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Abstract

We study optimal contest design in situations where the designer can reward high perfor-

mance agents with positive prizes and punish low performance agents with negative prizes. We

link the optimal prize structure to the curvature of distribution of abilities in the population. In

particular, we identify conditions under which, even if punishment is costly, punishing the bot-

tom is more effective than rewarding the top in eliciting effort input. If punishment is costless,

we study the optimal number of punishments in the contest.
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1 Introduction

Contests are widely used to model political lobbying, sports competitions, job promotions, and

R&D races. In most cases, the contest’s organizer has some control over the structure of rewards

and punishments: teachers determine who passes and who fails the exam, a company sets rules

about promotions and layoffs, and sport governing bodies choose the number of teams advancing

to a higher league and the number of those relegated to a lower one.

In this paper we characterize the optimal prize structure in a contest where the designer can

use both rewards (carrots) and punishments (sticks) in order to motivate participants to exert

effort.1 Although both rewards and punishments are part of many existing incentive contracts, the

literature on contests focused on the incentive role of rewards because a contest that uses some

punishments can be replicated by one that uses only rewards and yields the same incentives. But,

this equivalence breaks down if the contest designer faces a budget constraint and if both rewards

and punishments are costly. The main focus of the present paper is to study contest design when

the designer is budget constrained and it is costly to punish or reward players.

Costly punishments appear in many situations. For example, in labor tournaments a firm

usually incurs costs when firing workers who perform poorly (e.g., worker compensation, production

disruption, loss of clients), and usually face search and replacement costs (e.g., think about a faculty

denying tenure to some candidates). In other instances, punishments are less costly to implement

(e.g., relegation in sport tournaments), and we also briefly deal with this set-up.

We assume here that the designer has a limited budget, which means that costly punishments

cannot be arbitrarily high. Subject to her budget constraint, the designer determines the number

and size of prizes/punishments in order to maximize the participants’ expected total effort. In par-

ticular, some prizes can be positive (rewards) or negative (punishments). Given the prize structure,

players choose their effort levels in order to maximize their expected payoff.

It is important to note that in a contest with n participants the marginal effect of each of n

prizes on the participants’ total effort is different, and can be either positive or negative. If the

marginal effect of the k−th prize is positive, its value given a budget constraint should be positive

(reward) or zero, and if the marginal effect is negative, its value should be negative (punishment)

or zero. Thus, given that the contest designer has a limited budget, he will prefer to distribute

the entire prize sum to the prize with the highest marginal effect on the participants’ total effort
1See Arvey and Ivancevich (1980) for a comprehensive discussion about the use of punishments in organizations.
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relative to its cost.

In this paper we show that the relative effectiveness of punishments compared to rewards cru-

cially depends on the curvature of the distribution of player abilities. Exploiting results about

normalized spacings among order statistics developed by Barlow and Prochan (1966), we first re-

visit one of the main results in Moldovanu and Sela (2001): if punishment is not feasible, the

optimal prize structure offers a single reward to the top performer. If rewards are not feasible, we

then show that the designer should only punish the player with the lowest performance if the dis-

tribution of abilities has an increasing hazard (or failure) rate. If this last condition is not satisfied,

more punishments may be optimal.

If the designer can punish as well as reward, the optimal prize structure will depend on the

relative marginal cost of punishments, and on the distribution of the players’ abilities. For example,

if the marginal cost of punishments is the same as the marginal cost of rewards, it is optimal to

punish the worst performing player if the distribution of abilities is convex. If that player is

punished, even high types will work hard to avoid performing worst because they know that there

is a relatively high probability that competitors also have high types. With a constant marginal cost

of punishment, rewards and punishments cannot co-exist in the optimal prize structure because the

only thing that matters is the comparison of the marginal benefit of top reward with the marginal

benefit of punishments. Punishment and rewards may co-exist in our setting if punishing the

bottom player is more cost effective than rewarding the top player and punishments have a fixed

value which cannot be optimized upon2.

