are generated, we normalize them by subtracting y from each of them

so the triple (θ, xi, y) becomes (θ− y, xi − y, 0) and the normalized signal y, therefore, is always 0.

Both normalized signals are then displayed on the computer screens and the payoffs are calculated

using the normalized state value, θ − y. Note that normalized x-signals and the normalized state

could be negative. While the main reason for using the normalization is theoretical and is explained

in Section 2 there are additional benefits. First, it simplifies the environment as it is easier to make

a decision with signals 0 and 43 than with signals 529 and 572. Second, this guarantees that

subjects know that y is indeed a public signal. Third, it makes our setting similar to the standard

beauty contest setting.

3This can potentially affect the equilibrium prediction because when the maximum of (11) is negative the agent

would be indifferent between all actions. However, this happens only when the two signals are very far apart. In our

experiment this happened in approximately 0.1% of all observations.
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To keep matters simple subjects are not informed about the distributions used for state and

signal generation. Subjects are told, however, that the best guess for the state is the average

of the two signals (see instructions in the Appendix for the exact wording). Section 2.2 shows

that derivations of levels of reasoning and the equilibrium action do not require knowledge of the

distribution as long as one knows how to estimate the state given the two signals.

3.2 Treatment and Session Description

There are four aspects in which the MS model differs from the classical beauty contest. First, in

the MS model there is private information because agents receive private signals. Second, the goal

is divided between guessing λ-average and guessing fundamentals. Third, the action domain is

unrestricted. Finally, in the standard MS model λ = 1 and in the classical beauty contest λ < 1.

The treatments designed for this paper will reflect these differences.

It is convenient to classify each treatment based on the information structure and value of λ.

In total, there are three groups of treatments. In the first group signal xi is private and λ = 1.

We label this group Pr-A as the non-zero signal was private and the participants must match the

average action of other subjects. This environment is directly related to the MS model, especially

when the domain is unrestricted. In the second group we set λ = 1/2 so that subjects need to match

θ and one-half of the average action of the other subjects in their groups. The latter consideration

makes the game related to the p-beauty contest with p = 1/2, but some information is private.

We label the group Pr-H where the H represents that individuals must now match one-half of the

average action. In our third group λ = 1/2 as in Pr-H but both signals are public. As such only

two signals are drawn every period, and it is common knowledge that both signals are public. We

label this treatment Pu-H as the non-zero signal is now a public signal and subjects need to match

one-half of the average action. Pu-H is directly related to the beauty contest especially when the

domain is restricted. For a fixed information structure and value of λ we will vary values of r

from 0.15 to 0.95 with higher r corresponding to a higher coordination motive. Finally, for every

information structure and (r, λ) pair there is a treatment in which the strategy choice is bounded

by the two signals, like in the beauty contest, and one where it is unrestricted, like in MS.

Given the goal of this paper it is instructive to be more precise regarding the relationship

between Pu-H and the beauty contest. First, similar to the beauty contest, Pu-H is a game with

perfect information. Second, when the choices are restricted to [0, xt], it makes Pu-H dominance

solvable.4 Finally, as r approaches 1, the state, θ, becomes irrelevant because the only remaining

goal is to match λa−i. One notable difference from the beauty contest is that here all subjects,

not just the player who is closest to one-half of the average, are paid. However, the tournament

aspect is still retained in that subjects with actions closer to λa−i in Pu-H receive higher payoffs

4To see this, recall that the best response is given by ai = (1− r)xi + rλa−i. Without loss of generality we can

assume xi > 0. Because subjects are restricted to choose actions between [0, xi], we can first eliminate actions outside

of the interval [(1− r)xi/2, (1− r)xi/2 + rλxi]. Once we do that, we can further eliminate actions outside of the

interval
[
(1 + rλ) (1− r)xi/2, (1 + rλ) (1− r)xi/2 + r2λ2xi

]
and so on. By repeating this procedure we will get a

sequence of intervals with length rkλkxi, and this sequence will shrink to a point, which is NE.
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than those farther away.

To sum up there is a group of treatments that is close to the MS model, Pr-A; a group of

treatments that is close to the beauty contest, Pu-H; and a group of treatments that is between

the two, Pr-H. Table 1 summarizes the information about the treatments, their mnemonic names,

and the number of subjects in each treatment. The total number of subjects is 90.

y xi λ Unrestricted Domain Restricted Domain

Pr-A 0 private 1 19 8

Pr-H 0 private 1
2 13 8

Pu-H 0 public 1
2 17 25

Table 1: Description of experimental sessions and the number of subjects.

Sessions are based on one of the three treatments described. Within each session the information

structure, value of λ, and restrictions on the domain remain the same. The only variation is due

to changes in r. Each session consists of 6 phases with 10 rounds in each phase, for a total of 60

rounds.5 Within each phase the value of r is fixed but r differs across phases. We use six values of

r: 0.15, 0.3, 0.5, 0.65, 0.8 and 0.95. For each session we use the following order of r across phases:

0.15, 0.5, 0.8, 0.95, 0.3, and 0.65. Thus, in the first phase (first 10 rounds) subjects make decisions

with r = 0.15, while in the second phase (rounds 11-20) subjects make decisions with r = 0.5 and

so on. We start with a low value of r, gradually increase r until phase four, decrease r between the

fourth and fifth phases, and then increase it again. The choice of a non-monotone sequence of r’s

can help us separate the effect of r from the effect of learning. For example, if subjects’ behavior

is similar in phases with r = 0.15 (the first 10 rounds) and r = 0.3 (the fifth ten rounds) then

it suggests that this behavior is caused by low r and not by lack of subject’s experience with the

environment.

Overall, our design enables us to vary the standard beauty contest setting in two directions.

First, by changing r we vary the strength of the coordination motive. This change is interesting

because games in which the importance of coordination varies can capture a wide range of economic

applications such as monetary policy (Morris and Shin, 2002), asset pricing (Allen, Morris and Shin,

2003, Bacchetta and Wincoop, 2005), venture capital (Angeletos, Lorenzoni and Pavan, 2007) and

political campaigns (Dewan and Myatt, 2007, 2008). While levels of reasoning are well-defined

for any value of r, one would expect that subjects will focus less on the actions of others as

the coordination motive weakens. If this conjecture is correct it suggests that in games where

coordination is less important or its effect is less obvious subjects will be less likely to follow level-k

reasoning.

Second, we introduce private information into the game by making the second signal xi private.

Private information is prevalent in many economic applications and therefore it is important to

understand how well level-k models can explain the data in settings with private information.

5Due to time constraints the Pr-H treatment with restricted domain had only five phases. The last phase (the

one with r = 0.65) was not conducted.
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Indeed, level-k reasonings have been applied to classical settings with private information, such

as the winner’s curse in common value auctions and overbidding in private value auctions (see

Crawford and Iriberri, 2007a). However, the comparison of level-k model performance between

the complete and private information settings, both in absolute and relative terms, has not been

studied yet.

3.3 Procedures

Sessions were conducted at UNC Charlotte between 2008 and 2010. Subjects were typically under-

graduate students, primarily recruited from the business school but not exclusively. Subjects were

seated at visually isolated carrels and were forbidden to communicate with other subjects through-

out the duration of the experiment. Instructions were read aloud to subjects, and a few minutes

were spent discussing how different values of r could impact the subjects’ loss from mismatching

the state θ (i.e. the term −(1− r)(ai − θ)2) and the loss from mismatching the decisions of other

investors (i.e. the term −r(ai−λa−i)
2). To reinforce this distinction in the actual experiment after

each round a payoff screen displayed the loss from mismatching each of these two terms as well as

the total payoff.

