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Abstract

We study a multi-dimensional collective decision under incomplete informa-

tion. Agents have Euclidean preferences and vote by simple majority on each

issue (dimension), yielding the coordinate-wise median. Judicious rotations of

the orthogonal axes —the issues that are voted upon —lead to welfare improve-

ments. If the agents’ types are drawn from a distribution with independent

marginals then, under weak conditions, voting on the original issues is not op-

timal. If the marginals are identical (but not necessarily independent), then

voting first on the total sum and next on the differences is often welfare supe-

rior to voting on the original issues. We also provide various lower bounds on

incentive effi ciency: in particular, if agents’types are drawn from a log-concave

density with symmetric marginals, a second-best voting mechanism attains at

least 88% of the first-best effi ciency.

1 Introduction

In 1974 the U.S. Congress changed its budgeting process: instead of considering

appropriations requests that were voted upon one at a time (bottom-up) which resulted

in a gradually determined total level of spending, the Congressional Budget and
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Impoundment Control Act required voting first on an overall level of spending, before

the determination of budgets for individual programs in subsequent votes (top-down).

A large literature in the area of public finance (see for example the review articles in

Poterba and von Hagen [1999]) has debated the costs and benefits of such procedural
changes, with particular attention to the size of the expected budget deficit.1

In this paper we analyze the general problem of redefining (or bundling) the issues

brought to vote in a multi-dimensional collective decision problem. Our interest in

this topic stems from the potential of such methods to increase the welfare of the

involved decision makers by allowing them to reach, in an incentive compatible way,

a consensus that was not possible on the original issues. We are thus looking for

the dimensions on which the best consensus can be found, or, put differently, the

dimensions where the least cleavage among voters is present.

We study a multi-dimensional collective decision that is resolved via simple major-

ity voting: an example is a legislature that needs to decide on individual budgets for

public goods such as, say, education and defence. Another example is the decision on

the geographical location of a desirable facility. But even “mundane”decisions such

as hiring or project adoption based on multi-dimensional attributes can be viewed

through our lens.

We adopt the standard spatial model of voting widely used in the political science

literature (see for example, Chapter 5 in Austen-Smith and Banks [2005]), where

voters have preferences characterized by ideal points in each dimension and by a

quadratic loss caused by deviations from the ideal point. The main text deals with

the two-dimensional case, while the generalization to more than two dimensions is in

an Appendix.

The voters’ideal points are private information, and we look at the outcomes of

voting by simple majority on each dimension separately – as we shall see below, the

focus on simple majority voting yields, in combination with a decision over the dimen-

sions that are the subject of voting, an analysis of more generality than immediately

apparent.

With votes taken by simple majority in each separate dimension, the outcome

is the coordinate-wise median of the voters’ ideal points. This easily follows from

Black’s [1948] famous theorem because the induced preferences are single peaked

on each one-dimensional issue. In general, this outcome does not coincide with the

first-best, given here by the alternative that minimizes the overall distance from the

individual ideal points. It is of course well-known that the first-best outcome is simply

1There was a widespread belief that the new rules would lead to smaller deficits, and the act was

passed almost unanimously in both House and Senate.
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the coordinate-wise average (or mean) of the ideal points, and thus first-best welfare

is given here by the corresponding variance (with a minus sign).

The first-best outcome is not implementable: each agent has an incentive to try

to move the average closer to his/her ideal point by exaggerating his/her position

on one or more issues. This observation was first made by Galton [1907], who was

also the first to recommend the use of the median as a robust and non-manipulable

aggregator of opinions.2

Given the tension between first-best on the one hand and implementable outcomes

on the other, how well does voting by simple majority perform in terms of welfare?

Using a classical inequality due to Hotelling and Solomons [1932], it can be shown

that, for any distribution of preferences, voting by simple majority on any given issues

achieves at least 50% of the welfare achievable in the first best.

The main insight of the present paper is that a judicious choice of the issues

that are actually put to vote (while maintaining voting by simple majority, with

its desirable incentive properties) can significantly improve welfare.3 For example,

instead of voting on two separate issues such as education and health, the legislature

could vote on a total budget, and then on a division of that budget between the

two issues —just as Congress started to do in 1974. More generally, we model the

repackaging and bundling of issues by rotations of the orthogonal axes that define

what is put to vote. For example, suppose voters care about two separate main issues,

but they actually vote on the budget of two agencies that overlap in their responsibility

over these two issues. Rotations correspond then to the often observed shifting of

jurisdictions among the two agencies: they change the mix of issues under the control

of each agency. In an influential work, Shepsle [1979] argues that the division of a

complex, collective decision into several different jurisdictions (germaneness), creates

stable equilibria that would not be possible in a general, unconstrained collective

decision model. His main examples are the various legislative committees in the U.S.

congress. Viewed in light of Shepsle’s theory, our goal is to endogenize the choice of

jurisdictions in order to improve welfare, an issue that has not received much attention

in formal studies.

Our main results are:

1) If the agents’ideal points in one dimension are independently distributed from

the ideal points in the other dimension then, under weak conditions on the distribution

of preferences, voting on the original issues is sub-optimal; that is, a re-packaging of

the issues brought to vote via rotation (this necessarily creates some correlation among

2His insights have been sharpened and much generalized in the literature on robust estimation.
3The idea of comparing voting rules in terms of their expected welfare goes back to Rae[1969].
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the ideal points) increases welfare.

2) If the marginals of the distribution of agents’ideal points are identically distrib-

uted (but not necessarily independent), we provide suffi cient conditions under which

the 45-degree rotation is welfare superior to no rotation. The suffi cient conditions

are satisfied by commonly used distributions if marginals are identically and inde-

pendently distributed (I.I.D.). We show analytically that, with I.I.D. marginals, the

45-degree rotation is always a critical point, and numerically that it is a global wel-

fare maximum for many standard distributions. A key observation for these results

is that, under the symmetry of the marginals, the 45-degree rotation entirely elimi-

nates the conflict arising between effi ciency and majority voting in one dimension —

all remaining conflict is concentrated in the other, orthogonal dimension.

3)We provide various lower bounds on incentive effi ciency for large, non-parametric

families of distribution of ideal points (such as unimodal distributions, distributions

with an increasing hazard rate, etc.). For example, if agents’ideal points are drawn

from a log-concave density with I.I.D. marginals, a voting mechanism that involves

a 45 degrees rotation of the original dimensions attains at least 88% of the first-best

effi ciency. This should be compared to the universal lower bound of 50% that obtains

without any assumption on the distribution, and without using rotations.