Costless punishments are, of course, more attractive to the designer. We first look at the case

where players have no exit option, and we show that the optimal number of punishments with a fixed

value is decreasing in the convexity of the ability distribution. Intuitively, when the distribution

is more convex, there are relatively more high ability players. In order to motivate participants to

work hard, the designer should differentiate between players with moderate performances and low

performances, rather than punishing all of them.

In many situations players have outside options, and thus they may choose not to participate

in the contest. Thus, the designer needs to satisfy an individual rationality constraint (chosen here

to be interim: the expected payoff of a player, conditional on his ability, must be nonnegative). We

show that punishments continue to be effective even in this case since they allow the designer to
2Alternatively, if punishment costs are convex in the punishment size, then co-existence is possible even without

this last restriction.
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exclude low ability participants, akin to entry fees or reserve prices.

In this paper, we restrict our attention to the case where the contest designer aims to maximize

the expected total effort exerted by all contestants. This seems consistent with various contests in

labor markets. In other applications, the designer may have different objectives. For example, in

sporting competitions the designer may be interested only in the performance of the top player, or

in having a close competition (see an analysis of ‘suspense’ in Chan, Courty and Li, forthcoming).

In principle, the present framework can be used to analyze contest design problems with other

goals, but the results will obviously depend on the particular setting and goal.

The two papers most closely related to the present research are Moldovanu and Sela (2001) and

Moldovanu, Sela and Shi (2007). The first develops an all-pay auction framework with incomplete

information in order to study the optimal allocation of several non-negative prizes (rewards) in

contests where the designer has a fixed budget3. Moldovanu, Sela and Shi (2007) apply the all-pay

auction framework to the analysis of the incentive effects of social status in organization design4.

In their model, contestants who perform poorly have a low social status, and it is shown that the

designer can take advantage of the agents’ status concern in order to induce high effort. That

paper did not study, however, the contest design problem with a general structure of rewards and

punishments.

Our paper is also related to the large literature on tournaments, initiated by Lazear and Rosen

(1981). That literature has shown how prizes based on rank-orders of performance can be effectively

used to provide incentives in labor tournaments (see also Green and Stokey (1983), and Nalebuff

and Stiglitz (1983)). The labor tournament model has been extended to analyze political lobbying

and research contests. For example, Che and Gale (1998) use an all-pay auction with complete

information to model political campaigns, and show how a cap on individual political contribution

may actually increase aggregate expenditures. A recent paper by Fu, Lu and Lu (2009) analyzes

how a principal should allocate a fixed budget between subsidies and prizes in order to motivate

innovation. In Taylor (1995), Fullerton and McAfee (1999) and in Che and Gale (2003) research

contests are modeled as rank-ordered tournaments and it is shown that it is beneficial to exclude

some participants (see also Baye, Kovenock, and de Vries, 1993). In these papers exclusion is

costless for the designer.
3Other papers that study the effects of multiple prizes in contests are Glazer and Hassin (1988), Barut and

Kovenock (1998), Clark and Riis (1998) and Moldovanu and Sela (2006).
4This paper introduced the Barlow-Proschan (1966) order statistics results into the mechanism design literature.
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In a recent paper, Akerlof and Holden (2007) extend the analysis of Lazear and Rosen (1981) to

the case with multiple prizes. They link the optimal prize structure to the form of utility functions,

and show that the prize difference between two adjacent top players is often smaller than the prize

difference between two adjacent bottom players. Their model is quite different from ours: they

assume that the relationship between effort and performance is stochastic, and that agents are

homogeneous in abilities. Moreover, these authors do not model punishments as negative prizes.

Finally, we want to note that the experimental literature on bonuses versus fines has mostly

focused on principal-agent designs (e.g, Andreoni et al., 2003, and Fehr and Schmidt, 2007). It

would be very interesting to experimentally study the effects of prizes and punishments also in

contest situations where several agents compete with each other.

The rest of the paper is organized as follows. Section 2 describes the basic model framework and

characterizes the equilibrium. Costly punishment is studied in Section 3. The analysis of costless

punishment is contained in Section 4. There we divide the analysis into two parts, according to

whether the contestants can exit the contest or not. Section 5 concludes.