All subjects were divided into four-person groups which were re-assigned in the beginning of

each period. In some sessions we had a number of subjects that was not divisible by 4. In those

instances we used the following procedure. First, the computer would form as many groups as

possible. The remaining subjects would form an incomplete group that was completed by the

decisions of a subject(s) from fully completed groups. When relevant the subject(s) chosen from

the fully formed group was the one who observed the private signal different from those observed

by members of incomplete group. For instance, if the private signals in a fully completed Pr-H were

105, 72, 41, and 36, and the private signals of an incomplete group were 105, 72, and 41, then a

decision from a subject who saw a private signal of 36 would be used to complete the incomplete

group. Even though the decision of this randomly chosen subject is used for two groups, that

subject will only receive the payoff based on the outcome within her fully formed group.

At the beginning of each round, subjects were shown signals and were asked to submit a decision

for ai. Depending on the treatment, subjects were informed that either both signals were public or

one was public and the other was private and only observable to that specific subject. When all

decisions were submitted, a−i and profit were calculated for each agent. At the end of each round

subjects were shown a screen containing their own action choice, ai, the true state, θ, the average

opponent action, a−i and their payoff for the current round.

A subject’s cash payment is determined as follows. At the end of the experiment one of the

six phases is randomly chosen. A subject’s total payoff during the chosen phase is calculated and

converted it into USD by multiplying it by .001. Thus, if a subject earned 10500 during the chosen

phase it will become $10.50. This is in addition to the $5 show-up fee that all subjects received.

The average payment to subjects, including the show-up fee, was $15 for a 75-90 minute session.
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4 Results

In this section we analyze subjects’ behavior and study how well it matches NE and level-k (Lk)

predictions. Given that NE and Lk actions are linear combinations of a random non-zero signal x

and zero signal y, they will vary each period even when the treatment and the value of r are fixed.

To make results comparable across periods and treatments we normalize the non-zero signal to 100

and adjust subjects’ actions and NE and Lk predictions accordingly. For example, given action a

and non-zero signal x, the normalized action is an = 100 · a/x so that action a = x/2 is normalized

to 50 and action a = x is normalized to 100. The interpretation of normalized values is that they

represent the percentage weight a particular action or a prediction puts on a non-zero signal.

We begin by comparing subject behavior in the aggregate to NE predictions. Next we consider

behavior at the individual level under various definitions of the L0 type. We consider three differ-

ent specifications, including one estimated from the data, to compare level-k performance across

different treatments. The comparison is done based on the full data as well as only first round

data. Finally, we estimate the frequency of different levels of reasoning in our data, which helps us

determine which levels of reasoning are most commonly followed and also serves as a robustness

check of our earlier findings.

Throughout this section all the calculations are done using normalized values of actions and

levels of reasoning.

4.1 Preliminary Tests

We begin by comparing subjects’ behavior with NE predictions. For each treatment and value

of r we calculate the average normalized action an. Figure 1 shows these an and the normalized

NE prediction. In all three treatments subjects’ actions are higher than NE predicts, meaning

that compared to the NE prediction, subjects tend to overweight the non-zero signal (which can

be private or public). Earlier we established that overweighting the non-zero signal is consistent

with level-k reasoning. Using a non-parametric signed rank test we find that the difference between

observed behavior and NE is significant in two-thirds of the treatments. In Pr-A the difference

is significant for every r ̸= 0.15, and in Pu-H for every r ̸= 0.65. As for Pr-H the difference is

significant for r = 0.5, r = 0.8 and r = 0.95.6 Importantly, the difference is significant in all three

treatments for r = 0.8 and r = 0.95.

Table 2 presents the average absolute deviation of actions from NE (in normalized units).

Deviations are quite substantial in all treatments and especially in treatments with private signals.

Notably, the observed behavior is closest to NE when r = 0.65 regardless of the value of λ and the

information structure. The most likely reason is that the r = 0.65 phase is last in each session and

subjects’ learning could bring them closer to NE. As level-k reasoning is usually thought of as the

6The test uses individual level data. Because the observations within one experimental session are not independent,

as a robustness check we also apply the signed rank test to the session level data. The session-level data is independent

and we can apply the signed rank-test to compare the session level average action with NE. Based on the session-level

data the signed rank test rejects the null hypothesis that average action is equal to NE in every treatment.
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Figure 1: Subjects’ behavior and NE in all treatments. On the y-axis is the average weight that subjects put on

the non-zero signal which is public in Pu-H and private otherwise. Solid line is NE; and dash-dotted line, an, is the

average over normalized actions.

framework that describes people’s behavior in the beginning of experiments, a better performance

of NE in the final stage of experimental sessions is not surprising.

r 0.15 0.30 0.50 0.65 0.80 0.95

Pr-A 67.20 53.86 36.88 30.08 46.23 44.76

Pr-H 58.57 86.97 37.14 23.28 44.22 36.93

Pu-H 30.63 16.46 22.43 10.71 18.91 17.59

Table 2: Average absolute deviation of observed behavior from NE across different treatments and phases. The

deviation is calculated based on normalized data with non-zero signal normalized to 100. Higher r means stronger

coordination motive.

Result 1: Consistent with level-k behavior, subjects tend to put a higher weight on the non-zero

signal than NE predicts. Overall, NE performs best in the last phase of the study with r = 0.65.

Figure 2 plots a histogram of subjects’ choices. We use normalized actions and exclude ob-

servations when the chosen actions are outside of the signal range. We also exclude observations

when the distance between signals is less than 15 to reduce the sensitivity of normalized actions to

small changes in subjects’ behavior when the distance between signals is small. In total, 19.72%

of all observations are excluded. Figure 2 shows a histogram for all three treatments: Pr-A, Pr-H

and Pu-H; and the two most extreme values of r, 0.15 and 0.95. The distance between signals

varies from 15 to 226. When r = 0.95 we mark the normalized levels of reasoning based on the

assumption L0 = 50. When r = 0.15 all normalized levels of reasoning are close to each other and

all belong to the interval [44, 47].

When r = 0.15 the normalized action of 50 is the most popular choice in treatments with private

signals. In Pu-H the normalized action of 50 is also the most popular choice but the distribution

of actions is more dispersed. When r = 0.95 the two most prominent spikes occur in the public

treatment. The spikes correspond to the normalized L1 and L2 actions. The modal choice in Pr-A
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Figure 2: Histogram of normalized actions in the cases of r = 0.15 and r = 0.95. Actions outside of the signal range

are excluded. Actions when the distance between the two signals is less than 15 are excluded. Levels of reasoning

are calculated based on L0 = 50. Label n1 corresponds to the first naive levels of reasoning as defined in Section 5.2.

For r = 0.15 all levels of reasoning belong to the interval [44, 47] (not marked on the plot).

remains 50, though its frequency is lower than in the r = 0.15 case. In Pr-H the modal choice does

not correspond to any level of reasoning. In Section 5.2 we introduce “naive” levels of reasoning.

The most frequent choice in Pr-H corresponds to the first naive level of reasoning, labeled n1.

4.2 Explanatory Power of the Level-k Model

In this section we evaluate and compare performance of the level-k model under three different L0

specifications. The comparison is done for the full data as well as for first round data only.

4.2.1 Determining L0. Performance of the Level-k Model with Full Data

A key element of the level-k model is the initial level, L0, that people use to start their reasoning

process. Behavior of the L0 type is usually assumed to be as simple and non-strategic as possible.

Normally, it is not meant to describe actual choices but rather serves as a starting point in subjects’

logic. In section 2.3 we mention that a natural candidate for L0 is either a “random L0” or a

“truthful L0,” both of which have an expected normalized action choice of 50. Under “random

L0,” level-0 players pick a random action between their signals, while under “truthful L0” level-0

players non-strategically attempt to match fundamentals. Both specifications are often used to

explain p-beauty contest behavior. Hereafter, we use L050 to denote L0 specifications with an

expected normalized action of 50.
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Our setup includes treatments with private signals and/or unrestricted domains, making it

richer than the standard beauty contest, and plausible that subjects use some value other than

50 as the starting point in their reasoning.7 In this section we use the data to estimate the value

of L0 that maximizes the explanatory power of the level-k model. In a way, by estimating an

optimal L0, we are determining the upper bound of level-k explanatory power. We then compare

the performance of the L050 specification with the optimal L0 model.