We would like to point out here that some of our results are similar to the classical

insights, obtained in models with monetary transfers, about the benefits of bundling.

For example, the non-optimality of voting on independent issues parallels the non-

optimality of separate sales if the valuations on different objects are independent:

some form of mixed bundling is always superior (see McAfee, McMillan and Whinston

[1989]).4

The basic feature behind the welfare-improving properties of rotations is the non-

linearity of the median function, i.e. the median of a sum of random variables is

not equal to the sum of the medians. Note that the distributions of ideal points

after rotation can be represented as convolutions of the original distributions, which

explains here the appearance of sums of random variables. On the one hand, this

non-linearity is the driving force behind our results; on the other hand, it also implies

that the analysis becomes relatively complex.5 In order to use calculus and proba-

4In a similar vein, the need to control for sub/super-additivity of medians (see Section 3) parallels

the case of second-highest order statistics in auctions (see Palfrey [1983]), and the asymptotic effi -

ciency of the top-down budgeting procedure when the number of issues goes to infinity (see Section

4 below) corresponds to the asymptotic effi ciency of pure bundling when the number of objects goes

to infinity and marginal costs of production are zero (see Bakos and Brynjolfsson [1999]).

5This is true even for common distributions, such as the Gamma, Poisson, lognormal, etc. Some
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bilistic/statistical techniques, we focus on the limit case where the number of voters

is infinite. In particular, we need to deal with order statistics of convolutions, and we

use various concentration inequalities that relate statistics such as the mean, median,

mode and variance of distributions.

1.1 Related Literature

It is well-known that the existence of a Condorcet winner is rare in multi-dimensional

models of voting (Kramer [1973]). Kramer [1972] observed that, however, voting in

a variety of institutions is often sequential, issue by issue, and he established that

there exists an issue-by-issue sophisticated voting equilibrium if voters’preferences

are continuous, convex and separable. The coordinate-wise median analyzed in our

paper —obtained by simple-majority voting in each dimension —constitutes a basic

instance of a structure induced equilibrium in the spirit of Shepsle [1979].

It is of course possible to perform an analysis similar to ours for goals other

than effi ciency, e.g., define jurisdictions that serve other purposes, such as the self-

interest of an agenda setter or of a coalition of voters. For example, Ferejohn and

Krehbiel [1987] observed that the 1974 budget reform can be represented by a 45-

degree rotation of the coordinates on which voting takes place. Their focus was on

controlling budgetary growth rather than effi ciency. Besides giving precise conditions

comparing the top-down and bottom-up procedures in terms of the total budget they

produce, we also show that the budgeting reform can unambiguously improve welfare

while having a mixed impact on the budget size!

Technically, our contribution builds upon and relates to several important and ele-

gant contributions due to Moulin [1980], Border and Jordan [1983], Kim and Rousch

[1984], and Peters, van der Stel and Storcken [1992]. In a one-dimensional setting

with single-peaked preferences, Moulin considered mechanisms that depend on re-

ported peaks, and characterized the set of dominant strategy incentive compatible

(DIC), anonymous and Pareto effi cient mechanisms: each mechanism in the class is

obtained by choosing the median among the n reported peaks of the real voters and

the peaks of a set of n − 1 “phantom” voters (these are fixed by the mechanism,

and do not vary with the reports).6 Border and Jordan [1983] removed Moulin’s

assumption whereby mechanisms were allowed to only depend on peaks, and gener-

alized Moulin’s finding to a multi-dimensional setting with separable and quadratic

preferences: each DIC mechanism was shown to be decomposable into a collection

of one-dimensional DIC mechanisms, each described by the location of the phantom

of our results are based on insights that go back to conjectures by Ramanujan (see Szegö [1928]).
6Relaxing Pareto effi ciency yields the same characterization, but with n+ 1 phantoms.
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voters in the respective dimension (see also Barbera, Gul and Stacchetti [1993]).7

Gershkov, Moldovanu and Shi [2016] analyzed welfare maximization in a one-

dimensional setting with cardinal utilities, and derived the ex-ante welfare maximiz-

ing placement of phantoms as a function of utilities and of the distribution of types.

They also showed how to avoid the phantom interpretation by implementing Moulin’s

mechanisms (including the welfare optimal one) via a sequential, binary voting pro-

cedure together with a flexible qualified majority schedule needed for the adoption of

various alternatives.8 Combining their result with the Border-Jordan decomposition

yields the welfare maximizing mechanism for multidimensional settings with separa-

ble and quadratic preferences. But, the ensuing solution, described by an optimal

placement of phantoms in each dimension, is not satisfactory from a practical point

of view: it implies that each issue (dimension) in each multi-dimensional problem

must be voted upon according to a particular institution. This theoretically needed

flexibility may be diffi cult, if not impossible, to achieve in practice.

Instead, we take here a different approach to welfare improvement: we fix an ubiq-

uitous institution —voting by simple majority on each issue —but we allow flexibility

in the design of the issues that are actually put to vote. Such a limited form of

agenda design is very common in practice, and, as we shall see, has important welfare

consequences.

The simplest multi-dimensional setting for studying issue design and repackaging is

the one with Euclidean preferences: intuitively, the presence of spherically symmetric

preferences does not a-priori determine the dimensions of the Border and Jordan

decomposition into one-dimensional mechanisms. Indeed, Kim and Rousch [1984]

showed that the set of continuous, anonymous and DIC mechanisms can be described

by performing the Border-Jordan analysis subsequent to any translation of the origin

and any rotation of the orthogonal axes. Peters, van der Stel and Storcken [1992]

showed that, for two dimensions, voting by simple majority in each dimension (after

any translation/rotation of the plane) is also Pareto optimal. This is the unique

anonymous and DIC mechanism with this property, and Pareto effi ciency is generally

not consistent with DIC in more than two dimensions.

Since both median and mean are translation equivariant, translations of the ori-

gin cannot improve welfare, and it is therefore without loss of generality to restrict

7Most papers in the literature indeed assume separable preferences. Ahn and Oliveros [2012] is a

notable exception: they prove equilibrium existence in combinatorial voting with non-separable pref-

erences, and provide conditions under which the Condorcet winner is implemented in the equilibrium

of large elections.
8See also Kleiner and Moldovanu [2016] for a derivation of suffi cient conditions under which

sequential, binary voting procedures possess desirable properties.
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attention to rotations of the axes followed by simple majority voting on each newly

defined dimension.