2 The Model

We consider a contest with n risk-neutral players where each player j makes an effort ej . For

simplicity, we postulate a deterministic relation between effort and output, and assume these to

be equal. Efforts are submitted simultaneously. An effort ej causes a cost of ej/aj , where aj is an

ability parameter.

The ability (or type) of contestant j is private information to j. Abilities are drawn indepen-

dently of each other from the interval [0, 1] according to a distribution function F that is common

knowledge. We assume that F has a continuous density f = dF > 0.

The designer can allocate n prizes to the n players: V1 ≤ V2 ≤ · · · ≤ Vn. Each Vi can be positive

(a reward), zero or negative (a punishment). The contestant with the highest effort wins the first

prize Vn, the contestant with the second highest effort wins the second prize Vn−1, and so on until

all the prizes are allocated. The payoff of contestant i who has ability ai and submits effort ei is

Vj − ei/ai if i wins prize j.

Each contestant i chooses her effort in order to maximize her expected payoff (given the other

competitors’ efforts and the values of the different prizes). The contest designer determines the

number and size of prizes in order to maximize total expected effort
∑n

i=1 ei.
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We use the following notations:

1. Ak,n denotes k-th order statistic out of n independent variables independently distributed

according to F . Note that An,n is the highest order statistic, and so on...

2. Fk,n denotes the distribution of Ak,n , and fk,n denotes its density;

3. E(k, n) denotes the expected value of Ak,n, where we set E(0, n) = 0. Note that E(n, n) is

the expectation of the maximum, or highest order statistic, and so on...

2.1 Equilibrium Derivation and Total Effort

We focus here on a symmetric equilibrium. Let β (a) denote the “bidding” strategy for the player

with type a. This function relates ability to equilibrium effort. Assuming a symmetric equilibrium

in strictly increasing strategies and applying the revelation principle, we can formulate the player’s

optimization problem as follows: player j with ability a chooses to behave as an agent with ability

s in order to solve the following problem:

max
s

n∑
i=1

Fni (s)Vi −
β (s)
a

,

where Fni (s) denotes the probability that a player’s type s ranks exactly i-th lowest among n

random variables distributed according to F . The first term represent the expected payment from

reporting s, while the second term is the effort cost. It is easy to verify that

Fni (s) =
(n− 1)!

(i− 1)!(n− i)!
[F (s)]i−1[1− F (s)]n−i, i = 1, 2, ..., n.

Define Fn,n−1(s) ≡ 0 and F0,n−1(s) ≡ 1 for all s ∈ [0, 1]. Then it is immediate that Fni (s) =

Fi−1,n−1(s)− Fi,n−1(s). Therefore, we can rewrite the agent’s maximization problem as

max
s

n∑
i=1

[Fi−1,n−1(s)− Fi,n−1(s)]Vi −
β (s)
a

.

In equilibrium, the above maximization problem must be solved by s = a, and the solution of

the resulting differential equation with boundary condition β(0) = 0 is given by

β(a) =
∫ a

0
x

{
−f1,n−1(x)V1 +

n−1∑
i=2

[fi−1,n−1(x)− fi,n−1(x)]Vi + fn−1,n−1(x)Vn

}
dx. (1)

The expected total effort is given by

Etotal = n

∫ 1

0
β(a)f(a)da.
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Note that

n

∫ 1

0

[∫ a

0
xfr,n−1(x)dx

]
f(a)da

= n

[
F (a)

∫ a

0
xfr,n−1(x)dx

]1

0

− n
∫ 1

0
F (a)afr,n−1(a)da

= n

∫ 1

0
a (1− F (a)) fr,n−1(a)da,

where the first equality follows from integration by part. We further observe that

n (1− F (a)) fr,n−1(a) = (n− r) fr,n(a).

Therefore, we have

n

∫ 1

0

[∫ a

0
xfr,n−1(x)dx

]
f(a)da = (n− r)E (r, n) .

By repeatedly applying above equation, the expected total effort becomes

Etotal = Etotal(V1, V2, ..., Vn) =
n∑
i=1

[(n− i+ 1)E (i− 1, n)− (n− i)E (i, n)]Vi. (2)

It is clear from equation (2) that the expected total effort (Etotal) is linear in prizes Vi (i = 1, .., n) .

