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Abstract

We study stationary equilibria in a sequential auction setting. A seller runs
a sequence of standard first-price or second-price auctions to sell an indivisible
object to potential buyers. The seller can commit to the rule of the auction
and the reserve price of the current period but not to reserve prices of future
periods. We prove the existence of stationary equilibria and establish a uni-
form Coase conjecture—as the period length goes to zero, the seller’s profit
from running sequential auctions converges to the profit of running an efficient
auction uniformly at any point in time and in any stationary equilibrium.

1 Introduction

Consider the standard first-price or second-price auction setting with a seller, a single
indivisible object, and multiple buyers whose values are independently drawn from
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a common distribution. It is well known that, under a regularity condition of the
distribution function, the standard auction with a properly designed reserve price
maximizes the seller’s revenue among all mechanisms (Myerson (1981) and Riley and
Samuelson (1981)). One of the key underlying assumptions for this result is the seller’s
ability to commit to her mechanism, specifically, the ability to withhold the object if
no bidders place bids exceeding the reserve price. Of course, this assumption is not
always realistic, and it is common practice to hold new auctions for unsold objects.
A theoretical investigation into the dynamic aspect of this problem necessitates the
use of dynamic games. The literature has advanced in at least two natural directions:
reducing the set of mechanisms under consideration, as exemplified by Skreta (2006,
2016) and Doval and Skreta (2022), or characterizing attainable equilibrium revenues
within a restricted class of mechanisms, as in Liu, Mierendorff, Shi, and Zhong (2019).
It is fair to say that characterizing the seller’s optimal revenues and selling mechanisms
with limited commitment—without exogenously restricting equilibria, mechanisms,
or the horizon of interactions—remains an open question.

It is worth noting that a separate body of economic literature developed much
earlier, motivated by a similar question: how does a monopolist operate without
commitments? Coase (1972) argues that a price-setting monopolist would lose her
monopoly power and prices would drop quickly to her marginal cost if she can fre-
quently adjust prices. This idea, known as the “Coase conjecture,” has been confirmed
by Fudenberg, Levine, and Tirole (1985) and Gul, Sonnenschein, and Wilson (1986):
it holds in every stationary equilibrium in which the buyer’s equilibrium strategy can
only condition on the current price offer. In the “gap” case, where the buyer’s val-
ues are strictly higher than the seller’s marginal cost (with additional distributional
assumptions), all perfect Bayesian equilibria are stationary. In the “no-gap” case,
Ausubel and Deneckere (1989) show that, under some mild distributional assump-
tions, the seller’s full-commitment revenue is achievable via non-Coasian equilibria
if she can change prices frequently. This literature offers deep insight into the role
of commitment in the classic price theory setting, where the trading mechanism is
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restricted to posting prices.
Understanding the workings of the Coasian force in an auction setting with a finite

number of buyers is clearly relevant for understanding optimal selling mechanisms
when the seller lacks commitment power. To fix ideas, consider the following problem.
In each time period until the object is sold, the seller posts a reserve price and holds
a standard auction (e.g., second-price auction or first-price auction). Each buyer can
either wait for a future auction or submit a bid no smaller than the reserve price.
Waiting is costly—both the buyers and the seller discount at the same rate. Within a
period, the seller is committed to the rules of the auction and the announced reserve
price. The seller cannot, however, commit to future reserve prices. The seller’s
commitment power varies with the period length (or effectively with the discount
factor). As the period length shrinks, the seller’s commitment power diminishes.
This limit is of great theoretical interest. In the gap case, McAfee and Vincent
(1997) show that the seller cannot obtain a revenue strictly higher than that from
an efficient auction in the limit, thus extending the analysis of Fudenberg et al.
(1985). Confirming the Coase conjecture in no-gap auctions is the task of this paper.1

We establish the following strong form of Coase conjecture: the seller’s profit from
running sequential auctions with reserve prices converges to the revenue of running
an efficient auction as the period length goes to zero, uniformly for all symmetric
stationary equilibria and all posteriors, thus generalizing the uniform Coase conjecture
of Ausubel and Deneckere (1989).

Liu et al. (2019) study non-stationary equilibria and provide precise conditions
under which they improve upon efficient auctions in terms of the seller’s revenue
in the discounting limit. Their existence proof and construction of non-stationary
equilibria using trigger strategies rely on the uniform Coase conjecture established in
this paper, as the equilibrium incentive constraints must hold across all histories, not

1Milgrom (1987) analyzes a continuous-time version of the problem with explicit restrictions on
the strategy space. This exercise is quite different, and the formal discrete-time foundation is still
needed, as is well understood from the bargaining problem. McAfee and Vincent (1997) provide an
example of a Coasian equilibrium for the no-gap case under the uniform distribution of types, which
will be a building block for our general existence proof.
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just the null history. The exact payoff bound in Liu et al. (2019) is derived indirectly
through an auxiliary mechanism design problem. Notably, they demonstrate that
the efficient auction can yield the highest possible revenue in the limit with multiple
bidders. However, this alone does not imply the existence of stationary equilibria,
the non-existence of non-stationary equilibria in any discrete-time game, nor the
uniform convergence established in this paper. Together with the existence result we
have established here, it implies that the Coase conjecture can hold for non-Markov
equilibria in auctions.