A key observation, well known in the theory of spatial statistics, is that the mean is

rotation equivariant (i.e., the mean after rotation is obtained by rotating the original

mean) but the coordinate-wise median is not (see Haldane [1948], or the literature on

spatial voting, e.g., Feld and Grofman [1988]). As a consequence, a rotation of the

axes may decrease the distance between the coordinate-wise mean (first-best) and the

coordinate-wise median (outcome of majority voting), thus increasing welfare in our

framework.

It is also instructive to compare our results to those in the classical papers by

Caplin and Nalebuff ([1988], [1991]) who did not consider incomplete information and

incentive constraints.9 Motivated by the instability of multi-dimensional voting, they

considered instead the effect of super-majority requirements on the stability of the

spatial mean. For a large number of voters and for log-concave density governing the

distribution of types (and also for other, more general forms of concavity). Caplin and

Nalebuff showed that, once established as status-quo, the mean cannot be displaced

by another alternative if the selection of that alternative requires a super-majority

of at least 64% (or 1− 1
e
). In other words, given the distributional assumptions and

a large population of voters, any coalition that prefers an alternative over the mean

contains less than 64% of the voters, and is thus not effective given the super-majority

requirement.

As mentioned above, for the log-concave case with independent marginals, our

results display a mechanism that is incentive compatible for any number of voters

and that achieves at least 88% of the first-best utility when this number goes to

infinity. Thus, issue by issue voting by simple majority on appropriately defined di-

mensions constitutes an intuitive and incentive compatible institutional arrangement

that is almost effi cient in this case. Moreover, the relative effi ciency of this mecha-

nism increases, and tends to 100% when we increase the number of dimensions of the

underlying problem.

Finally, although our model bears some similarity to models of multidimensional

cheap talk (see for example, Battaglini [2002], Chakraborty and Harbaugh [2007]),

the logic of welfare gains is very different here. In those models, the multiplicity of

issues helps because it improves information transmission between the sender and

the receiver(s). For example, in a model with two senders, Battaglini [2002] shows

that, as long as the two senders’ideal points are linearly independent (i.e., one is not

9These authors were also the first to use modern concentration inequalities in the Economics

literature.
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a scalar multiple of the other), then full revelation is possible by carefully choosing

dimensions to exploit the conflict between senders. In a similar model with one

sender, Chakraborty and Harbaugh [2007] show that the sender can credibly convey

his ranking of different issues to the receiver. In contrast, in our model, private

information is fully revealed, because the information aggregation procedure, i.e.,

simple majority rule, is strategy-proof. Yet this rule does not lead to the effi cient

decision. Rotations deal here with a very different conflict, between the outcome

under simple majority and effi ciency. For example, in symmetric settings, the 45-

degree rotation improves welfare because it allows the designer to completely eliminate

this conflict in one dimension.

The remaining part of the paper is organized as follows: In Section 2 we present the

two dimensional voting model by simple majority, and connect incentive compatible

mechanisms to the special orthogonal group of rotations in the plane. We also discuss

the equi-invariance properties of means and medians. In Section 3 we focus on the

setting with a large number of agents, for which we can use various available statistical

techniques. We first show that voting on independent issues is always sub-optimal:

a rotation that bundles independent issues is always beneficial. We next show that

if the issues are identically distributed, a rotation by 45 degrees (corresponding, for

example, to a vote on a total budget for the two issues and its division among issues)

can improve welfare over the zero rotation. In particular, we give suffi cient conditions

that hold for large, non-parametric families of distributions under which the welfare

under such a rotation is higher than in the original, no-rotation case. Numerical

simulations suggest that the 45 degrees rotation is indeed an optimum in this case.

In Section 4 we offer bounds on the relative effi ciency of voting by simple majority

complemented by rotations. The effect of rotations is shown to be substantial. Section

5 concludes. Several proofs are gathered in Appendix A, and generalizations to higher

dimensions are sketched in Appendix B.

2 The Model

We consider an odd number of agents, n, who collectively decide about two issues,

X and Y , on a convex region D ⊆ R2. Each agent’s ideal position on these two
issues is given by a peak ti = (xi, yi), i = 1, 2, ..., n. The peak ti is agent i’s private

information. Each agent i has a utility function of the form

− ||ti − v||2
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where v = (x, y) is a fixed point in D and where ||·|| is the standard Euclidean (L2)
norm. The peaks ti = (xi, yi) are independently, identically distributed (I.I.D.) across

agents, according to a joint distribution F (xi, yi), with density f . Throughout the

paper, we assume that E ||ti||2 <∞ for all ti ∈ D.
We consider a utilitarian planner who would like to choose v ∈ D to maximize

the average of the agents’ex ante utilities, or equivalently, minimize the expected

average squared distance from the voters’peaks:

min
v∈D

E

[
1

n

n∑
i=1

||ti − v||2
]
,

subject to agents’incentive constraints. Ignoring agents’incentives, the planner can

choose a point u that minimizes the average of ex post distance:

u ∈ arg min
v∈D

1

n

n∑
i=1

||ti − v||2 ,

which we will refer to as the first-best solution. For each fixed realization (t1, t2, ..., tn),

it is well known that the first-best solution is simply the mean of the ideal points

u = t ≡ 1

n

n∑
i=1

ti.

Hence, the first-best (per capita) expected utility is the variance (with negative sign)

− 1

n

n∑
i=1

∣∣∣∣ti − t∣∣∣∣2 .
However, the first-best is clearly not implementable: each agent can advantageously

move the mean towards her ideal point by reporting a false peak.

Remark 1 The Euclidean norm adopted here, where first-best choice and welfare

are given by mean and variance (with negative sign), respectively, greatly facilitates

our analysis because we can then use various statistical results relating to the mean,

median and variance. We can incorporate other convex norms to address similar

questions, but the technical analysis needs to change accordingly.

2.1 Voting by Simple Majority

We consider voting by simple majority on each separate dimension. Our focus on

simple majority voting stems from its wide applicability and its actual use in practice.

We do not a-priori restrict the issues on the ballot to be X and Y . Instead, new issues

can be created through “re-packaging and bundling”the basic issues X and Y . The

main theme of the paper is, indeed, the analysis of the problem of optimal bundling

of issues X and Y , i.e., finding what we call the optimal dimensions of consensus.
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2.2 Rotations in the Plane

We model packaging and bundling of issues through rotations in the plane. Recall

that, for fixed Cartesian coordinates, rotating a point (x, y) ∈ R2 counter-clockwise
by an angle of θ can be represented by the multiplication of the vector (x, y) with a

rotation matrix R (θ). The resulting, rotated point (z−, z+) is given then by(
z−

z+

)
=

(
cos θ − sin θ

sin θ cos θ

)
︸ ︷︷ ︸

R(θ)

(
x

y

)
=

(
x cos θ − y sin θ

x sin θ + y cos θ

)
.