Thus, the optimal prize structure will depend on the magnitude of the different marginal effects of

each prize.

3 The Optimal Prize Structure with Costly Punishments

We begin by studying the optimal prize structure when punishment is costly to the designer, and

when the designer faces a fixed budget. Throughout this section, players have no option of quitting

the contest. For example, in a soccer league, punishment may mean relegation to a lower league.

Teams have no other option. Another realistic interpretation is that contestants prefer to participate

in the contest even after taking into account the possibility of punishment. For example, in a labor

market setting, punishment may mean a salary cut such that the worker is still willing to stay with

the current employer instead of looking for another job or claiming unemployment benefits.

The designer has a budget P < ∞. The marginal cost of providing a unit of positive prize is

normalized to 1, while the marginal cost of providing a unit of negative prize is denoted by γ > 0.

Without loss of generality, suppose there are J (0 ≤ J ≤ n) negative prizes. That is, Vj < 0 for
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j ≤ J and Vj ≥ 0 for j > J. Then the designer’s problem can be written as

max
{V1,...,Vn}

Etotal(V1, V2, ..., Vn)

s.t. : γ

J∑
j=1

(−Vj) +
n∑

j=J+1

Vj ≤ P.

The designer chooses the prize structure to maximize total expected effort subject to the constraint

that the monetary cost of rewards and punishments cannot exceed the budget P . Since both the

objective function and the constraint are linear in prizes, the key objects are the marginal gains in

expected total effort from increasing punishments or rewards.

We start with a new, simple proof of one of the main results in Moldovanu and Sela (2001): a

winner-takes-all contest is optimal among all those that award only non-negative prizes (rewards)

if the effort cost function is linear in effort input. Notice that it follows from (2) that, for 1 ≤ i ≤ n,

∂Etotal
∂Vi

= (n− i+ 1)E (i− 1, n)− (n− i)E (i, n) ,

which can be rewritten as

∂Etotal
∂Vi

= E(i, n)− (n− i+ 1) [E (i, n)− E (i− 1, n)]. (3)

Proposition 1 If only rewards can be allocated, then, for every distribution of abilities F, the

optimal prize structure is Vn = P and Vi = 0 for all i < n.

Proof. Note that from (3) we have

∂Etotal
∂Vn

= E (n− 1, n) ≥ 0,

and, for 1 ≤ i < n,

∂Etotal
∂Vn

− ∂Etotal
∂Vi

= E (n− 1, n)− E(i, n) + (n− i+ 1) [E (i, n)− E (i− 1, n)] ≥ 0. (4)

Thus, the designer optimally rewards only the player with the highest effort.

Next, we allow the designer to punish players with poor performance. It turns out that the

optimal prize structure is then related to the curvature of the ability distribution F . A key concept

for our analysis is the failure rate (or hazard rate) defined as follows:

Definition 1 The failure rate (or hazard rate) of a distribution F is given by:

λ (x) =
f (x)

1− F (x)

A distribution function F has an increasing failure rate (IFR) if its failure rate, λ (x) , is increasing.
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The following results, due to Barlow and Proschan (1966), link properties of order statistics to

properties of the distribution F . We shall use these results repeatedly throughout the paper:

Lemma 1 (a). Let F and G be two distributions such that F (0) = G (0) = 0, and let G−1F be

convex on the support of F . Let EF (i, n) and EG (i, n) denote the expected value of the i-th

order statistic out of n independent variables independently distributed according to F and G,

respectively. Then EF (i, n) /EG (i, n) is decreasing in i for a fixed n.

(b). Assume that a distribution F with F (0) = 0 is convex (concave). Then E(i, n)/i is decreasing

(increasing) in i for a fixed n.

(c). Assume that a distribution F with F (0) = 0 satisfies IFR. Then the random variable (n −

i+ 1)(Ai,n −Ai−1,n) is stochastically decreasing in i for a fixed n.

By applying Lemma 1-(c), we can prove a counterpart to Proposition 1 for the case where only

punishments are allowed:

Proposition 2 If only punishments can be allocated, and if the distribution of abilities F satisfies

IFR, then the optimal prize structure is V1 = −P
γ and Vi = 0 for all i > 1.