The remainder of paper is organized as follows. Section 2 defines the model and
introduces basic assumptions. Section 3 states the result. Section 4 uses an example
to confirm the result. Section 5 contains the proof. Section 6 concludes with open
questions.

2 Model

A seller (she) wants to sell an indivisible object to n potential buyers (he). Buyer i

privately observes his own valuation for the object vi ∈ [0, 1]. We use (vi, v−i) ∈ [0, 1]n

to denote the vector of the n buyers’ valuations, and v ∈ [0, 1] to denote a generic
buyer’s valuation. Each vi is drawn independently from a common distribution with
full support, c.d.f. F (·), and a continuously differentiable density f (·) such that
f(v) > 0 for all v ∈ (0, 1). We write F (v|v ≤ x) = F (v)/F (x) as the truncated
distribution of F on [0, x] for x > 0. The seller’s reservation value for the object is
constant over time and we normalize it to zero.

Time is discrete and the period length is denoted by ∆. In each period t =
0, ∆, 2∆, . . . , the seller runs a second-price auction with a reserve price. The case of
first-price auction or a mixture of first-price and second-price auctions over time can
be treated in the same way with a period-by-period payoff-equivalence argument. To
simplify notation, we often do not explicitly specify the dependence of the game on
∆. The timing within period t is as follows. First, the seller publicly announces a
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reserve price pt for the auction run in period t, and invites all buyers to submit a valid
bid, which is restricted to the interval [pt, 1]. After observing pt, all buyers decide
simultaneously either to bid or to wait. If at least one valid bid is submitted, the
winner and the payment are determined according to the rules of the second-price
auction and the game ends. If no valid bid is submitted, the game proceeds to the next
period. Both the seller and the buyers are risk-neutral and have a common discount
rate r > 0. This implies a discount factor per period equal to δ = e−r∆ < 1. If buyer
i wins in period t and has to make a payment πi, then his payoff is e−rt (vi − πi), and
the seller’s payoff is e−rtπi.

We assume that the seller has limited commitment power. She can commit to the
reserve price that she announces for the current period: if a valid bid is placed, then
the object is sold according to the rules of the announced auction and she cannot
renege. She cannot commit, however, to future reserve prices: if the object was not
sold in a period, the seller can always run another auction with a new reserve price in
the next period. She cannot promise to stop auctioning an unsold object, or commit
to a predetermined sequence of reserve prices.

We denote by ht = (p0, p∆, . . . , pt−∆) the public history at the beginning of t > 0 if
no bidder has placed a valid bid up to t, and write h0 = ∅ for the history at which the
seller chooses the first reserve price.2 Let Ht be the set of such histories. A (behavior)
strategy for the seller specifies a Borel-measurable function pt : Ht → P [0, 1] for each
t = 0, ∆, 2∆, . . ., where P [0, 1] is the space of Borel probability measures endowed
with the weak∗ topology.3 A (behavior) strategy for buyer i specifies a function
bi

t : Ht × [0, 1] × [0, 1] → P [0, 1] for each t = 0, ∆, 2∆, . . ., where we assume that
bi

t(ht, pt, vi) is Borel-measurable in vi, for all ht ∈ Ht, and all pt ∈ [0, 1], and that
supp bi

t(ht, pt, vi) ⊂ {0} ∪ [pt, 1], where “0” denotes no bid or an invalid bid.
We consider perfect Bayesian equilibria (PBE), and we will focus on symmet-

ric weak Markov (or stationary) equilibria. Weak-Markov equilibria are defined as
2We do not have to consider other histories because the game ends if someone places a valid bid.
3We slightly abuse notation by using pt both for the seller’s strategy and the announced reserve

price at a given history.
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follows:

Definition 1. An equilibrium (p, b) ∈ E(∆) is a weak-Markov (or stationary) equi-
librium if the buyers’ strategies depend only on the reserve price announced for the
current period.

3 Existence and Uniform Coase Conjecture

Following Ausubel and Deneckere (1989), we impose the following assumption. It
is not needed for existence but is used to extend Coasian conjecture to our auction
setting.

Assumption 1. There exist constants 0 < M ≤ 1 ≤ L < ∞ and α > 0 such that
Mvα ≤ F (v) ≤ Lvα for all v ∈ [0, 1].

In any equilibrium of the discrete-time game, all buyers play pure strategies that
are characterized by history-dependent cutoffs. This is captured by the following
Lemma which establishes the “skimming property,” an auction analog of a result by
Fudenberg et al. (1985). Its proof is standard, and thus omitted.