Equivalently, one can obtain (z−, z+) by rotating the original Cartesian coordinates

clockwise around the fixed origin by an angle of θ to obtain new orthogonal coordi-

nates, and then projecting (x, y) to the new coordinates.

Let (Z−, Z+) denote the new random vector obtained from rotating the random

vector (X, Y ) by an angle of θ. Then we have

Z− (θ) = X cos θ − Y sin θ, (1)

Z+ (θ) = X sin θ + Y cos θ. (2)

Voters then vote on the new issues Z− and Z+, instead of the original issuesX and Y .10

By the simple majority rule, the voting outcome will be (m− (θ, t1, ..., tn) ,m+ (θ, t1, ..., tn))

where

m− (θ, t1, ..., tn) = median (x1 cos θ − y1 sin θ, ..., xn cos θ − yn sin θ), (3)

m+ (θ, t1, ..., tn) = median (x1 sin θ + y1 cos θ, ..., xn sin θ + yn cos θ), (4)

are the marginal medians after the rotation.

It is easy to verify that the mean t of t1, ..., tn is invariant to rotations (or rotation

equivariant), i.e. the mean of rotated peaks is simply the rotated mean of the original

peaks. In marked contrast, the marginal medians (m− (θ, t1, ..., tn) ,m+ (θ, t1, ..., tn))

are not rotation equivariant, i.e., rotating and taking medians is not the same as
taking medians and rotating. Therefore, rotations are instruments by which the

10We abuse here notation by denoting by the same capital letters both the underlying dimen-

sions (or issues) and the random variables governing the distribution of peaks on those respective

dimensions.
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planner may try to influence welfare.

Figure 1. The mean is rotation equivariant, the median is not

The reason for the complex behavior of the median is the non-linearity of the median

of random variables under convolutions, as illustrated by the following example.

Example 1 Let (X, Y ) denote a random vector on the plane. Suppose that X and

Y are I.I.D. and are exponentially distributed with fX (x) = e−x for all x ≥ 0 and

fY (y) = e−y for all y ≥ 0. It follows that µX = µY = 1 and mX = mY = ln 2.

Rotating the two coordinates clockwise by π
4
and then projecting (X, Y ) to the new

coordinates, yield a new random vector (Z−, Z+) = (
√
2
2
X −

√
2
2
Y,
√
2
2
X +

√
2
2
Y ). It

is easily seen that
√
2
2
X −

√
2
2
Y is symmetric, so that its median and mean are both

equal to zero. Since the mean function is additive, the mean of Z+ =
√
2
2
X +

√
2
2
Y is

simply
√

2; in contrast, the median function is not additive: the median of Z+ is not

equal to
√
2
2
mX +

√
2
2
mY , or equivalently, the median of X +Y , mX+Y , is not equal to

mX +mY . To see this, note that the density of X + Y is given by

fX+Y (z) =

∫ ∞
−∞

fX (z − t) fY (t) dt =

∫ z

0

e−(z−t)e−tdt = ze−z, for all z ≥ 0.

Since

FX+Y (mX +mY ) =

∫ 2 ln 2

0

ze−zdz =
3

4
− 1

2
ln 2 ≈ 0.4 < FX+Y (mX+Y ) = 1/2,

it holds that mX+Y > mX +mY .

More generally, we could also consider an additional translation of the origin,

say by a vector w, to obtain new orthogonal coordinates (and create new issues).
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The joint operation of rotation and translation can also be represented by a linear

matrix.11 But, medians (and means) are translation equivariant, and thus there is

no extra welfare advantage from such translations. Therefore, we focus below on the

family of rotations of coordinates around a fixed origin, described by the angle of

rotation θ relative to standard Cartesian coordinates.

2.3 The Set of Voting Mechanisms

For any rotation angle θ ∈ [0, 2π], we can define the direct marginal median mecha-

nism ϕθ as

ϕθ (t1, t2, ..., tn) = (m− (θ, t1, .., tn) ,m+ (θ, t1, .., tn)) ,

where (m− (θ, t1, .., tn) ,m+ (θ, t1, .., tn)) is the marginal median with respect to ro-

tation θ and reported peaks ti as defined in (3) and (4). Note that the function

ϕθ (t1, t2, ..., tn) is continuous in θ and in all its other arguments since both rotations

and medians are continuous functions. It is easy to see that ψθ is dominant-strategy

incentive compatible (DIC). Surprisingly, as shown by Kim and Roush [1984] and Pe-

ters et al. [1992], the set of marginal median mechanisms (for all possible rotations)

coincides with the entire class of anonymous, Pareto optimal and DIC mechanisms.12

This provides a complementary justification for our focus on simple-majority voting

mechanisms.

The mechanism ϕθ can be decentralized by defining the issues (via rotations) and

then voting sequentially by simply majority, one issue at a time, using a binary, se-

quential voting procedure with a convex agenda.13 To illustrate, suppose the two basic

issues X and Y are the levels of two public goods. For each (possibly rotated) dimen-

sion we separately apply the following sequential voting procedure, first devised by

11This set of general transformation matrices (rotation and translation) is called the special or-

thogonal group for the plane, and is denoted by SO(2). Each matrix in SO (2) is an orthogonal

matrix. It is special because the determinant of each matrix is +1, whereas the determinant could

be −1 for other orthogonal transformations such as reflections.
12A mechanism ψ is anonymous if, for any profile of reports (ti, t−i), ψ (t1, ..., ti, ..., tn) =

ψ
(
tp(1), ..., tp(i), ..., tp(n)

)
, where p is any permutation of the set {1, ..., n}. A mechanism ψ is

Pareto optimal (or Pareto effi cient) if, for any profile of reports (ti, t−i), there is no alternative v

such that ||ti − v||2 ≤ ||ti − ψ (ti, t−i)||2 for all i, with strict inequality for at least one agent. Note
that their characterization fails in higher dimensions because anonymous, Pareto optimal and DIC

mechanisms need not exist. Hence, our analysis can be extended to higher dimensional problems,

but the solution need not be ex-post Pareto optimal.
13At each stage of convex, sequential procedure on a fixed dimension, a binary decision is collec-

tively taken among two ideologically coherent sets of alternatives that create a clear left-right divide.