We use the following estimation procedure. For a given value of L0 and parameters of the

treatment, we calculate L1, L2, L3, and NE.8 For each treatment we calculate the (expected)

value of L0 that maximizes what we call the success rate of the level-k model. The success rate is

defined as the number of actions that are within 3 normalized units of at least one level of reasoning

divided by the number of all actions in that treatment. To see how the error of 3 normalized units

is related to the non-normalized values, we note that the average distance between two signals in

our experiments is 72. The 3 normalized units in this case mean that the non-normalized action

has to be at most 2.16 away from a given level. For instance, in treatment Pu-H with r = 0.95

and L050 the normalized value of L1 is 26.25 which corresponds to a non-normalized value of 18.9.

The action would be classified as consistent with L1 if it is between 16.8 and 21.9

It is possible, especially for low values of r, that ±3 normalized unit intervals around Lk

overlap. For instance, in treatment Pu-H with r = 0.15, when L0 = 50 the normalized values of

the first three levels of reasoning and NE are approximately 46.25, 45.97, 45.95, and 45.95. Our

approach in this case means that any normalized action between 42.95 and 49.25 is considered to

be consistent with level-k. In comparison, in the Pu-H treatment with r = 0.95 the normalized

values are 26.25, 14.97, 9.61 and 4.76. By our approach any action from the intervals [1.76, 17.97]

and [23.25, 29.25] will be consistent with the level-k model.

In general, levels of reasoning are more dispersed and the set of actions consistent with level-k

is larger in treatments with higher r. It means the level-k model generates a sharper prediction

in treatments with low r’s. It also means that using the success rate to compare performance of

level-k models across treatments with different r will favor high r phases, where more actions are

consistent with level-k. To address the latter, as a benchmark we calculate the success rate of the

level-k model in explaining randomly generated data.

The values of optimal L0 as well as the success rate generated by optimal L0 are presented in

Table 3. For a fixed measure of goodness-of-fit – in our case the success rate ±3 normalized units

– this value provides the upper bound for level-k performance.10

7Burchardi and Penczynski (2014) have detailed data on subjects’ reasoning in a timed p-beauty contest game

and show that subjects differ in where they start their reasoning.
8Levels of reasoning higher than three are very close to the NE, so we simply keep track of the first three levels

and the NE itself.
9We allow actions to be different from the precise values for level-k action because of subjects’ natural propensity

to round or choose actions that correspond to “nice” numbers. In the beauty contest with p = 2/3 the action of 33

is more likely to be chosen than the correct 33 1
3
value for L1.

10The optimal L0 is not reported in Table 3 for the restricted Pr-H treatment with r = 0.65 because time constraints

kept us from conducting that phase.
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Restricted Unrestricted

r L0 rate Implied L1 L0 rate Implied L1

Pr-A

0.15 132 0.29 52.40 135 0.24 52.63

0.3 92 0.25 48.80 99 0.24 49.85

0.5 99 0.38 49.75 91 0.26 47.75

0.65 105 0.41 51.63 98 0.43 49.35

0.8 94 0.41 47.60 94 0.32 47.60

0.95 117 0.30 58.08 94 0.30 47.15

Pr-H

0.15 154 0.31 48.28 174 0.21 49.03

0.3 192 0.26 49.40 116 0.15 43.70

0.5 142 0.24 42.75 176 0.25 47.00

0.65 * * * 182 0.31 47.08

0.8 198 0.53 49.60 187 0.23 47.40

0.95 169 0.36 42.64 83 0.31 22.21

Pu-H

0.15 131 0.22 52.33 139 0.17 52.93

0.3 98 0.42 49.70 197 0.30 64.55

0.5 102 0.44 50.50 188 0.36 72.00

0.65 117 0.52 55.53 142 0.47 63.65

0.8 107 0.61 52.80 82 0.64 42.80

0.95 50 0.62 26.25 53 0.72 27.68

Table 3: Columns labeled L0 report the value of L0 that maximizes the success rate of level-k models in treatments

with restricted and unrestricted domains respectively. Columns labeled rate show share of observations explained by

level-k; columns labeled L1 report the first of level reasoning that corresponds to the optimal L0.

At first look, the optimal (expected) values of L0 seem to be extremely high. In treatments

Pr-A and Pu-H they are near 100, meaning that level-1 subjects believe the other players’ average

actions will be equal to their non-zero signal. This result holds for treatments with unrestricted

and restricted domains. For treatments with restricted domain such an initial belief seems to be

particularly counterintuitive. In Pr-H optimal L0 is even higher and is often near 200. That implies

that a level-1 subject believes that everyone else picks an action equal to twice their non-zero signal,

which is impossible in treatments with restricted domain.

However, these unrealistically high values of optimal L0 can be explained if the value of L1

implied by optimal L0 is calculated (reported in columns 4 and 7). Generally the implied value

of L1 is very close to 50 and it stays within 3 normalized units of 50 for 14 of the 17 treatments

with restricted domain and for 12 of the 18 treatments with unrestricted domain. We interpret

this result as follows. The literature typically assumes that the fraction of L0 players is negligible

and L0 is simply the initial step for subjects to structure their reasoning. Consistent with this

interpretation our calculations of success rate only include L1, L2, L3, and NE and do not include

actions that are close to L0. However, given the large number of treatments in which L1 is close

to 50, our findings suggest that in our experiment there is a non-negligible number of non-strategic
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subjects playing 50, which would normally be classified as level-0 actions. To put it differently, it is

not really the case that in Pr-H level-1 subjects choose 50 because they believe that level-0 subjects

will on average choose 200, but rather there is a non-negligible number of non-strategic subjects

who consistently choose 50 and then there are higher level subjects who best respond to 50 and so

on. There is one notable exception to the result that the implied L1 is close to 50. The exception

is the Pu-H treatment with r = 0.95 – the closest treatment to the beauty contest setting – where

the optimal L0 is exactly 50 in the case of restricted domain and 53 in the case of unrestricted

domain.

Based on this result, we evaluate and compare three “L0 specifications”. The first specification,

L050, assumes that the average action of L0 is equal to 50 and the share of non-strategic subjects

is negligible. In other words the success rate is calculated based on values of L1, L2, L3, and NE.

The second specification assumes that there is a non-negligible share of non-strategic subjects who

play 50 and higher levels are calculated as usual. We label this specification as L050NS , where NS

indicates that non-strategic players are included. The success rate for L050NS is calculated based

on values of 50, L1, L2, and NE.11 The third specification is based on optimal L0, that is the

L0 specification that generates the highest success rate, no matter how unrealistically high it is.

Similar to the L050 specification the success rate is based on L1, L2, L3, and NE.

The comparison of L050 with L050NS shows the share of non-strategic players. The comparison

of L050NS and L050 with optimal L0 indicates how much explanatory power is lost if we use one

parsimonious and intuitive value of L0 instead of separately estimating it for each treatment. The

comparison of L050NS and optimal L0 is particularly interesting because Table 3 shows the L1

under the optimal L0 approach is often close to 50 and, therefore, L2 under optimal L0 is close

to L1 under L050NS and so on. If the success rates of the two specifications are close it would be

strong evidence in favor of L050NS , which has the advantage of being more intuitive and consistent

with the approach used in the literature.

The success rates for each of the three specifications are presented in Table 4.12 Table 4 also

presents the success rate of the level-k model in explaining random data generated with U [0, 100].

The evidence provides stronger support to level-k behavior if the success rate with experimental

data is higher than the success rate with random data.

First, optimal L0 performs better than L050NS and L050, as it is supposed to by construction.