Lemma 1. [Skimming Property] Let (p, b) ∈ E(∆). Then, for each t = 0, ∆, 2∆, . . .,
there exists a function βt : Ht × [0, 1] → [0, 1] such that every bidder with valuation
above βt(ht, pt) places a valid bid and every bidder with valuation below βt(ht, pt) waits
if the seller announces reserve price pt at history ht.

We now state the result:

Proposition 1. 1. (Existence) A stationary equilibrium exists for every r > 0 and
∆ > 0.

2. (Uniform Coase Conjecture) Suppose Assumption 1 holds. For every ε > 0,
there exists ∆ε > 0 such that for all ∆ < ∆ε, all x ∈ [0, 1], and every sym-
metric stationary equilibrium (p, b) of the game with period length ∆ and a
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truncated distribution F (v|v ≤ x) on [0, x] , the seller’s profit associated with
this equilibrium, Π∆ (p, b|x), is bounded above by (1 + ε) ΠE (x), where ΠE (x)
is the seller’s profit from the efficient auction under this truncated distribution.

The second part of the proposition implies that the seller’s profit in every symmet-
ric stationary equilibrium converges to the profit of the efficient auction as ∆ → 0.4

Note that the payoff bound is independent of the equilibrium being considered. Given
any equilibrium (p, b) on F , its restriction to any continuation game with a truncated
distribution F (v|v ≤ x) is also an equilibrium for the truncated distribution, where
the result applies. Therefore, the payoff bound applies to continuation payoffs across
all histories of the same original equilibrium (p, b) on F . As a result, the uniform
Coase conjecture is confirmed: Π∆(p, b|x)/ΠE(x) → 1 uniformly for all x ∈ (0, 1].

4 An Example

In this section, we use an example to confirm the Coase conjecture and the uniform
version of the Coase conjecture. Let us consider the stationary, linear equilibrium
constructed by McAfee and Vincent (1997) for a sequential second-price auction with
a uniform distribution of types:

• If buyers’ types are in [0, vt], the seller’s reserve price is such that all buyers
with a valuation greater than γvt will bid, so vt+∆ = γvt.

• A buyer with a valuation v will bid if the reserve price is βv or lower. Therefore,
the equilibrium reserve price with support [0, vt] is pt = βγvt.

Using an argument similar to (1) and (2) in Section 5, it can be verified that γ

4Notice that in contrast to the Coase conjecture for one buyer, Proposition 1.(ii) does not show
that the initial reserve price p0 converges to zero. This is in fact not the case in the auction setting,
as was noted by McAfee and Vincent (1997). However, reserve prices for t > 0 converge to zero
which is sufficient for the convergence of equilibrium profits to the profit of an efficient auction—the
counterpart of the Coase conjecture in the auction setting.
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and β satisfy the two equalities:

β = 1 − δ

n
· 1 − γn

1 − δγn
= 1 + 1

n

[
(1 − δ) · γ

1 − γ
− 1

]
.

Hence, 2γ − 1 = δγn+1. The support of buyers’ types shrinks by a factor of γ, and
as ∆ → 0 or δ = e−r∆ → 1, γ → γ0 < 1. Therefore, the screening of types, and
consequently the decline in reserve prices, occurs arbitrarily quickly. This confirms
the Coase conjecture.

We still need to verify the uniform version of the Coase conjecture. To this end,
consider the support [0, x] of buyer types. The seller’s unconditional equilibrium
revenue is

R (x) = max
y∈[0,x]

ˆ x

y

zd
[
nxzn−1 − (n − 1)zn

]
+ βyn (x − y) yn−1 + e−r∆R (y),

which is a linear equilibrium version of the general problem (1) in Section 5. The
seller chooses a reserve price βy, so the cutoff buyer type is y. The first term of the
objective function represents the seller’s revenue when the second highest bidder’s
valuation exceeds the cutoff y, where nxzn−1 − (n − 1)zn is the distribution function
of the second highest value when all values are below x. The second term captures the
seller’s revenue from selling at the reserve price βy when exactly one buyer’s valuation
is above y. The third term represents the seller’s revenue from the continuation game.

In the linear equilibrium, the solution to the seller’s optimization problem is γx,
and by the envelope theorem, we have

R (x) = nβγn + (n − 1) (1 − γn)
n + 1 xn+1.

The seller’s equilibrium revenue conditional on reaching the support [0, x] is

Π∆ (x) = R(x)
xn

= nβγn + (n − 1) (1 − γn)
n + 1 x.
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The seller’s revenue from running an efficient auction for the same range of buyers’
types is

ΠE (x) = n − 1
n + 1x.

Hence,

Π∆ (x)
ΠE (x) = n

n − 1βγn + (1 − γn) = n − (n + 1) γ + (2γ − 1) er∆

(n − 1) (1 − γ) .