Proof. If the distribution F satisfies IFR, then, by Lemma 1-(c), (n− i+ 1) (Ai,n −Ai−1,n) is

stochastically decreasing in i, and thus − (n− i+ 1) [E (i, n)−E (i− 1, n)] is increasing in i. Since

E(i, n) always increases in i, it follows from (3) that ∂Etotal
∂Vi

is increasing in i when F satisfies IFR.

If the designer cannot use rewards, only negative terms of the form ∂Etotal
∂Vi

are relevant for the

designer’s optimal decision. Note that according to (3), for any distribution of abilities,

∂Etotal
∂V1

= −(n− 1)E(1, n) < 0.

Since ∂Etotal
∂Vi

is increasing in i, ∂Etotal
∂V1

must have the highest absolute value among all negative

terms. Consequently, it is most effective to only punish the player with the lowest effort.

It is important to note that, in contrast to Proposition 1 that holds for any distribution, Propo-

sition 2 holds only under the IFR requirement. In this case enough players are “threatened” by

the highest punishment, which makes it quite effective. The following example illustrates that it

may not be optimal to punish only the player with the lowest effort if the distribution of abilities

does not satisfy IFR:
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Example 1 Let F (x) = w
√
x and γ = 1. Then E (i, n) = n!(w+i−1)!

(i−1)!(n+w)! . It is easy to verify that F

does not satisfy IFR. Note that it is not optimal to punish only the player with the lowest effort if

∂Etotal
∂V2

− ∂Etotal
∂V1

= 2 (n− 1)E (1, n)− (n− 2)E (2, n)

=
n!w!

(n+ w)!
(2(n− 1)− (w + 1)(n− 2)) < 0.

The above holds, for example, if n = 3 and w > 3.

We now proceed to investigate the optimal prize structure when both rewards and punishments

are allowed. By inequality 4, it is never optimal to allocate rewards to players other than the top

performer. If the distribution F satisfies IFR, then ∂Etotal
∂V1

has the highest absolute value among

all negative terms (see proof of Proposition 2), and therefore the optimal prize structure hinges on

the comparison between the effectiveness of the top reward and the bottom punishment. Thus ,

we need to compare the absolute value of ∂Etotal
∂V1

= −(n− 1)E(1, n) with γ ∂Etotal
∂Vn

= γ(En− 1, n)

Proposition 3 Suppose that the distribution of abilities F satisfies IFR.

1. If (n− 1)E (1, n) > γE (n− 1, n) , then the optimal prize structure is V1 = −P
γ and Vi = 0

for all i > 1.

2. If (n− 1)E (1, n) ≤ γE (n− 1, n) , then the optimal prize structure is Vn = P and Vi = 0 for

all i < n.

As a special case, let us assume for the next result that the marginal cost of rewards and

punishments is the same, that is γ = 1. We obtain then:

Proposition 4 Assume that γ = 1.

1. If the distribution of abilities F is convex, the optimal prize structure is V1 = −P and Vi = 0

for all i > 1.

2. If the distribution of abilities F is concave and satisfies IFR, then the optimal prize structure

is Vn = P and Vi = 0 for all i < n.

3. If F is concave,5 then the optimal prize structure may include up to n
2 punishments.

5Note that a concave function may or may not satisfy IFR.
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Proof. 1) By Lemma 1-(b), if F is convex then E(i, n)/i is decreasing in i. Thus, we have

(n− 1)E (1, n) > E (n− 1, n) .

The result follows from Proposition 3, since F convex implies that F satisfies IFR.

2) If F is concave then E(i, n)/i is increasing in i (Lemma 1-(b)). In particular, (n− 1)E (1, n) <

E (n− 1, n) , and the result follows from Proposition 3.

3) Lemma 1-(b) yields that
E(i− 1, n)
E(i, n)

<
i− 1
i

, ∀i

Note that
i− 1
i

<
n− i

n− i+ 1
if and only if i <

n+ 1
2

.

This yields

(n− i+ 1)E(i− 1, n) < (n− i)E(i, n) for i <
n+ 1

2
.