However, the decline in success rate between optimal L0 and L050NS is rather modest. The major

exceptions occur when r = 0.95 (in both Pu-H and Pr-H with unrestricted domain, and in Pr-H

with restricted domain) and when r takes relatively low values in Pu-H with unrestricted domain.

11We exclude L3 from L050NS so that L050 and L050NS use the same number of levels and results are comparable.
12As a comparison benchmark we use data from Nagel (1995) and Bosch-Domenech et al. (2002). The levels

of reasoning are calculated based on L050 and the success rate, using our approach, is 56%. The success rate in

explaining the U [0, 100] randomly generated behavior is 21%. While this is a useful benchmark, especially for our

public treatments with r = 0.95, it is worth noting several differences between their settings and ours. First, they

use λ = 2/3 while we use λ = 1/2. Second, the support of allowed actions is fixed to [0, 100] in their experiments and

is varied in our setup. Third, they have r = 1 while our maximum r is 0.95. Finally, our subjects play treatments

with r = 0.15, 0.5, and 0.8 before they play the treatment with r = 0.95.
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Optimal L0 L050NS L050

r R-ed Unr-ed Random R-ed Unr-ed Random R-ed Unr-ed

Pr-A

0.15 0.29 0.24 0.10 0.24 0.21 0.06 0.09 0.08

0.3 0.25 0.24 0.13 0.23 0.24 0.08 0.09 0.08

0.5 0.38 0.26 0.16 0.36 0.24 0.10 0.13 0.08

0.65 0.41 0.43 0.20 0.38 0.42 0.14 0.23 0.23

0.8 0.41 0.32 0.24 0.38 0.30 0.17 0.23 0.19

0.95 0.30 0.30 0.24 0.15 0.28 0.22 0.14 0.17

Pr-H

0.15 0.31 0.21 0.12 0.31 0.21 0.06 0.09 0.07

0.3 0.26 0.15 0.13 0.24 0.13 0.07 0.08 0.10

0.5 0.24 0.25 0.15 0.14 0.22 0.09 0.06 0.09

0.65 * 0.31 0.17 * 0.29 0.11 * 0.27

0.8 0.53 0.23 0.20 0.53 0.22 0.13 0.44 0.14

0.95 0.36 0.31 0.20 0.36 0.20 0.15 0.30 0.15

Pu-H

0.15 0.22 0.17 0.10 0.18 0.13 0.06 0.05 0.08

0.3 0.42 0.30 0.13 0.41 0.20 0.08 0.21 0.13

0.5 0.44 0.36 0.16 0.44 0.27 0.10 0.25 0.15

0.65 0.52 0.47 0.20 0.48 0.38 0.14 0.44 0.36

0.8 0.61 0.64 0.24 0.60 0.58 0.17 0.45 0.56

0.95 0.62 0.72 0.24 0.60 0.52 0.22 0.62 0.69

Table 4: Columns 2 and 3 show the success rate under optimal L0 for restricted and unrestricted treatments.

Columns 4 to 6 (7 to 9) show the success rate of level-k models when L050NS (L050) in explaining random data and

the data in restricted and unrestricted treatments.

Second, the success rate of the L050 model is lower than that of L050NS , except for Pu-H with

r = 0.95. Overall it suggests that the normalized action of 50 serves as an initial point of subjects’

reasoning and that in all treatments but Pu-H with r = 0.95 there is a non-negligible share of

subjects who play a non-strategic action of 50. This result is consistent with recent experimental

findings (Agranov, Caplin, and Tergiman, 2013, and Burchardi and Penczynski, 2014) that in

level-k experiments non-strategic subjects exist.

Next we compare the success rate with the random benchmark and across treatments. In

treatments with public information, level-k based on L050NS is considerably better at explaining

subjects’ behavior than random data. This result holds for treatments with restricted and unre-

stricted domain, although the success rates of the former are higher.13 With private information,

the result differs for Pr-A and Pr-H treatments. In Pr-A the success rate of the L050NS model ex-

plains experimental data better than random data with the the exception of r = 0.95 in restricted

treatments. In Pr-H, the L050NS performance is the weakest as there are three incidents with

success rates less than or equal to those of the random benchmark.

13The treatments with restricted domain have higher success rate partly because with restricted domain subjects

cannot choose actions outside of the bounds which are not consistent with any level-k predictions.
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The highest success rates, whether in absolute terms or as compared to the random benchmark,

are achieved in treatments with public information and with r = 0.8 or 0.95. Under these circum-

stances the coordination motive is the strongest and, in addition, the public information makes

it easier for subjects to predict the actions of other players. Overall, 60% or more of the data

is consistent with level-k predictions and the level-k models considerably outperform the random

benchmark. Also, with the exception of r = 0.15, treatments with public information tend to have

higher success rates than the corresponding treatments with private information. The data suggest

that level-k behavior is more prevalent in treatments with public information than in treatments

with private information.

Result 2: For most values of r, and regardless of the information type and the restrictions

(or lack thereof) on domain, we find evidence that the level-k model based on L050NS explains the

data better than the level-k model based on L050, and almost as well as the level-k model based on

optimal L0. Treatment Pu-H with r = 0.95 is a notable exception where it is L050 that performs

better than L050NS.

Result 3: With few exceptions, most notable being the case of r = 0.95 in treatments with

private information, level-k models are better in explaining observed actions than in explaining

randomly generated actions.

Result 4: The highest success rates of the level-k model are in treatments with public informa-

tion and high values of r. Furthermore, in treatments with public information the success rate of

the level-k model is higher than in corresponding treatments with private information.

Result 5: The success rate of treatments with the restricted domain tends to be higher than in

corresponding treatments with unrestricted domains.

4.2.2 Performance of the level-k Model with the First Round Data

A usual motivation for the level-k approach is that it characterizes how subjects think at the

beginning of the game before any learning takes place. In this section we calculate the success rate

of the level-k model using first round data and compare it with the success rate based on the full

data. As with earlier success rate calculations an action needs to be within 3 normalized units of

a particular level of reasoning. Results are presented in Table 5.

First, comparing the success rates based on optimal L0, with few exceptions level-k models

explain first round data much better than the entire data. This result is true for both restricted

and unrestricted domains, though the improvement in restricted domain treatments is particularly

notable, with the success rate increasing by a factor of two or more. For instance, in the Pr-H

treatment with restricted domain, the success rate increases from 0.36 to 0.75 when r = 0.95 and

from 0.24 to 0.63 when r = 0.5. Overall, with restricted domain, the average success rate is 0.48 in

treatment Pr-A, 0.5 in Pr-H, and 0.59 in Pu-H. In treatments with unrestricted domain the increase

in success rate is also present, though slightly less pronounced. Furthermore, in the unrestricted

Pu-H treatment with r = 0.95 the success rate decreases from 0.72 to 0.65.
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Restricted Unrestricted Optimal L0 (Full) L050NS (1st Round) L050NS (Full)