For details see Gershkov, Moldovanu and Shi (2016) and Kleiner and Moldovanu (2016).
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Bowen [1943]: Starting with the status-quo quantity, voters vote by simple majority

on successive increments (or decrements); if a simple majority of voters is against the

first increment, voting stops and the status quo is adopted; otherwise voting contin-

ues to the next increment; if the second increment fails to garner a majority support,

voting stops and the first increment is implemented; otherwise, voting continues to

yet another increment, and so on. As argued in Bowen [1943], the sequential voting

procedure (where voters vote sincerely) yields an equilibrium level of public good pro-

vision that is preferred by the median voter of that dimension. Gershkov, Moldovanu

and Shi [2016] analyzed the dynamic, strategic incentives under Bowen’s procedure

and showed that sincere voting is also an ex-post equilibrium, and hence that the

public good level preferred by the median is indeed the equilibrium outcome. The

overall resulting equilibrium of sequential voting, dimension by dimension, is then an

incidence of the structure induced equilibrium à là Shepsle [1979].

Theorem 1 Assume that agents decide one issue at a time on the orthogonal dimen-
sions Z+(θ) and Z−(θ) that are obtained by rotating original issues X and Y . Assume

also that the vote on each issue is by simple majority according to a convex, binary

sequential procedure. Then sincere voting is an ex-post equilibrium and the outcome

is (m− (θ, t1, ..., tn) ,m+ (θ, t1, ..., tn)), independently of the order in which the issues

are put up to vote.14

Proof. Assume that voters decide first on dimension Z+(θ), and then on dimension

Z−(θ), and recall that these are orthogonal. Denote the first decision by k+ (θ, t1, ..., tn).

This fixes the first coordinate of the final decision. In other words, at the second

stage the agents choose only among alternatives of the form (k+ (θ, t1, ..., tn) , z−).

This is a one-dimensional problem, on which agents have single peaked preferences.

For any k+ (θ, t1, ..., tn), the ex-post equilibrium outcome of any binary, sequential

voting with a convex agenda is sincere voting, and the outcome is the Condorcet

winner z− = m− (θ, t1, ..., tn). Given this outcome, the first decision is a choice

among alternatives of the form (z+,m− (θ, t1, ..., tn)). Since this is again a one-

dimensional problem, the outcome is the Condorcet winner, and the final outcome is

((m+ (θ, t1, ..., tn) ,m− (θ, t1, ..., tn)). An analogous reasoning yields the result for the

other order of votes on the two issues.
14Sincere voting means that, at each binary decision node, an agent votes for the subset of alter-

natives containing his/her preferred alternative among those that are still relevant.
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3 The Limit Case when the Number of Agents Is

Large

The full probabilistic optimization problem can be rewritten as

(P0) min
θ∈[0,2π]

∫
D

...

∫
D

(
1

n

n∑
i=1

||R (θ) ti − ϕθ (t1, t2, ..., tn)||2
)
f(t1)...f(tn)dt1...dtn.

We focus here on the solution to problem (P0) when the number of agents is large.
But, note that the resulting optimal mechanism will be incentive compatible, Pareto

optimal and anonymous for any number of voters.15 For a random variable X with

finite mean µX and variance σ
2
X , we know from the central limit theorem that

√
n

(
1

n

n∑
i=1

Xi − µX

)
→ N(0, σ2X).

Bahadur (1966) showed that the quantiles of large samples display a similar behavior.

In particular,
√
n(X(n+1)/2:n −mX)→ N

(
0,

1

4f 2(mX)

)
where

X(n+1)/2:n = median (X1, ..., Xn)

and where mX is the median of the distribution. Thus, as n goes to infinity, the

sample median converges to the median of the underlying distribution and, of course,

the sample mean converges to the mean.

By applying the above limit results to our setting, we obtain that, as n→∞,(
m− (θ, t1, .., tn)

m+ (θ, t1, .., tn)

)
−→

(
m− (θ)

m+ (θ)

)
≡
(
median (X cos θ − Y sin θ)

median (X sin θ + Y cos θ)

)
Furthermore, since the norm operation ||·|| is continuous, we obtain that, as n→∞,

1

n

n∑
i=1

||R (θ) ti − ϕθ (t1, t2, ..., tn)||2

=
1

n

n∑
i=1

[
(xi cos θ − yi sin θ −m− (θ, t1, .., tn))2 + (xi sin θ + yi cos θ −m+ (θ, t1, .., tn))2

]
→ E ||X cos θ − Y sin θ −m−(θ), X sin θ + Y cos θ −m+(θ)||2

= σ2X + σ2Y +
(
µ− (θ)−m− (θ)

)2
+
(
µ+ (θ)−m+ (θ)

)2
15This contrasts trivial incentive compatible mechanisms such as always choosing a fixed alterna-

tive, which may yield “catastrophic”results for a finite number of agents and particular realizations

of types.
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where

µ− (θ) = µX cos θ − µY sin θ, and µ+ (θ) = µX sin θ + µY cos θ

Therefore, in the limit where n is very large, our problem becomes

(P1) min
θ∈[0,2π]

(
µ− (θ)−m− (θ)

)2
+
(
µ+ (θ)−m+ (θ)

)2
+ σ2X + σ2Y .

In other words, we look for the rotation that creates the marginal median vector with

the minimum distance from the mean.

For most parts of the analysis below, it will be convenient to normalize the means

ofX and Y to be zero - such a normalization is without loss of generality because of the

translational equ-invariance of both mean and median. Let us define the normalized

random variables X̃ and Ỹ as

X̃ = X − µX and Ỹ = Y − µY .

The corresponding normalized marginal medians (m̃− (θ) , m̃+ (θ)) are

m̃− (θ) = m− (θ)− µ− (θ) and m̃+ (θ) = m+ (θ)− µ+ (θ) .

We further note that it is without loss of generality to restrict attention to rotations

in the interval [0, π/2]. That is, for any θ ∈ [π/2, 2π] that minimizes the planner’s

objective, there exists θ′ ∈ [0, π/2] that attains the same minimum.16 Hence, the

planner’s problem can be rewritten as

(P2) min
θ∈[0,π/2]

m̃2
− (θ) + m̃2

+ (θ) + σ2X + σ2Y .

Since variances are fixed, the planner’s goal under this normalization is simply to find

the rotation resulting in a marginal median vector with minimum norm. To simplify

notation, we shall drop the tilde symbol for normalized random variables where no

confusion can arise.