It is readily verified that Π∆(x)
ΠE(x) > 1 and is independent of x. Notice further that

lim∆→0
Π∆(x)
ΠE(x) = 1. These two observations confirm the uniform Coase conjecture.

Figure 1 numerically demonstrates how the revenue ratio changes with respect to
the number of buyers and the discount factor.

Figure 1: Π∆/ΠE is decreasing in the number of buyers n and the discount factor e−r∆.
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5 Proof

We adopt Ausubel and Deneckere (1989)’s notation and assume that the types of
the bidders are i.i.d. draws from U [0, 1]. We denote the type of buyer i by qi. The
valuation for each type is given by the function v(q) := F −1(q). Assumption 1 implies
that the same condition also holds for v(q) and corresponds to the assumption made
in Definition 5.1 in Ausubel and Deneckere (1989). In the following we will use that
F is continuous and strictly increasing (as in Ausubel and Deneckere (1989) we could
relax this even further to general distribution functions but this is not necessary for
the purpose of the present paper).5 Since the proof of Proposition 1 follows closely
the approach of Ausubel and Deneckere (1989), we emphasize the parts of the proof
of Ausubel and Deneckere (1989) that need to be modified for the case of n ≥ 2.

5.1 Proof of Proposition 1 (i)

The strategy for the existence proof is as follows. McAfee and Vincent (1997) has
shown that a weak-Markov equilibrium exists under a uniform distribution. For a
general distribution, we replace its lower tail on the interval [0, q̄] with a uniform
distribution (this strategy was devised by Ausubel and Deneckere (1989) for the one-
buyer case). We show that the weak-Markov equilibrium for the uniform part at
the lower end of the distribution can be extended to a weak-Markov equilibrium
for the entire distribution. The final step is to observe that the equilibrium for the
modified distribution converges (via a subsequence) to an equilibrium for the original
distribution as the uniform tail of the modified distribution diminishes.

In a weak-Markov equilibrium, the buyers’ strategy can be described by a function
P : [0, 1] → [0, 1]. A bidder with type qi places a valid bid if and only if the announced
reserve price is smaller than P (qi). Given that v is strictly increasing, Lemma 1
implies that P is non-decreasing.

5In Ausubel and Deneckere (1989) the valuation is decreasing in the type. We define v to be
increasing so that higher types have higher valuations.
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Also by Lemma 1, the posterior of the seller at any history is described by the
supremum of the support, which we denote by q. If all buyers play according to P ,
the seller’s (unconditional) continuation profit for given q is6

R(q) : = max
y∈[0,q]

ˆ q

y

v(z)d
[
nqzn−1 − (n − 1)zn

]
+ P (y) n (q − y)yn−1 + e−r∆R(y). (1)

The first term in the objective function on the right-hand side of (1) represents the
seller’s revenue when all buyers place bids above the reserve price, with the transaction
price being the second-highest buyer value. The second term captures the seller’s
revenue when exactly one buyer places a bid, where the transaction price is the
reserve price. The third term represents the seller’s discounted revenue from the
continuation game when no buyer places a bid in the current period.

Let Y (q) be the argmax correspondence for the optimization problem of (1) and
define y(q) := sup Y (q). Because the objective satisfies a single-crossing property,
Y (q) is increasing and hence single-valued almost everywhere. If Y (q) is single-valued
at q the seller announces a reserve price S(q) = P (y(q)) if the posterior has upper
bound q.

The buyers’ indifference condition for the case that Y (q) is single-valued so that
the seller does not randomize, is given by:

v(q) − P (q) = e−r∆
[
v(q) − (y(q))n−1

qn−1 S(q) − 1
qn−1

ˆ q

y(q)
v(x)dxn−1

]
. (2)

The left-hand side of Equation (2) is the payoff for the marginal buyer of type q who
buys at the reserve price P (q). The right-hand side is the buyer’s payoff if he delays
the purchase to the next period, when q becomes the highest remaining type: he
either buys at the new reserve price if no other buyers place a bid, or competes with
the highest-valued bidder below him.

6Dividing the RHS by qn and replacing R(y) by ynR(y) would yield the conditional continuation
profit. The unconditional version is more convenient for the subsequent development.
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If the seller randomizes over Y (q) according to some probability measure µ, then

v(q) − P (q) = e−r∆
[
v(q) −

ˆ
Y (q)

{
yn−1

qn−1 P (y) + 1
qn−1

ˆ q

y

v(x)dxn−1
}

dµ(y)
]

, (3)

which may require that µ depends on P (q).7

We will be looking for left-continuous functions R and P such that (1) and (2)
are satisfied. If this is true for all q ∈ [0, q̄], then we say that (P, R) support a weak-
Markov equilibrium on [0, q̄]. The goal is to show the existence of a pair (P, R) that
supports a weak-Markov equilibrium on [0, 1]. As in Ausubel and Deneckere (1989),
we can show that the seller’s continuation profit is Lipschitz-continuous in q.