r L1 rate L1 rate R-ed Unr-ed R-ed Unr-ed R-ed Unr-ed

Pr-A

0.15 51.50 0.50 47.00 0.11 0.29 0.24 0.38 0.11 0.24 0.21

0.3 56.75 0.63 49.10 0.42 0.25 0.24 0.25 0.37 0.23 0.24

0.5 46.50 0.50 47.75 0.37 0.38 0.26 0.25 0.32 0.36 0.24

0.65 62.35 0.38 47.73 0.47 0.41 0.43 0.13 0.32 0.38 0.42

0.8 47.20 0.50 71.20 0.37 0.41 0.32 0.50 0.26 0.38 0.30

0.95 41.93 0.38 51.43 0.42 0.30 0.30 0.25 0.37 0.15 0.28

Pr-H

0.15 47.00 0.38 42.54 0.08 0.31 0.21 0.38 0.00 0.31 0.21

0.3 49.40 0.25 49.40 0.23 0.26 0.15 0.25 0.23 0.24 0.13

0.5 42.50 0.63 47.75 0.31 0.24 0.25 0.13 0.31 0.14 0.22

0.65 * * 25.95 0.31 * 0.31 * 0.23 * 0.29

0.8 48.40 0.50 44.80 0.31 0.53 0.23 0.50 0.31 0.53 0.22

0.95 45.49 0.75 2.74 0.38 0.36 0.31 0.38 0.31 0.36 0.20

Pu-H

0.15 47.00 0.28 47.00 0.12 0.22 0.17 0.28 0.12 0.18 0.13

0.3 48.35 0.56 61.25 0.47 0.42 0.30 0.52 0.12 0.41 0.20

0.5 48.25 0.60 48.25 0.47 0.44 0.36 0.48 0.35 0.44 0.27

0.65 51.95 0.64 38.30 0.76 0.52 0.47 0.56 0.47 0.48 0.38

0.8 52.00 0.76 42.80 0.47 0.61 0.64 0.72 0.29 0.60 0.58

0.95 51.43 0.68 33.38 0.65 0.62 0.72 0.60 0.47 0.60 0.52

Table 5: Columns 2 through 5 show the implied L1 and success rate based on the first round data. For brevity

we omit the actual value of L0. Columns 6 and 7 show the earlier reported success rate based on the full data and

optimal L0. The last four columns compare success rate under the L050NS assumption between the first round data

and full data. Numbers in italics are for treatments with restricted domain.
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Second, except for restricted Pu-H, there is considerable volatility in the L1 implied by the

optimal L0. In restricted Pu-H the implied L1 is within 3 normalized units of 50 for every value

of r. In other treatments, there does not appear to be a parsimonious value of optimal L0 that

explains the data in every treatment, which is why we calculate the first round success rate under

L050NS and compare it with the full data success rate under L050NS . Results are presented in

the last four columns of Table 5. Using the L050NS specification, the first round success rates are

lower, sometimes considerably, than “optimal L0” success rates. Furthermore, the comparison of

L050NS first round success rates with the full data success rates is less clean. With the exception of

restricted Pu-H, all other treatments have an average success rate below 30%. The average success

rate for restricted Pu-H is the highest at 53%.

With the exception of restricted Pu-H the evidence is inconclusive. On one hand, using the

optimal L0 approach the first round data is explained quite well by level-k models. However, it

is difficult to explain why subjects would coordinate on 71.20 in unrestricted Pr-A with r = 0.8

and then suddenly on 51.43 when r = 0.95. The increased success rate under optimal L0 could

just have a mechanical nature, meaning that first round data have less data points and allowing

variation in L0 provides an extra degree of freedom to explain a smaller data set.

Result 6: In the Pu-H treatment with restricted domain the level-k model has a considerably

higher success rate in explaining the first round data than in explaining full data. With the exception

of r = 0.15 the success rate is 56% or higher. Furthermore, the success rate of level-k model only

slightly decreases when we switch from optimal L0 to L050NS.

Result 7: In other treatments the first round success rate also tends to be higher than the full

data success rate. However, there is no parsimonious value of implied L1 that can consistently

explain the first round data well. In this sense, for treatments other than restricted Pu-H, we do

not have conclusive support to the hypothesis that level-k reasoning is more prevalent in the first

round.

Given our findings thus far and for the sake of uniformity we conduct most of the remaining

tests and comparisons using the level-k framework that is based on L050NS , which is equivalent

to the framework with L050 with a non-negligible number of level-0 subjects. Additionally, given

Result 2 we report results based on the L050 assumption for treatment Pu-H with r = 0.95.

4.3 Shares of Level-k Types

In this subsection we estimate the distribution of subjects across different level-k types. This

estimation can illustrate which levels of reasoning are more or less commonly used and can also

serve as a robustness check to our earlier findings. We first identify shares of level-k subjects who

consistently followed a particular level of reasoning. We then use maximum likelihood to estimate

the distribution of types based on the success rate measure as defined in the previous section.
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4.3.1 Consistency of Subjects’ Behavior

The success rate approach may capture a significant number of false positives, because, as reported

in Table 4, the level-k model may explain 10% to 24% randomly generated data. As a robustness

check, we apply a more stringent criterion where a subject is labeled as following a particular level

of reasoning only when the subject’s actions are close to a given level for several consecutive rounds.

Because each phase consists of ten rounds, we split each phase into two five-round halves: first five

and second five. We then calculate the average absolute deviation of subjects’ normalized actions

from normalized levels of reasoning (NS, L1, L2 and NE for L050NS ; and L1, L2, L3 and NE for

L050) during the first five and the second five rounds of each phase.

We apply a gradual classification of subjects’ behavior into different level-k categories. We

count a subject as a certain level-k type with higher probability if his normalized action choices

are closer to the corresponding normalized value of the kth-level of reasoning, Lk. Formally, let a

subject’s normalized actions in five consecutive rounds be {at}5t=1, or for brevity {at}. Then we

classify a subject as a level-k subject with probability Pr (Lk|{at}) defined as

Pr (Lk|{at}) =


100% if 1

5

∑5
t=1 |at − Lk| ≤ 3

50% if 3 < 1
5

∑5
t=1 |at − Lk| ≤ 5

20% if 5 < 1
5

∑5
t=1 |at − Lk| ≤ 7

0 if 1
5

∑5
t=1 |at − Lk| > 7

. (12)

That is, if the five-round average absolute deviation 1
5

∑5
t=1 |at − Lk| is within 3 units, we assign

probability 100% to a subject being level-k; if it is between 3 and 5 units, we assign probability

50%; if it is between 5 and 7 units, we assign probability 20%; and if it exceeds 7 units, we conclude

the subject does not play level-k.

Applying classification criterion (12) can result in a subject being classified into several levels of

reasoning with positive probabilities and the sum of the probabilities may exceed 1. This multiple

classification is especially possible for treatments with low values of r and could overestimate

the predictive power of the level-k model. To avoid double counting, we scale down the “crude”

probabilities specified in (12) proportionally by the sum of the “crude” probabilities. For instance,

for the L050 specification the final probability that we classify a subject with action choices {at}
as a level-k subject is defined as

Pr (Lk|{at})
Pr (L1|{at}) + Pr (L2|{at}) + Pr (L3|{at}) + Pr (NE|{at})

Pr (Lk|{at}) . (13)

The final probability for L050NS is defined similarly except that the term Pr (NS|{at}) would

replace Pr (L3|{at}) in the denominator of (13).

To illustrate, suppose 1
5

∑5
t=1 |at − Lk| ≤ 3 and 5 < 1

5

∑5
t=1 |at − Lk′| ≤ 7, so by (12) we

have Pr (Lk|{at}) = 100% and Pr (Lk′|{at}) = 20%. In addition, suppose the average absolute

deviations from other levels all exceed 7. Then the final probability assigned to Lk is

100%

100% + 20%
× 100% =

5

6
,
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and the final probability assigned to Lk′ is

20%

100% + 20%
× 20% =

1

30
.

The advantage of this approach is two-fold.14 First, it greatly reduces the chance of false

positives as compared to the success rate approach. Simulations show that when actions are

generated using U [0, 100] then the average weight assigned to a particular level, say, L1 is as

low as 0.00037. Second, it allows us to identify which levels of reasoning subjects follow.

Table 6 shows the frequencies (sum of probabilities) assigned to each particular level. The

summation is across all subjects and for each subject we sum the probabilities in the first five

rounds and the second five rounds. For the sake of brevity we pool restricted and unrestricted

treatments. Levels of reasoning are calculated based on L050NS and, in addition, for r = 0.95 we

reports results based on L050. Overall level-k behavior can occur for almost any combination of

model parameters and regardless of whether the information is public or private. However, subjects’

propensity to use level-k varies considerably. It is most commonly used in treatments with public

information and high values of r (0.8 and 0.95). In Pr-A the most common level of reasoning is

NS and in Pr-H it is L1. In Pu-H, especially for high values of r, higher levels of reasoning are

common.