Therefore,

∂Etotal
∂Vi

= (n− i+ 1)E (i− 1, n)− (n− i)E (i, n) < 0, for i <
n+ 1

2
.

Note that the uniform distribution is both convex and concave, and that it satisfies IFR. As-

suming that the marginal costs of rewards and punishments are the same, the above proposition

implies that, with a uniform distribution of abilities, it is optimal to either punish the worst per-

former only or to reward the best performer only. The effectiveness of punishing the player with

the lowest effort equals then the effectiveness of rewarding the player with the highest effort.

In certain applications, all punishments have a fixed value for the agents and a fixed cost for the

designer. For example, think of a firm who can choose the number of workers to fire in a recession:

it is reasonable to assume that the cost of each layoff is fixed for the firm (e.g., some compensation

that needs to be paid to each fired worker), and for the workers themselves (e.g, the difference

between a fixed wage and a lower unemployment aid). In this case we show that punishments and

rewards co-exist in the optimal solution.

We assume that there are q punishments, each yielding utility −U ≤ 0 to agents and causing a

cost γU to the designer. Since we have shown that positive rewards, if any, should be assigned to

the top performer only, we will assume here that only the player with the highest effort is rewarded

by a prize Vn ≥ 0. We also assume that the distribution of F satisfies IFR.

11



Since the designer is not able to shift the entire budget to one, big punishment for the agent with

the lowest performance, and since the value/cost of punishments is fixed, the interesting question

here is how many punishments are optimal (if any). The designer’s optimization problem becomes

then

max
{q,Vn}

q∑
i=1

[(n− i+ 1)E (i− 1, n)− (n− i)E (i, n)] (−U) + E (n− 1, n)Vn

s.t. qγU + Vn ≤ P.

Notice that, by (3), ∂Etotal
∂Vi

is increasing in i when F satisfies IFR. If∣∣∣∣∂Etotal∂V1

∣∣∣∣ ≤ γ ∣∣∣∣∂Etotal∂Vn

∣∣∣∣ , (5)

then it is optimal to have no punishments: q = 0, and Vn = P .

Otherwise, let i∗ be the highest index such that

∂Etotal
∂Vi∗

≤ 0 and
∣∣∣∣∂Etotal∂Vi∗

∣∣∣∣ > γ

∣∣∣∣∂Etotal∂Vn

∣∣∣∣ . (6)

Since ∂Etotal
∂Vi

is increasing in i , and since
∣∣∣∂Etotal

∂V1

∣∣∣ > γ
∣∣∣∂Etotal
∂Vn

∣∣∣, i∗ is well defined. Note that for

all 1 ≤ i ≤ i∗ it must hold that ∂Etotal
∂Vi

≤ 0. Thus, it is optimal to set i∗ punishments: q = i∗ and

Vn = P − i∗γU .

Therefore, we have proved the following result:

Proposition 5 Assume that F satisfies IFR, and suppose the designer has to incur a positive cost

γU for each punishment which yields a fixed negative payoff −U to agents.

1. If condition (5) holds, then no punishment (q = 0 and Vn = P ) is optimal.

2. If condition (5) does not hold, then it is optimal to set q = i∗ punishments, with Vn = P−i∗γU

and i∗ defined in (6).

4 The Optimal Prize Structure with Costless Punishments

We assume now that punishments are costless, that is, γ = 0. It is obvious that as long as the

designer need not worry about the participation constraint, punishments will necessarily be part

of the optimal incentive scheme. Moreover, since punishments are not costly, the available budget

is best allocated to rewarding the top performer (only).
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4.1 Contests without exit

We assume here that no player has the option to stay out of the contest. Punishing the bottom

player always increases the total effort. Assuming a fixed punishment −U , we look then for the

optimal number of identical, costless punishments6. Denote by q ≥ 1 the number of punishments.

By (2), total effort is given by

Etotal = VnE(n− 1, n)− U(n− q)E(q, n). (7)

The following proposition summarizes a general relation between the optimal number of punish-

ments and the distribution of the players’ abilities.

Proposition 6 Assume that γ = 0, and consider two distributions of abilities G,F leading to

optimal numbers of punishments qG and qF , respectively. If G−1F is convex then qG ≥ qF .