Lemma 2. [cf. Lemma A.2 in Ausubel and Deneckere (1989)] If (P, R) supports
a weak-Markov equilibrium on [0, q̄], then R is increasing and Lipschitz continuous
satisfying

0 < R(q1) − R(q2) ≤ n(q1 − q2)

for all 0 ≤ q2 < q1 ≤ q̄.

Proof. First, we show monotonicity:

R(q1) =
ˆ q1

y(q1)
v(z)d

[
nq1z

n−1 − (n − 1)zn
]

+ P (y(q1)) n (q1 − y(q1))(y(q1))n−1 + e−r∆R(y(q1))

≥
ˆ q1

y(q2)
v(z)d

[
nq1z

n−1 − (n − 1)zn
]

+ P (y(q2)) n (q1 − y(q2))(y(q2))n−1 + e−r∆R(y(q2))

>

ˆ q2

y(q2)
v(z)d

[
nq2z

n−1 − (n − 1)zn
]

+ P (y(q2)) n (q2 − y(q2))(y(q2))n−1 + e−r∆R(y(q2))

= R(q2).

The first inequality follows from the optimality of y(q1). The second inequality follows
because q2 < q1. To show Lipschitz continuity, notice that the revenue from sales to

7In the following, we give details for the case that the seller does not randomize and refer to
Ausubel and Deneckere (1989) for the discussion of randomization by the seller.
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types below q2 in the continuation starting from q1 is at most R(q2) and the revenue
from types between q2 and q1 is bounded above by P (q1)(qn

1 − qn
2 ).8 Hence

R(q1) − R(q2) ≤ P (q1)(qn
1 − qn

2 )

≤ (qn
1 − qn

2 )

≤ n(q1 − q2)

This proves the desired result.

Using this lemma, we can show that an existence result for [0, q̄] can be extended
to the whole interval [0, 1].

Lemma 3. [cf. Lemma A.3 in Ausubel and Deneckere (1989)] Suppose (Pq̄, Rq̄) sup-
ports a weak-Markov equilibrium on [0, q̄], then there exists (P, R) which supports a
weak-Markov equilibrium on [0, 1].

Proof. We extend (Rq̄, Pq̄) to some [0, q̄′]. Define

Rq̄′(q) = max
0≤y≤min{q̄,q}

ˆ q

y

v(z)d
[
nqzn−1 − (n − 1)zn

]
+ Pq̄(y) n (q − y)yn−1 + e−r∆Rq̄(y)

with yq̄′(q) as the supremum of the argmax correspondence. Moreover, we define
Pq̄′(q) by

v(q) − Pq̄′(q) = e−r∆

v(q) − (yq̄′(q))n−1

qn−1 Pq̄(yq̄′(q)) − 1
qn−1

ˆ q

yq̄′ (q)
v(x)dxn−1

 .

For q̄′ = min
{
1, n

√
q̄n + (1 − e−r∆)Rq̄(q̄)

}
, the constraint in the maximization in the

8Suppose by contradiction that for the posterior [0, q1], the expected payment that the seller can
extract from some type q ∈ [q2, q1] is greater or equal than P (q1). In order to arrive at a history
where the posterior is [0, q1], the seller must have used reserve price P (q1) in the previous period.
But then all types in [q, q1] would prefer to bid in the previous period because they expect to make
higher payments if they wait. This is a contradiction.
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definition of Rq̄′(q) is not binding and moreover

Rq̄′(q) = max
0≤y≤q

ˆ q

y

v(z)d
[
nqzn−1 − (n − 1)zn

]
+ Pq̄′(q) n (q − y)yn−1 + e−r∆Rq̄′(y)

For y ∈ [q̄, q] we have
ˆ q

y

v(z)d
[
nqzn−1 − (n − 1)zn

]
+ Pq̄′(q) n (q − y)yn−1 + e−r∆Rq̄′(y)

≤
ˆ q

y

1d
[
nqzn−1 − (n − 1)zn

]
+ n (q − y)yn−1 + e−r∆Rq̄′(y)

= qn − yn + e−r∆Rq̄′(q)

≤ (1 − e−r∆)Rq̄(q̄) + e−r∆Rq̄′(q)

≤ (1 − e−r∆)Rq̄′(q) + e−r∆Rq̄′(q)

≤ Rq̄′(q).

In the first and second steps, we have used that the payments v(z) and Pq̄′(q) are less
than or equal to one. In the third step, we have used that q̄′ = min

{
1, n

√
q̄n + (1 − e−r∆)Rq̄(q̄)

}
;

since q̄ ≤ y ≤ q ≤ q̄′, this implies qn − yn ≤ (1 − e−r∆)Rq̄(q̄). The fourth step uses
Rq̄(q̄) = Rq̄′(q̄) and that Rq̄′ is increasing. Thus (Pq̄′ , Rq̄′) supports a weak-Markov
equilibrium on [0, q̄′]. Since Rq̄(q̄) > 0, a finite number of repetitions suffices to extend
(Pq̄, Rq̄) to the entire interval [0, 1].