4.3.2 Maximum likelihood estimation

Lastly we use the maximum likelihood (ML) approach to estimate the shares of different level-k

types in our data. The likelihood function is defined as follows. The estimation parameters are

µNS , µL1, µL2, and µNE , where µLk is the share of subjects playing according to Lk, µNE is the

share of subjects playing according to NE and µNS is the share of non-strategic subjects. Let Lk

denote the normalized value of the kth level of reasoning. We assume that a level-k subject plays a

normalized action according to the uniform distribution in the interval [Lk− 3, Lk+ 3].15 We also

introduce the type other with share µother = 1−µNS −µL1−µL2−µNE . We assume that the type

other picks a normalized action according to U [0, 100].

Given these assumptions, conditional on a vector of estimated parameters µ the likelihood of a

particular normalized action, ai, is calculated as follows. The likelihood that action ai comes from

14In addition to the criterion reported in the paper we also examine several alternatives. We perform the calculations

using only the first five periods of each phase (as in Crawford and Iriberri, 2007a), pooling the data from all ten periods

of each phase, and consider different thresholds. We also use actual values instead of normalized ones. Qualitatively,

the results appear to be quite robust. Level-k models perform better in treatments with public signals and in phases

with high r. Quantitatively, numbers change depending on whether the criterion is more or less stringent. When it is

less stringent, say because of a higher threshold, then all numbers are higher. If it is more stringent, say, because of a

lower threshold or because we consider all 10 periods of the phase instead of two five-period intervals, then numbers

are lower.
15In addition to the uniform distribution we also considered an alternative where level-k subjects choose normalized

actions according to a truncated normal distribution on the interval [Lk−3, Lk+3] with standard deviation 2.5. The

truncated normal distribution assigns higher likelihood to actions closer to Lk. For instance, the probability that a

level-k subject chooses an action between [Lk−1, Lk+1] is 0.4 and not 1/3 as in the case of the uniform distribution.

The results of ML estimation based on the truncated normal distribution are qualitatively similar and not reported.
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Pr-A Pr-H Pu-H

NS L1 L2 L3 NE NS L1 L2 L3 NE NS L1 L2 L3 NE

0.15 0.7 0.2 0.2 n/a 0.2 0.9 0.1 0.1 n/a 0.1 2.0 0.4 0.4 n/a 0.4

0.3 2.2 - - n/a - 0.2 - - n/a - 6.9 2.1 1.9 n/a 1.6

0.5 3.2 0.2 - n/a - 1.0 0.2 0.2 n/a 0.2 3.6 2.8 2.3 n/a 1.7

0.65 4.5 0.7 0.3 n/a 0.3 - 2.1 0.8 n/a 0.7 0.7 2.2 4.2 n/a 6.9

0.8 0.7 0.2 - n/a - 0.2 2.8 0.8 n/a 0.4 6.1 8.0 9.1 n/a 3.6

0.95 (L050NS) 2.4 0.2 0.2 n/a - 0.2 1.7 0.9 n/a 0.5 2.2 14.1 17.6 n/a 2.9

0.95 (L050) n/a 0.2 0.2 - - n/a 1.7 0.7 0.3 0.3 n/a 14.1 12.7 7.9 1.4

Table 6: The frequencies assigned to a particular levels of reasoning. For a given five-round window (either from

periods 1 to 5 or 6 to 10) and a subject the probabilities are calculated according to (13). Then probabilities are

summed across two five-round windows and subjects. For all r except for 0.95 levels are calculated based on L050NS

specification. For r = 0.95 calculations are made based on L050NS and L050 specifications. Because the L050NS

specification is estimated using types NS,L1, L2 and NE and L050 is estimated using types L1, L2, L3 and NE we

use label n/a for L3 in the L050NS specification and for NS in the L050 specification. Label ‘-’ means no subject

follows a given level of reasoning. Treatments with restricted and unrestricted domains are pooled together. The

number of subjects in Pr-A is 27, the number of subjects in Pr-H is 21, the number of subjects in Pu-H is 42.

type other is equal to µother ·
1

100
, where 1/100 is the density of U [0, 100]. The likelihood that this

same action ai comes from type k is equal to zero if |ai −Lk| > 3 and is equal to µk ·
1

6
, otherwise.

Here 1/6 is the density of the uniform distribution over [Lk− 3, Lk+3]. Thus, the likelihood of an

action ai is

L(µ|ai) = µother ·
1

100
+

∑
k∈{NS,1,2,NE}

µk

6
· 1|ai−Lk|≥3.

Given all the actions observed in a particular treatment the log-likelihood function is

logL(µ|a1, . . . , an) =
∑
i

logL(µ|ai),

which we maximize numerically.16 In addition, in the case of r = 0.95 we estimate the ML under

the L050 assumption. The difference in the likelihood function is that instead of estimating µNS

we estimate µL3 that corresponds to the share of L3 players.

The results of the ML estimation are reported in Table 7. We report point estimates of the

share of different levels of reasoning as well as the values of the log-likelihood function and p-values

of testing the joint null hypothesis H0 : µNS = µL1 = µL2 = µNE = 0 (H0 : µL1 = µL2 = µL3 =

µNE = 0 in the case of L050).17 Under H0 the subjects’ behavior is random. If H0 is rejected it

means that the effect of level-k types is statistically significant.

16As it is evident from the definition of the likelihood functions we treat all observations as independent. This

is a simplifying assumption, because otherwise we would have to make some ad hoc assumptions regarding the

dependence of observations within a session. An expected effect of this assumption is when each observation is

treated as independent its informativeness is overstated and the estimated standard errors are smaller than the

correct ones.
17Given the non-negativity restriction on shares of level-k reasoning one cannot use the normal distribution for the
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First, Table 7 demonstrates that H0 is rejected in every public treatment except the one with

unrestricted domain and r = 0.15.18 Second, the point estimates become larger as r increases.

Third, the L050 specification is better at explaining subjects’ behavior in the public treatments with

r = 0.95, where the share of non-strategic types, as estimated under the L050NS specification, is low

and the log-likelihood is higher under L050. Finally, in treatments with private information, there is

no particularly discernible pattern. In Pr-A the H0 is typically rejected. Based on point estimates

the rejection comes from a relatively large share of non-strategic types, NS. The unrestricted Pr-H

treatments have the lowest number of H0 rejections.

Result 8: Maximum likelihood estimation confirms that level-k reasoning is statistically sig-

nificant in public treatments for all but one treatment. In Pr-A, the null is rejected in all but one

case (three if L050 is included). The largest point estimates in Pr-A correspond to the non-strategic

level, NS.

hypothesis testing. Instead, one can apply Lemma 21.1 in Gourieroux and Monfort (1995) to show that, under the

null hypothesis, the limiting distribution of the likelihood ratio T = 2(Ln(µ̂NS , µ̂L1, µ̂L2, µ̂NE)− Ln(0, 0, 0, 0)) is the

same as that of the random variable

ζ = min
{γ:I1/2

0 γ≥−→
0 }

||γ − γ̂||2,

where γ̂ is the four-dimensional standard normal random variable and I0 is the information matrix. We simulate the

distribution of ζ using 1000 draws from the multivariate standard normal distribution and then for each γ̂ solve the

minimization problem above. As an estimate for the information matrix we use the Hessian calculated at the point

estimates. We are grateful to Yuanyuan Wan for his help on this issue.
18If instead of estimating (µNS , µL1, µL2, µNE) we exclude the non-strategic type and estimate (µL1, µL2, µL3, µNE)

then the null is rejected whenever r > 0.15 in the public treatments.
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5 Alternative Models

In this section we examine the performance of two alternative models to the standard level-k model.

We first study the performance of the cognitive hierarchy model (CH) introduced by Camerer et

al. (2004). We then study an alternative level-k model where subjects are assumed to update their

beliefs in a näıve manner.