Before proceeding, we would like to comment on the feasibility of the first-best

solution: it is clearly not implementable if the number of voters is finite. Moreover,

the individual influence on the mean is unbounded unless the distribution of peaks

is on a compact interval. Thus, even if the numbers of voters is large, the possibility

to tilt the mean in one’s favor may be substantial. With a continuum of voters, the

planner can, in principle, dictate the mean as the collective choice without seeking

any input from the voters. There are several serious objections to such a theoretical

construct that is not a limit of incentive compatible mechanisms for a finite number

16This claim is a direct consequence of simple trigonometric identities, and we omit its proof.
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of voters. Moreover, it requires the planner to have detailed knowledge about the

joint distribution of individuals’preferences. In contrast, voting by simple majority in

each dimension is practical and often observed in reality because it is always incentive

compatible, and because running it does not require any prior knowledge about the

distribution. Also all our theorems (Theorems 1-4) do not require the planner to know

the exact distribution: it is suffi cient to know that the joint distribution belongs to a

broad class.

3.1 Sub-Optimality of Voting on Independent Issues

In this subsection, we assume that the marginals X and Y are independent. We work

on the normalized version of the planner’s problem (P2). The zero-angle rotation
corresponds then to voting on independent issues. Our goal is to show that the

zero-angle rotation yields a local maximum of the norm of the normalized marginal

median. In other words, it leads to a local utility minimum, and is thus sub-optimal.

Theorem 2 Assume that X and Y are independent. The rotation with angle θ = 0 is

a local utility minimum if

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0,m2

X +m2
Y 6= 0. (5)

Proof. See Appendix A.
Note that the rotation θ = 0 yields a local maximum of the norm of the normalized

marginal median if it is a critical point

m−(0)m′−(0) +m+(0)m′+(0) = 0 (6)

and if it satisfies the following local second-order condition

m′′−(0)m−(0) + (m′−(0))2 +m′′+(0)m+(0) + (m′+(0))2 < 0. (7)

The proof verifies that m′−(0) = m′+(0) = 0 (so condition (6) is trivially satisfied),

and that condition (7) is equivalent to condition (5) in Theorem 2.

The geometric intuition of the sub-optimality of voting on independent issues is

illustrated in Figure 2 below.

Assume that 0 = µX ≤ mX and 0 = µY ≤ mY . We want to show that a

small rotation improves welfare if f ′X (mX) ≥ 0 and f ′Y (mY ) ≥ 0. Assume that the

unrotated median is B. Therefore, by independence, there is a mass of 50% above the

AC line and a mass of 50% to the right of GH line. Consider a small rotation with

angle θ > 0, so that new axes are x′ and y′. We want to show that this shifts the new
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median towards the mean (0, 0). That is, we want to show that the median moves

towards the south-west. Consider the projection of B onto the new, rotated axes: the

result will follow if the mass above DE and the mass to the right of LM are both

below 50%. If the area of ABE is larger than the one of BCD, we obtain that the

mass above ED is indeed smaller than 0.5 (the comparison for the other dimension is

analogous).

my

mx

B C
D

b2

a2

y y’

x

x’

A
E

H

G L

M

a1

b1

Figure 2. Small rotation improves welfare if f ′X (mX) ≥ 0 and f ′Y (mY ) ≥ 0

For illustration purposes, let us assume that X and Y distribute on bounded

intervals [a1, a2] and [b1, b2], respectively. The line DE passing through point B is

given by y = mY − (x−mX) tan θ. Therefore, the difference between the areas ABE

and BCD is

ABE −BCD =

∫ a2

a1

[FY (mY − (x−mX) tan θ)− FY (mY )] fX (x) dx

Since f ′Y (mY ) ≥ 0, FY is locally convex at mY . Therefore, for suffi ciently small

θ, the curve FY (mY − (x−mX) tan θ) with x ∈ [a1, a2] lies above the tangent line

FY (mY ) + fY (mY ) (mX − x) tan θ. As a result, for suffi ciently small θ, we have

ABE −BCD ≥
∫ a2

a1

fY (mY ) (mX − x) tan θfX (x) dx = fY (mY )mX tan θ > 0

as desired. The argument for the other dimension is analogous.
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An alternative suffi cient condition in Theorem 2 can be formulated in terms of

the familiar order of the mode, median, mean of the distribution. If random variables

X and Y are unimodal,17 then the rotation of θ = 0 is a local utility minimum

as long as the median always lies between the mode and the mean. This alternative

suffi cient condition is simple and intuitive: there are elegant, general characterizations

of distributions where such orders of the mode, median, mean hold (see for example,

Dharmadhikari and Joag-Dev [1988], Basu and DasGupta [1997]).

Corollary 1 Assume that X and Y are unimodal and independent. Suppose also

that X and Y satisfy

MX ≤ mX ≤ µX or µX ≤ mX ≤MX

MY ≤ mY ≤ µY or µY ≤ mY ≤MY

whereM,m, µ are mode, median and mean, respectively. Then the rotation with angle

θ = 0 is a local utility minimum.

Proof. If MX ≤ mX ≤ µX = 0 (where the last equality holds by normalization),

then mX ≤ 0 and f ′(mX) ≤ 0 because mX is to the right of the mode. Hence

mXf
′
X (mX) ≥ 0. If 0 = µX ≤ mX ≤MX , then mX ≥ 0 and f ′(mX) ≥ 0 because mX

is to the left of the mode. Hence mXf
′
X (mX) ≥ 0, and analogously for Y .

3.2 When does “Top-Down”Dominate “Bottom-Up”?

In this subsection, we assume that the marginals X and Y are identically (but not

necessarily independently) distributed. By symmetry, the π/4 rotation is a natural

candidate for improving welfare. For θ = π/4 we have(
m− (θ)

m+ (θ)

)
=

(
median (

√
2
2

(X − Y ))

median (
√
2
2

(X + Y ))

)
=

√
2

2

(
0

median (X + Y )

)

The last equality follows because median(λZ) = λmedian(Z) for any random variable

Z, and because X − Y is a symmetric random variable, where the median equals the
mean, normalized here to be zero.

This implies that the π/4 rotation completely eliminates the conflict arising be-

tween effi ciency and incentive compatibility along one dimension —all remaining such

conflict is concentrated in the other dimension, as illustrated in the following figure

17A random variable Z is unimodal if its density f(z) has a single mode (or peak).
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(assuming mX > µX = 0):

Figure 3. The π/4 rotation with symmetric marginals

The π/4 rotation has the following interpretation: Instead of voting X and Y

separately, the vote is on issues X+Y and X−Y , and the outcome is determined by
the simple majority on each issue. Once voters have decided on X + Y and X − Y ,
the planner can then obviously recover X and Y . The two-step voting procedure

associated with π/4 rotation resembles the “top-down”budgeting procedure widely

used in practice: first a total budget is determined, and then it is allocated among

several items.