We are now ready to complete the existence proof.

Proof. [Proof of Proposition 1 (i)] As in Ausubel and Deneckere (1989), we consider
a sequence of valuation functions

v̂η(q) =


v(q), if q ≥ 1

η

v
(

1
η

)
ηq, otherwise.

This corresponds to the original distribution except that on the interval [0, 1/η], we
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have made the distribution uniform. McAfee and Vincent (1997) show that there
exist (P̃1/η, R̃1/η) that support a weak-Markov equilibrium on [0, 1/η]. Hence, by
Lemma 3, for each η = 1, 2, . . ., there exists a pair (Pη, Rη) that supports a weak-
Markov equilibrium on [0, 1]. As in Ausubel and Deneckere (1989), we can assume
that Pη converges point-wise for all rationals to some function Φ(s), s ∈ Q ∩ [0, 1]
and taking left limits we can extend this limit to a non-decreasing, left-continuous
function P : [0, 1] → [0, 1]. Also, by Lemma 2, after taking a sub-sequence, we may
assume that (Rn) converges uniformly to a continuous function R. We have to show
that (P, R) supports a weak-Markov equilibrium for v. But given Lemma 2 and 3,
only minor modifications are needed to apply the proof of Theorem 4.2 from Ausubel
and Deneckere (1989).

5.2 Proof of Proposition 1 (ii)

Before we begin with the proof, we note that in contrast to the case of one buyer
analyzed by Ausubel and Deneckere (1989), the first reserve price in a continuation
game where the seller’s posterior is vt need not converge to zero as ∆ → 0.9 Nev-
ertheless, we obtain the Coase conjecture because prices fall arbitrarily quickly as
∆ → 0. On the buyer side, the strategy is described by a cutoff for the reserve price.
A buyer places a bid if and only if the current reserve price is below the cutoff. The
Markov property of the buyer’s strategy implies that the cutoff only depends on the
buyer’s type, it is independent of time and of the history of previous reserve prices. As
∆ → 0, the equilibrium cutoff of a buyer with type v converges to the payment that
this type would make in a second-price auction without reserve price. Also reserve
prices decline arbitrarily quickly so that the delay of the allocation vanishes for all
buyers as ∆ → 0. Therefore, the seller’s profit converges to the profit of an efficient
auction.

We want to show that the profit of the seller in any weak-Markov equilibrium of
a subgame that starts with the posterior [0, q], converges (uniformly over q) to ΠE(q)

9For the uniform distribution, this was already noted by McAfee and Vincent (1997).
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as ∆ → 0. The proof consists of two main steps. The first step shows that for any
type ξ ∈ [0, 1], any ∆ > 0, and any weak-Markov equilibrium supported by some
pair (P, R), the expected payment that the seller can extract from type ξ is bounded
by ξn−1P (ξ). We prove this by showing that the expected payment conditional on
winning is bounded by P (ξ). The second step is to show that P (1) is bounded above
by the expected payment from an efficient auction, and we obtain the uniform bound
of the continuation payoff by rescaling the distribution as permitted by Assumption
1.

We begin with the first step.

Lemma 4. Let (P, R) support a weak-Markov equilibrium in the game for ∆ > 0.
Suppose that in this equilibrium, type ξ ∈ [0, 1] trades in period t, let the posterior in
period t be qt ≥ ξ, and denote the marginal type in period t by q+

t ≤ ξ. Then we have

P (ξ) ≥
ˆ ξ

q+
t

v(x)dxn−1

ξn−1 +

(
q+

t

)n−1

ξn−1 P (q+
t ), ∀ξ ∈ [0, 1],

and hence
R(q) ≤

ˆ q

0
P (x) dxn, ∀q ∈ (0, 1].

Proof. For q+
t = ξ the RHS of the first inequality becomes P (q+

t ) = P (ξ). Hence it
suffices to show that ˆ ξ

q

v(x)dxn−1 + qn−1P (q)

is increasing in q. For q > q̂ we have

ˆ ξ

q

v(x)dxn−1 + qn−1P (q) −
ˆ ξ

q̂

v(x)dxn−1 − q̂n−1P (q̂)

=qn−1P (q) − q̂n−1P (q̂) −
ˆ q

q̂

v(x)dxn−1
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Using (2), we have

qn−1P (q) − q̂n−1P (q̂)

=
(
1 − e−r∆

)
qn−1v(q) + e−r∆

ˆ q

y(q)
v(x)dxn−1 + e−r∆ (y(q))n−1 P (y(q))

−
(
1 − e−r∆

)
q̂n−1v(q̂) − e−r∆

ˆ q̂

y(q̂)
v(x)dxn−1 − e−r∆ (y(q̂))n−1 P (y(q̂))