Proof. Since qF is optimal for F, we have for all q < qF ,

(n− qF )EF (qF , n) ≥ (n− q)EF (q, n)⇔ EF (qF , n)
EF (q, n)

≥ (n− q)
(n− qF )

.

In order to show that qG ≥ qF , it is sufficient to show that, under the distribution G, total

effort induced by qF punishments is larger than total effort induced by q < qF punishments. That

is, we need to show that, for q < qF ,

(n− qF )EG(qF , n) ≥ (n− q)EG(q, n)⇔ EG(qF , n)
EG(q, n)

≥ (n− q)
(n− qF )

Thus, it is sufficient to show that for q < qF ,

EF (q, n)
EG(q, n)

≥ EF (qF , n)
EG(qF , n)

,

The last inequality follows from Lemma 1-(a).

A simple corollary is:

Corollary 1 Assume that γ = 0. If the distribution of abilities F is convex (concave), then the

optimal number of punishments is smaller (larger) than n/2.

Proof. Let F be the uniform distribution. Total effort is given by

Etotal = Vn
n− 1
n+ 1

− U(n− q) q

n+ 1
.

6If punishment is not costly, agents cannot exit, and punishment is arbitrary, the problem is of course trivial.
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The optimal number of punishments q must satisfy

dEtotal
dq

=
−U
n+ 1

(n− 2q) = 0.

Thus q = n/2. The result follows then by Proposition 6 .

When only a few players are punished, high ability contestants know that they can avoid

punishment with sufficiently high probability by exerting effort. Conversely, if the designer punishes

most players, high ability players get discouraged: they may get punished even if they work hard.

The above result follows intuitively from this observations since a convex (concave) distribution

puts more (less) weight on high abilities than a uniform one.

4.2 Contests with exit

We consider now the case where only types with positive expected payoffs participate in the contest,

while the other players stay out. We assume that there is one reward Vn ≥ 0, and q ≥ 1 punishments,

each equal to V1 ≥ −Vn. If only one player participates, we assume that he receives a reduced prize

worth Vn + V1.

Let a∗ denote the type of a player who is indifferent between attending the contest and staying

out. The maximization problem of a player with type a is

max
s
VnF

n
n (s) + V1

q∑
i=1

Gni (s)− β(s)
a

where

Gni (s) =
(
n− 1
i− 1

)
(F (s)− F (a∗))i−1 [1− F (s) + F (a∗)]n−i ,

is the probability that a player with type s ranks i-th lowest among the players who enter the

contest. Let

G(s) = F (s)− F (a∗).

Then, we can rewrite Gni (s) as

Gni (s) =
(
n− 1
i− 1

)
G(s)i−1(1−G(s))n−i.

If a player with type a∗ enters the contest then, by the definition of a∗, she gets for sure the negative

prize V1 and wins the positive prize Vn only if all other players have lower types. That is, the cutoff

a∗ is given by

VnF (a∗)n−1 = −V1. (8)
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The necessary first-order condition for an agent’s maximization problem is

Vnfn−1,n−1 (a)− V1 (n− 1)
(
n− 2
q − 1

)
G(a)q−1(1−G(a))n−q−1f (a)− β′(a)

a
= 0

To simplify notation, define

φq,n−1 (s) = (n− 1)
(
n− 2
q − 1

)
G (s)q−1 [1−G (s)]n−q−1 .

Then, the equilibrium bidding function for a bidder with type a ≥ a∗ is

β (a) =
∫ a

a∗

[
Vnsfn−1,n−1 (s)− V1sφq,n−1 (s) f (s)

]
ds (9)

where we use the fact that β(a∗) = 0. Thus, total effort is given by

Etotal = n

∫ 1

a∗
β(a)f(a)da.

Interestingly, even though the players are allowed to quit the contest, punishments have a role

to play in maximizing the expected total effort from the participating players, analogously to the

beneficial role of an entry fee or minimal effort requirement.

Proposition 7 Assume that γ = 0, and assume that agents have the option not to participate in

the contest, which yields zero utility. Then, it is always optimal to punish, i.e., V1 < 0.