5.1 Cognitive Hierarchy

Restricted Unrestricted

r L0 τ rate Implied L1 L0 τ rate Implied L1

Pr-A

0.15 197 1.0 0.36 57.28 194.00 1.0 0.28 57.05

0.3 188 1.0 0.39 63.20 135.00 1.0 0.31 55.25

0.5 157 2.5 0.49 64.25 138.00 1.5 0.34 59.50

0.65 102 2.5 0.48 50.65 98.00 3.5 0.48 49.35

0.8 82 7.0 0.43 42.80 94.00 2.0 0.32 47.60

0.95 115 1.5 0.36 57.13 94.00 1.5 0.32 47.15

Pr-H

0.15 154 0.5 0.31 48.28 174.00 0.5 0.21 49.03

0.3 192 1.0 0.31 49.40 192.00 1.0 0.18 49.40

0.5 142 1.0 0.34 42.75 182.00 1.5 0.31 47.75

0.65 * * * * 182.00 2.5 0.35 47.08

0.8 127 2.0 0.60 35.40 187.00 2.5 0.30 47.40

0.95 164 4.5 0.50 41.45 83.00 2.0 0.35 22.21

Pu-H

0.15 194 1.0 0.29 57.05 194.00 1.0 0.23 57.05

0.3 140 1.0 0.55 56.00 199.00 2.0 0.37 64.85

0.5 103 2.0 0.53 50.75 188.00 2.0 0.46 72.00

0.65 95 3.5 0.57 48.38 106.00 3.5 0.51 51.95

0.8 103 10.0 0.66 51.20 82.00 4.5 0.70 42.80

0.95 49 4.0 0.68 25.78 46.00 5.0 0.79 24.35

Table 8: The table reports the success rate of the CH model for treatments with restricted and unrestricted domains.

Value of L0 and τ were determined to maximize the success rate within a given treatment. Columns “Implied L1”

report the level of L1 that corresponds to the optimal level of L0.

The underlying idea of the CH model is that higher types believe that the population of other

players is a mixture of lower types. For example, type L2 believes that some players are L1

and others are L0 and best responds accordingly. Camerer et al. (2004) assume that types are

distributed according to the Poisson distribution with parameter τ so that Pr(Lk) = f(k) =

exp(−τ)τk/k!. Each type does not realize that there are players of the same or higher types but it

correctly estimates relative proportions of lower types. For example, type L2 will believe that the

share of L0 is f(0)/(f(0) + f(1)) and the share of L1 is f(1)/(f(0) + f(1)).

We calculate the success rate of the CH model in a similar fashion as we did for the level-k
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model. We vary L0 and τ to find which combination generates the highest success rate. The

precision used for calculating the success rate of the CH-model is 3 normalized units as before.

Results are reported in Table 8.

Qualitatively speaking, the results of the CH success rate calculations are somewhat similar

to level-k results. First, the success rate is the highest in treatments with public information

and treatments with restricted domain have higher success rate than treatments with unrestricted

domain. Second, the Pu-H treatment with r = 0.95 is the only treatment where optimal L0 is close

to 50.

In general, the success rate of the CH model is higher than that of level-k model, but the value

of implied L1 is more volatile and is not as uniformly close to 50 as in the previous section.19

5.2 Näıve update

Restricted Unrestricted

r L0n50 L0n50NS L050NS L0n50 L0n50NS L050NS

Pr-A

0.15 0.18 0.18 0.24 0.17 0.17 0.21

0.30 0.14 0.14 0.23 0.16 0.16 0.24

0.50 0.24 0.24 0.36 0.16 0.16 0.24

0.65 0.15 0.15 0.38 0.18 0.18 0.42

0.80 0.15 0.15 0.38 0.11 0.11 0.30

0.95 0.04 0.04 0.15 0.13 0.13 0.28

Pr-H

0.15 0.11 0.30 0.31 0.07 0.19 0.21

0.30 0.08 0.24 0.24 0.08 0.12 0.13

0.50 0.18 0.25 0.14 0.07 0.20 0.22

0.65 * * * 0.24 0.26 0.29

0.80 0.50 0.59 0.53 0.21 0.29 0.22

0.95 0.45 0.38 0.36 0.34 0.34 0.20

Table 9: The success rate level-k models based on näıve update L0n50 and L0n50NS as well as the success rate of

level-k model based on the correct update, L050NS .

The second alternative model considered is the level-k model with näıve update. This model

modifies the standard level-k model that is applicable to treatments with private information.

Under näıve update, we assume that subjects take their own (private) signal as a proxy for private

signals that other subjects observe. The derivation of level-k reasoning with näıve update, therefore,

coincides with the derivation of level-k reasoning in treatments with the public information as was

done in Section 2.2.

Table 9 shows the success rate of näıve level-k models based on L0n50 and L0n50NS , where the

letter n signifies the näıve update. For comparison, it also shows the success rate under L050NS

19For the CH model, we also compute model performance using maximum likelihood, and model performance using

first round data only. The results are qualitatively similar to the standard level-k models we analyze earlier. For the

sake of brevity, we do not report them here. They are available upon request.
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with the Bayesian update. Notice that for Pr-A the success rates for L0n50 and L0n50NS are the

same. This is because in both cases under näıve update all levels of reasonings are simply equal to

50.

Comparing näıve update and Bayesian update, in Pr-A Bayesian update tends to perform better

than näıve update, and that holds for every r and regardless of whether the domain is restricted

or unrestricted. As for Pr-H, näıve update outperforms Bayesian update in restricted domain

treatments and in unrestricted domain treatments when values of r are high. Overall, using näıve

update improves the performance of level-k models in explaining Pr-H data but not in explaining

Pr-A data.

Pr-A Pr-H

Ln NE NS L1n L2n L3n NE

0.15 1.4 0.1 0.6 0.3 0.3 n/a 0.1

0.3 2.2 - 0.2 - - n/a -

0.5 3.2 - 1.0 0.1 0.1 n/a 0.6

0.65 4.5 0.5 - - 1.0 n/a 1.3

0.8 0.7 - 0.2 - 2.6 n/a 1.0

0.95 (L0n50NS) 2.4 - 0.2 2.0 2.4 n/a 1.0

0.95 (L0n50) 2.4 - n/a 2.0 1.9 0.9 0.6

Table 10: The sum of frequencies assigned to particular levels of reasoning. For a given five-round window (either

from periods 1 to 5 or 6 to 10) and a subject, the frequencies are calculated according to (13). Then probabilities are

summed across two five-round windows and subjects. For all r except for 0.95 levels are calculated based on L0n50NS

specification. For r = 0.95 calculations are made based on L0n50NS and L0n50 specifications. Because L0n50NS

specification is estimated using types NS,L1n,L2n and NE and L0n50 is estimated using types L1n,L2n,L3n and

NE we use label n/a for L3n in the L0n50NS specification and for NS in the L0n50 specification. Label ‘-’ means no

subject follows a given level of reasoning. Treatments with restricted and unrestricted domains are pooled together.

The number of subjects in Pr-A is 27.

Table 10 shows the frequency with which a particular level of reasoning is followed. Frequencies

are calculated based on (13) as described in Section 4.3.1. With the L0n50NS (or L0n50) specifica-

tion all levels of reasoning in Pr-A are simply 50 and we label them as Ln. Comparing the results

with Table 6, there is virtually no difference between Pr-A and Pr-A with näıve update. When

r = 0.95 in Pr-H, the frequency of naive levels of reasoning is greater than in Table 6. Nonetheless,

the numbers are still considerably smaller than those in Pu-H with high values of r.

6 Concluding Remarks

The goal of this paper is to investigate the strengths and limits of level-k models. To do that, we

use a modified MS framework to generalize the classical beauty contest setting. The MS framework

allows us to introduce private information and vary the strength of the coordination motive. We

find that level-k models, though successful in organizing data in public information treatments
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with high coordination motive, are much less successful in explaining subject behavior in other

treatments. We conjecture that the reason for these results is that when the coordination motive

weakens, the behavior of other players becomes less important, so the incentives for subjects to

predict it become lower.