=
(
1 − e−r∆

) (
qn−1v(q) − q̂n−1v(q̂)

)
+ e−r∆

(
(y(q))n−1 P (y(q)) − (y(q̂))n−1 P (y(q̂))

)
+ e−r∆

ˆ q

q̂

v(x)dxn−1 − e−r∆
ˆ y(q)

y(q̂)
v(x)dxn−1

and hence

qn−1P (q) − q̂n−1P (q̂) −
ˆ q

q̂

v(x)dxn−1

=
(
1 − e−r∆

) (
qn−1v(q) − q̂n−1v(q̂)

)
+ e−r∆

(
(y(q))n−1 P (y(q)) − (y(q̂))n−1 P (y(q̂))

)
−
(
1 − e−r∆

)ˆ q

q̂

v(x)dxn−1 − e−r∆
ˆ y(q)

y(q̂)
v(x)dxn−1

=e−r∆
(

(y(q))n−1 P (y(q)) − (y(q̂))n−1 P (y(q̂)) −
ˆ y(q)

y(q̂)
v(x)dxn−1

)

+
(
1 − e−r∆

) ˆ q

q̂

v′(x)xn−1dx

Proceeding inductively, we get

qn−1P (q) − q̂n−1P (q̂) −
ˆ q

q̂

v(x)dxn−1 =
∞∑

k=0
e−k∆

(
1 − e−r∆

) ˆ yk(q)

yk(q̂)
v′(x)xn−1dx > 0,

where yk(·) denotes the function obtained by applying y(·) k times. This shows the
first inequality.

For the second inequality, notice that the RHS of the first inequality is the payment
that the seller can extract from type ξ if ξ wins the auction. This is bounded by P (ξ)
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as the first inequality shows. The seller’s profit if the posterior at time t is q, therefore
satisfies

R(q) ≤
ˆ q

0
e−r(T (x)−t)P (x)dxn,

where T (x) denotes the trading time of type x in the weak-Markov equilibrium. This
implies the second inequality.

For the second step, fix the distribution and the corresponding function v and
define vx : [0, 1] → [0, 1] such that for all x ∈ (0, 1],

vx(q) := v(qx)
v(x) .

Using Helly’s selection theorem, we can extend this definition to x = 0, by taking the
a.e.-limit of a subsequence of functions vx. Denote by EwM(∆, x) the weak-Markov
equilibria of the game with discount factor ∆ and distribution given by vx where
x → 0. Slightly abusing notation we write (P, R) ∈ EwM(∆, x) for a weak-Markov
equilibrium that is supported by functions (P, R). We show that there is an upper
bound for P (1) that converges to the expected payment in a second price auction
without reserve price as ∆ → 0, and the convergence is uniform over x.

Lemma 5. Fix v(·). For all ε > 0, there exists ∆ε > 0 such that for all ∆ ≤ ∆ε, all
x ∈ [0, 1], and all (P, R) ∈ EwM(∆, x),

P (1) ≤
ˆ 1

0
vx(s) dsn−1 + ε.

Proof. Suppose not. Then there exist sequences ∆m → 0 and xm → x̄ such that for
all m ∈ N, there exist equilibria (Pm, Rm) ∈ EwM(∆m, xm) such that for all m,

Pm(1) >

ˆ 1

0
vxm(s) dsn−1 + ε.

By a similar argument as in the proof of Theorem 4.2 of Ausubel and Deneckere
(1989), we can construct a limiting pair (P , R), where P is left-continuous and non-
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decreasing, Pm converges point-wise to P for all rationals, and Rm converges uniformly
to R. Obviously, we have

P (1) ≥
ˆ 1

0
vx̄(s) dsn−1 + ε.

Left-continuity implies that there exists q̄ < 1 such that

P (q̄) ≥
ˆ q̄

0
vx̄(s) dsn−1 + ε

2 . (4)

Using an argument from the proof of Theorem 5.4 in Ausubel and Deneckere
(1989), we can show that

R(1) ≥
ˆ 1

q̄

P (s) dsn + ΠE(q̄) ≥ ΠE(1) + (1 − q̄)ε

2 ,

where we have used (4) to show the second inequality. Hence, we have

Rm(1) → R(1) ≥ ΠE(1) + (1 − q̄)ε

2 . (5)

But this implies that there must exist a type q̂ > 0, a time t > 0, and m̄ such that
for all m > m̄,

Tm(q̂) ≥ t.

where Tm(·) is the trading time function in the weak-Markov equilibrium supported
by (Pm, Rm). To see this, note that delay for low types is needed to increase the
seller’s revenue beyond the revenue from an efficient auction.

With this observation, we can conclude the proof using a similar argument as in
Case I of the proof of Theorem 5.4 in Ausubel and Deneckere (1989). From Lemma
4 we know that the maximal expected payment conditional on winning that a buyer
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of type q has to make in equilibrium is given by Pm(q). This implies that

Rm(1) ≤
ˆ 1

q̂

Pm(z)dzn + e−rtRm(q̂).