We now compare the expected utility under the π
4
rotation with that under the 0

rotation when X and Y are identically distributed. As is also apparent from Figure 3,

this amounts to check whether the original coordinate-wise median vector (mX ,mY ) is

closer to the origin than the new coordinate-wise median vector (mX+Y /2,mX+Y /2),

or vice-versa.

Theorem 3 Suppose X and Y are identically distributed and mX 6= µX . In addition,

suppose that convolution X + Y maintains the relative magnitude of the mean and

median, that is,

mX < (>)µX ⇒ mX+Y < (>)µX+Y .

If mX < (>)µX , and if the median function is super-additive (sub-additive)

mX +mY < (>)mX+Y , (8)

then the expected utility at θ = π
4
exceeds the expected utility at θ = 0.
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Proof. Suppose that mX < µX and that µX = 0. The proof for the other case is

completely analogous. By assumption, mX = mY ≤ 0 and m+(π
4
) ≤ 0. The expected

utility at θ = 0 is

U(0) = −2σ2X − 2m2
X

and the expected utility at θ = π
4
is

U(
π

4
) = −2σ2X −m2

+(
π

4
)

Given our assumptions, we have

U(
π

4
) > U(0)⇔ m+(

π

4
) >
√

2mX ⇔ m√
2
2
(X+Y )

>
√

2mX ⇔ mX+Y > 2mX ,

where we use the fact that for any random variable Z, it holds that λmZ = mλZ .

Remark 2 The above suffi cient conditions can also be directly applied to compare
the level of total budget that results from the “bottom-up”and “top-down”budgeting

procedures mentioned in the Introduction.18 Whenever the median function is super

(sub)-additive, the top-down procedure where a total budget is determined first leads

to a higher (lower) overall budget than the bottom-up procedure where votes are item-

by-item and where the total budget is gradually determined.

The super-additivity (or sub-additivity) condition on the median function, though

elegant, may not be easily verified directly since it involves the computation of the

convolution and its median. Assuming that X and Y are I.I.D., we can present a

simple, directly verifiable, suffi cient condition that simultaneously guarantees mX <

(>)µX and mX +mY < (>)mX+Y .

Proposition 1 Suppose that X and Y are I.I.D. and that mX 6= µX . If

FX (mX + ε) + FX (mX − ε) ≤ (≥) 1 for all ε > 0, (9)

then

mX < (>)µX and mX +mY < (>)mX+Y .

Proof. See Appendix A.
It is worth noting that van Zwet [1979] shows that the same condition (9) implies

that µX < mX < MX (µX > mX > MX). It follows from Corollary 1 that con-

dition (9) also implies the suffi cient condition in Theorem 2 for zero rotation to be

suboptimal.

18Note that this question is not identical to the question of utility comparisons.

20



We can apply Proposition 1 to show that, if F is either strictly convex or concave,

then the π/4 rotation is strictly better than zero rotation.19

Corollary 2 Suppose that X and Y are I.I.D. and that µX 6= mX . If F (x) is strictly

convex or strictly concave, then the expected utility at θ = π/4 is strictly higher than

the expected utility at θ = 0.

Proof. Note that F (X) is uniformly distributed random variable , so thatE [F (X)] =

1/2. Suppose that F is strictly convex. The concave case can be proved analogously.

By Jensen’s inequality

F (mX) =
1

2
= E [F (X)] > F (E [X]) = F (µX) .

Hence, mX > µX . In order to show that mX + mY > mX+Y , it is suffi cient to show

that

FX (mX + ε) + FX (mX − ε) ≥ 1 for all ε > 0.

Note that fX (mX + ε)−fX (mX − ε) > 0 by strict convexity of F , so FX (mX + ε)+

FX (mX − ε) is increasing in ε and reaches a minimum at ε = 0. Since FX (mX) +

FX (mX) = 1, we must have FX (mX + ε) + FX (mX − ε) ≥ 1 for all ε > 0.

In Appendix A, we show how the super-additivity condition in Theorem 3 is

satisfied for two well-known families of distributions where condition (9) is not easily

checked, or does not hold. We also show there, by making use of copulas, an example

where independence is not necessary.

Note that the dominance of π/4 does not require the knowledge of the exact

probability distribution of the bliss points. It is enough to know that the distribution

has symmetric marginals and satisfies the required properties. Given the symmetry of

X and Y and the sub-optimality of the zero rotation, the π/4 rotation is the natural

candidate for the optimal rotation. Even though all our numerical simulations clearly

suggest it, we were unable to analytically prove that the π/4 rotation is fully optimal.

But, if X and Y are I.I.D., we can analytically show that the π/4 rotation is a critical

point, i.e., the first-order condition (6) is satisfied when θ = π/4, and numerically show

that the π/4 rotation is indeed optimal for several standard families of distributions.

19Note that, if X has a bounded support (a, b), a suffi cient condition for the case of µX < mX is

FX (mX + ε) + FX (mX − ε) ≥ 1 for all ε ∈ (0, b−mX) .

and a suffi cient condition for the other case is

FX (mX + ε) + FX (mX − ε) ≤ 1 for all ε ∈ (0,mX − a) .
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Proposition 2 For any I.I.D. marginals X and Y , θ = π/4 is a critical point, i.e.,

it satisfies the first order condition.

Proof. See Appendix A.
If we can verify second-order conditions either locally or globally, then Proposition

2 can tell us whether θ = π/4 is local or global utility maximum. Unfortunately, the

second order conditions, evaluated at θ = π/4, turn out to be very elusive.

We conclude this section with several numerical simulations. In all these simula-

tions, X and Y are I.I.D., and the original distributions (rather than the normalized

ones) are used as inputs. We then use Mathematica to plot the aggregate expected

welfare as a function of the rotation angle θ ∈ [0, π/2]. All simulations suggest that a

π/4-rotation (i.e., θ ≈ 0.785) is globally optimal. We have also varied the parameter

values for the distributions, and the resulting graphs are similar. In fact, we were not

able to find any standard distribution where the π/4-rotation is not globally optimal.