The introduction of private information into the model weakens level-k behavior even further

because the task of predicting the beliefs and actions of opponents becomes considerably more

complex. For example, in the p-beauty contest with p = 1/2, L1 logic can be summarized in the

following simple phrase: people will just pick actions randomly between 0 and 100 so the average

action will be 50 and so I should play 25. In contrast, in the setting with private information

the same L1 logic becomes more complicated because subjects do not know the range from which

others are choosing and have to estimate it. Given the increased complexity of level-k reasoning,

participants may rely on a different rule of thumb in settings with private information. For example,

we find that some subjects may become completely non-strategic and pick their actions simply to

match the underlying state, while other subjects may take a näıve approach regarding their belief

about how other agents use their information. The identification of the exact rule of thumb subjects

used in the experiment is an important research question, and we leave it for future research.
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7 Appendix. Instructions for Treatment Pr-H

Welcome to a decision-making study!
Introduction

Thank you for participating in today’s study in economic decision-making. These instructions

describe the procedures of the study, so please read them carefully. If you have any questions while

reading these instructions or at any time during the study, please raise your hand. At this time I

ask that you refrain from talking to any of the other participants.

General Description

This study consists of 60 rounds, time permitting. In each round all participants (including

you) have the role of investors. All participants are divided into groups with 4 investors in each

group. The division is random and will be re-done in the beginning of each round. You and the

3 other investors in your group can invest some amount of experimental currency in a particular

project. Your task is to decide how much you would like to invest into this project. Returns on

your investment will be determined by the amount that you invest (ayou) and by the following two

factors:

• the project’s quality q;

• one-half of the average investments made by others:
1

2
· aaverage =

1

2
· a1 + a2 + a3

3
;

Example: Assume that the other three investors in your group invested 150, 200 and 250.

The average amount invested by the others is aaverage = 200. One-half of the average then is
1
2 · 200 = 100.

At the time when you make decisions you will NOT know either of these two factors. You will

not know one half of the average amount invested by others, 1
2 ·aaverage, because other participants

are making their decisions at the same time as you. You will not know q because you must make

your investment decision before q is revealed. Therefore, you will need to decide how much to invest

based on the information that will be made available to you.

Information. Signals.

In the beginning of each round you and all other investors in your group will receive two signals

that will provide you with information about the project’s quality. Both signals are randomly drawn

given the project’s quality q. Because signals are randomly drawn it is impossible to precisely predict

q given the signals. However, they will give you an idea of a range where q might be. The Table

below shows to you how signals should be interpreted.
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First, to make calculations easier for you one signal is always set equal to 0. Second, given

the two signals that you will see the best guess of q will be simply the average of the two signals.

Because of the randomness it is unlikely that q will ever be precisely equal to the average of the

two signals. The last two columns in the table give you an idea of how precise your guess is. You

see that in two cases out of three, i.e. with probability 2/3, the quality, q, will be at most 40 away

from the average and with probability 95% the quality will be at most 80 away from the average.

Signal 1 Signal 2 The best With prob. 2/3 With prob. 95%

guess of q q will be in q will be in

0 s (0+s)/2 (0+s)/2±40 (0 + s)/2± 80

Example 1: Assume that you received two signals 0 and 100. Then the best guess of the

project quality would be (0 + 100)/2 = 50. With probability of 2/3 you can conclude that the

project quality will be between 10(= 50 − 40) and 90(= 50 + 40) and with probability 95% the

project quality will be between -30 and 130. In the remaining 5% of the cases the quality will be

outside of the [−30, 130] interval.

Guessing one-half of the average

In the previous section we explained how to guess q given the information that you will receive

(the two signals). However, your profit will also depend on how well you can guess one-half of the

average amount invested by other investors in your group. The decisions of other investors are

decisions made by humans and therefore there is no precise theory that will tell you where one-half

of the average will be.

Therefore, your best option would be to try to predict how much the other investors are going

to invest given their information. Here is what you know and what you don’t know about the

information available to other investors in your group:

• They receive two signals, just like you do;

• You know the first signal that everyone receives. It is 0. All investors in your group will have

0 as the first signal.

• You do NOT the second signal that they receive. The second signal is a private signal. It

means that you cannot see private signals received by other investors. It also means that they

cannot see the private signal that you receive.

• You DO know that private signals of other investors are generated in the same way as your

private signal. Most importantly that they are also centered around the project’s quality q.

Use your knowledge about the information that other investors have to predict how much they

will invest. Based on that you can form your guess of one-half of the average investment.
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Your Profit and Cash Payments

Your profit will be calculated as follows. In the beginning of each round you will be given 2000

experimental points. From this amount we will deduct points when your action does not match

the project’s quality. We will also deduct points when your action does not match one-half of the

average investments made by others. Your final profit will be calculated by the following formula:

Payoff = 2000− (1− r)(ayou − q)2 − r

(
ayou − 1

2
aaverage

)2

.

The first term says that your investment will bring you at most 2000. The second term determines

your loss from mismatching the project’s quality q. The third term determines your loss from

mismatching one-half of the average investments made by others.

It is possible that the project quality and one-half of the average investment will be two different

numbers. In this case parameter r measures the relative importance of matching the investments

of others versus matching the quality. A lower r means matching the quality is more important.

Relative importance will be changed every 10 rounds.

The following two examples are used to illustrate how r impacts your payoff. While you will

submit decisions for these two examples they are for illustrative purposes and will not impact your

payment.

Example: Let r = 0.15 so that is it is more important to match the quality. Let quality, q, be

10, and aaverage be 120. At your computer terminal, please submit an action of 30 now. If your

action, ayou, is 30 then your loss from mismatching the quality is (1−0.15) · (30−10)2 = 340. Your

loss from mismatching one-half of the average investments is 0.15 · (30− 60)2 = 135. You see that

your mismatch of the average investment is larger than the mismatch of quality, but your losses

from mismatching the quality are higher. Your total profit is 2000− 340− 135 = 1525.

Example: Now assume that r = 0.8 so that is it is more important to match the investments

of others. As before assume that q = 10 and aaverage = 120. Thus everything is the same as in the

example above except for r. Again, please submit an action of 30 now. Your loss from mismatching

the quality is (1− 0.8) · (30− 10)2 = 80 and your loss from mismatching the average investment is

much higher and is equal to 0.8 · (30− 60)2 = 720. Your total profit is 2000− 80− 720 = 1200.

The profit that you made in each round will be converted into cash by the following procedure.

The study lasts for 60 rounds. In the end of the study we will openly and randomly choose a

sequence of 10 rounds: either from round 1 to round 10, or from round 11 to round 20 and so on.

Your cash earnings will be equal to the total profit that you earned during these 10 rounds times

0.001. This is in addition to the $5 that you receive as a show-up fee. For example, if round 21 to 30

is chosen and you earned 10000 during these rounds your cash payoff will be: 10000·0.001+5 = $15.

If in a particular round you make a negative profit it will count as 0.
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Summary

The study consists of 60 rounds, time permitting. In the beginning of each round, the computer

will generate the project quality q and randomly determine 3 other investors who will be in your

group. Computer will also generate two signals for each participant. The first signal — zero — will

be the same among all participants. The second signal will be private. It means that you cannot

see the signals received by other investors, and they cannot see the second signal received by you.

Your task is to submit an amount that you would like to invest. After you and all other

members of your group enter their decisions, the computer will calculate and display your profit in

that particular round. Your profit will be determined based on how well you guessed the project’s

quality and how well you guessed one-half of the average investment made by others. In the end

of the study we will take the profit you made in a randomly chosen sequence of 10 rounds and will

convert it into cash payment.
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