In the limit we have
R(1) ≤

ˆ 1

q̂

P (z)dzn + e−rtR(q̂). (6)

On the other hand, the same argument that we used to obtain (5) yields

R(1) ≥
ˆ 1

0
P (z)dzn. (7)

Combining (6) and (7) we get

ˆ q̂

0
P (z)dzn ≤ e−rtR(q̂),

which implies

R(q̂) >

ˆ q̂

0
P (z)dzn,

since t > 0. But Lemma 4 implies the opposite inequality which is a contradiction.

Using this lemma, we can show that for a given v(·), the difference between the
continuation profit at [0, q] and ΠE(q), divided by v(q) converges uniformly to zero.

Lemma 6. Fix v(·). For all ε > 0, there exists ∆ε > 0 such that for all ∆ ≤ ∆ε, all
x ∈ (0, 1], and all (P, R) ∈ EwM(∆, 1),

R(x)
xn

− ΠE(v(x)) ≤ εv(x).

Proof. The statement of the lemma is equivalent to the statement that for all ε > 0,

there exists ∆ε > 0 such that for all ∆ ≤ ∆ε, all x ∈ (0, 1], and all (P, R) ∈ EwM(∆, x),

R(1|vx) − ΠE(1|vx) ≤ ε. (8)
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This equivalence holds because truncating and rescaling the function v(·) leads to the
following transformations:

R(x|v)
xn

= v(x)R(1|vx),

ΠE(v(x)) = v(x)ΠE(1|vx).

To show (8), we combine Lemmas 4 and 5, and use that P (z|vx) = vx(z)P (1|vz·x) to
get for all x ∈ (0, 1],

R(1|vx) ≤
ˆ 1

0
P (z|vx)dzn

=
ˆ 1

0
vx(z)P (1|vx·z)dzn

≤
ˆ 1

0
vx(z)

(ˆ 1

0
vx·z(s)dsn−1 + ε

)
dzn

=
ˆ 1

0

(ˆ 1

0
vx(sz)dsn−1

)
dzn + ε

ˆ 1

0
vx(z)dzn

≤
ˆ 1

0

(ˆ z

0
vx(s)dsn−1

zn−1

)
dzn + ε

= ΠE(1|vx) + ε

This allows us to complete the proof of Proposition 1 (ii).

Proof of Proposition 1 (ii) Translated into the notation of the paper, Lemma
6 implies that for a given distribution function F , for all ε̃ > 0, there exists ∆ε̃ > 0
such that for all ∆ ≤ ∆ε̃, all v ∈ [0, 1], and all weak-Markov equilibria (p, b) ∈
EwM(∆), we have

Π∆(p, b|v) ≤ ΠE(v) + ε̃v.

Recall that by Assumption 1, there exist 0 < M ≤ 1 ≤ L < ∞ and α > 0 such
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that Mvα ≤ F (v) ≤ Lvα for all v ∈ [0, 1]. This implies that the rescaled truncated
distribution

F̃x(v) := F (vx)
F (x) ,

for all v ∈ [0, 1] is dominated by a function that is independent of x:

F̃x(v) ≤ Lvαxα

Mxα
= L

M
vα.

Next, we observe that the revenue of the efficient auction can be written in terms
of the rescaled expected value of the second-highest order statistic of the rescaled
distribution:

ΠE(v) =
ˆ 1

0
vsF̃ (n−1:n)

v (s)ds.

If we define F̂ (v) := min
{
1, L

M
vα
}

and B :=
´ 1

0 sF̂ (n−1:n)(s)ds, then given F̃x(v) ≤
L
M

vα we can apply Theorem 4.4.1 in David and Nagaraja (2003) to obtain ΠE(v) ≥
Bv > 0 for all v ∈ [0, 1]. If we chose ε̃ sufficiently small we have

ε̃ ≤ Bε,

⇐⇒ ε̃v ≤ Bεv,

=⇒ ε̃v ≤ εΠE(v),

⇐⇒ ΠE(v) + ε̃v ≤ (1 + ε)ΠE(v).

This implies that
Π∆(p, b|v) ≤ (1 + ε)ΠE(v)

for all ∆ ≤ ∆ε := ∆ε̃ for ε̃ sufficiently small. □

6 Concluding Remarks

The paper establishes the uniform Coase conjecture for no-gap auctions, hence filling
a gap in the literature. While the concept of weak-Markov equilibrium in this paper
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draws from the bargaining literature, a limitation of our analysis is that it focuses
on symmetric equilibria. The extent of the restriction imposed by weak-Markov
equilibrium is explored in Liu et al. (2019), where, among other things, it is shown that
the Coasian force is robust for a broad class of distribution functions. Characterizing
the seller’s achievable revenues without restricting trading mechanisms in the no-gap
case is still an open question, even with only one bidder.
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