Proof. Since a∗ is given by VnF (a∗) = −V1 we obtain

Vnf (a∗)
∂a∗

∂V1
= −1⇔ f (a∗)

∂a∗

∂V1
= − 1

Vn

Let us normalize Vn = 1. Total effort becomes then

Etotal = n

∫ 1

a∗

{∫ a

a∗

[
sfn−1,n−1 (s)− V1sφq,n−1 (s) f (s)

]
ds

}
f(a)da

Taking the derivative with respect to V1 yields

∂Etotal
∂V1

= −n

{∫ a∗

a∗

[
sfn−1,n−1 (s)− V1sφq,n−1 (s) f (s)

]
ds

}
f(a∗)

∂a∗

∂V1

+n
∫ 1

a∗

∂
{∫ a

a∗

[
sfn−1,n−1 (s)− V1sφq,n−1 (s) f (s)

]
ds
}

∂V1
f(a)da

Note that

∂
{∫ a

a∗

[
sfn−1,n−1 (s)− V1sφq,n−1 (s) f (s)

]
ds
}

∂V1

= −
[
a∗ (n− 1)F (a∗)n−2 f (a∗)− V1a

∗φq,n−1 (a∗) f (a∗)
] ∂a∗
∂V1
−
∫ a

a∗
sφq,n−1 (s) f (s) ds

= a∗ (n− 1)F (a∗)n−2 − V1a
∗φq,n−1 (a∗)−

∫ a

a∗
sφq,n−1 (s) f (s) ds
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The last equality uses f (a∗) ∂a
∗

∂V1
= −1.

Therefore,

∂Etotal
∂V1

= n

∫ 1

a∗

{
a∗ (n− 1)F (a∗)n−2 − V1a

∗φq,n−1 (a∗)−
∫ a

a∗
sφq,n−1 (s) f (s) ds

}
f(a)da

By condition (8), when V1 = 0 we must have a∗ = 0. Thus

∂Etotal
∂V1

|V1=0 = −n
∫ 1

0

{∫ a

0
sφq,n−1 (s) f (s) ds

}
f(a)da < 0.

Therefore, punishments are always efficient even in the contest with exit.

Example 2 Consider a contest with two players who have the option not to participate. Ob-

viously, at most one player can be then punished. Noting that φ1,1 (s) = 1, we get β(a) =∫ a
a∗ (Vn − V1) sf(s)ds, where a∗ is given by VnF (a∗) = −V1. Total effort is given by

Etotal = 2
∫ 1

a∗

[∫ a

a∗
(Vn − V1)sf(s)ds

]
f (a) da

= 2
∫ 1

F−1(
−V1
Vn

)

[∫ c

F−1(
−V1
Vn

)
(Vn − V1)sf(s)ds

]
f (a) da.

Suppose now that F is uniform on [0, 1] , and let Vn = 1. Then

Etotal = 2
∫ 1

−V1

(
∫ a

−V1

(1− V1)sds)da =
1
3

(V1 + 1)2
(
2V 2

1 − 3V1 + 1
)
,

which is maximized for V1 = −0.16.

Finally, we want to note that, in some situations, other mechanisms for exclusion may perform

better than punishments. For example, punishments that are not pecuniary (i.e., negative prizes

that are not paid to the designer) are dominated by a contest with an entry fee that the designer

can collect. This can be easily seen by setting an entry fee that excludes the same set of types as

a given negative prize7.

5 Concluding Remarks

We have investigated the combined effect of prizes and punishments in contests, and we derived the

optimal prize structures in several environments with both costly and costless punishment. Our

main results link the prize structure to features of the distribution of ability in the population, and
7Both instruments are used in practice: European sports leagues use relegation for punishing teams that do not

perform, while US professional leagues demand entry (franchise) fees.
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to the marginal costs of rewards versus punishments. In particular, we give conditions under which

rewarding the top performers is more (less) effective than punishing the worst performers. Finally,

we have shown that punishments may have a beneficial effect on effort even if contestants have the

option not to participate. Our present analysis completes the picture against the background of a

large literature that has only considered positive prizes (rewards).
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