(a) Exponential: f (x) = e−x, x ≥ 0 (b) Gamma: f (x) = xe−x, x ≥ 0

(c) Pareto: f (x) = x−2, x ≥ 1 (d) Rayleigh: f(x) = 2xe−x
2

, x ≥ 0

Figure 4. Simulation with I.I.D. marginals

Remark 3 In practice, after the total sum (X + Y ) is determined at the first stage,

voters are asked to vote on X (or Y ) rather than on the difference (X − Y ). In other

words, the employed rotation is not orthogonal. It turns out that the equilibrium
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voting outcome is the same: as long as the total sum (X + Y ) is voted upon first, any

linear combination that is not colinear with X + Y will yield the same equilibrium

outcome when voted upon at the second stage. To see this, suppose voters vote first

on X + Y, and then on X. Consider the strategy at the second stage of voter i with

ideal point (xi, yi) after the total sum X + Y was determined in the first stage. This

determination essentially imposes a budget line (the purple dash line in Figure 5) for

the second stage voting, and the final voting outcome must lie on this budget line.

Figure 5. Alternative implementation of the top-down procedure

Now let A and B denote the points obtained by projecting (xi, yi) on the budget line

and on the X axis, respectively. Let D denote the projection A to the X axis. Then,

at the second stage voting on X, voter i’s dominant strategy is to vote for point D

rather than point B : whenever i is pivotal, voting D yields point A on the budget

line, which is closest to his ideal point. On the other hand, A is exactly the point that

i would have voted for if the second stage vote were on the difference X − Y . Note
that the above argument is independent of the number of voters.

4 Bounds on Relative Effi ciency

In this section we provide several lower bounds on the (relative) effi ciency loss of the

marginal median mechanisms augmented by rotations. In particular, for the logcon-

cave case studied by Caplin and Nalebuff ([1988], [1991]), the lower bound is 88% of

the first-best utility20. Various other bounds are obtained under other assumptions

20Recall that the first best is obtained by choosing the vector of marginal means, which, for any

finite number of agents, is not incentive compatible
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on the distributions governing the distribution of voter’s ideal points. The proofs use

several classical statistical inequalities, and some more recent concentration inequal-

ities.
Assume that ideal points are distributed such that the marginals are given by

random variables (X, Y ) where X and Y are not necessarily identical, and are poten-

tially correlated. Since the results heavily use statistical results that establish relations

between the mean, median and variance, we work here with the non-normalized
variables (so that the role of the mean and its relations to the other statistics does not

get obscured by the normalization we used above). The first-best expected utility,

attained by choosing the mean in each coordinate is given by

−E(X − µX)2 − E(Y − µY )2 = −σ2X − σ2Y .

Note that the first best utility decreases as the variances increase. The expected

utility of rotated medians with angle θ is given by

U (θ) = −σ2X − σ2Y −
(
µ− (θ)−m− (θ)

)2 − (µ+ (θ)−m+ (θ)
)2
.

Thus, the relative effi ciency of the rotation with angle θ (relative to first best) is given

by:

EF (θ) =
σ2X + σ2Y

σ2X + σ2Y +
(
µ− (θ)−m− (θ)

)2
+
(
µ+ (θ)−m+ (θ)

)2 ≤ 1

Observe that two forces play here a role: on the one hand, a distribution that is

concentrated around a central location (such as the mean or the median) will have

a small difference between mean and median, which tends to increase the relative

effi ciency. On the other hand, such a distribution also has a low variance so that the

difference between mean and median plays a bigger overall role.21

We define the maximal relative effi ciency as

EF ≡ max
θ
EF (θ) .

The first-best outcome can be attained by majority voting (in the limit with a large

number of agents) if the distributions of both X and Y are symmetric around their

respective means. In this case we have µ− (θ) = m− (θ) and µ+ (θ) = m+ (θ).

Example 2 (Normal Distribution) LetX and Y be independently distributed nor-

mal random variables with zero mean. Then X cos θ − Y sin θ and X sin θ + Y cos θ

are also normally distributed with mean and also median equal to zero. Thus, the

first-best is implementable, and all rotations are welfare equivalent. This proves a

conjecture about the normal distribution due to Kim and Roush [1984].
21It is interesting to note that the covariance ofX and Y does not play a direct role in the effi ciency

calculations: it only enters in the way that the medians of the convolutions are calculated.
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We now obtain various lower bounds on the attained effi ciency for various classes

of distributions. We say that a random variable X has increasing failure rate (IFR)

if its hazard rate f (x) / (1− F (x)) is increasing in x.

Theorem 4 The following relative effi ciency bounds hold:

1. For any random variables X and Y , EF ≥ 1
2
.

2. If both X and Y are unimodal, then EF > 5
8
.

3. If both X and Y have an increasing failure rate (IFR) such that µX ≤ mX and

µY ≤ mY , then EF > 3
5
; if in addition X and Y are I.I.D., then EF ≥ 0.754.

4. If X and Y are identically distributed, then EF ≥ 2σ2X
3σ2X+Cov(X,Y )

. Thus, if X

and Y are independent, EF ≥ 2
3
, and in the co-monotonic scenario expected

utility cannot be improved by rotation.

5. If X and Y are I.I.D. and each has a log-concave density, then EF ≥ 0.876.

Proof. 1. A classical inequality due to Hotelling and Solomons [1932] says that the
square distance between the mean and median of any random variable is always less

than variance:

(µ−m)2 ≤ σ2.

Therefore,(
µ− (θ)−m− (θ)

)2 ≤ σ2−(θ) = σ2X cos2 θ + σ2Y sin2 θ − 2 sin θ cos θCov(X, Y )(
µ+ (θ)−m+ (θ)

)2 ≤ σ2+(θ) = σ2X sin2 θ + σ2Y cos2 θ + 2 sin θ cos θCov(X, Y )

Hence we obtain the universal bound:

EF (θ) ≥ σ2X + σ2Y
2σ2X + 2σ2Y

=
1

2

2. For the class of unimodal distributions it can be shown that the squared

distance between mean and median is at most 3
5
variance (see Basu and DasGupta

[1997]). Thus, for such distributions we get:

EF > EF (0) ≥ σ2X + σ2Y
(σ2X + σ2Y ) + 3

5
(σ2X + σ2Y )

=
5

8

3. For the class of distributions with an increasing failure rate (IFR), if µX ≤ mX ,

then we can obtain from Rychlik [2000] that

(µX −mX)2

σ2
≤

(− log(1
2
)− 1

2
)2

3
4

+ log(1
2
)

= 0.656,
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and hence an effi ciency rate of

EF ≥ EF (0) ≥ σ2X + σ2Y
(σ2X + σ2Y ) + 0.656(σ2X + σ2Y )

=
1

1 + 0.656
' 3

5
.

If in addition, X and Y are I.I.D., then the convolution of two such variables is again

IFR (see Barlow and Proschan [1965]) and we obtain

EF ≥ EF (
π

4
) ≥ 2σ2X

2σ2X + 0.65σ2X
= 0.754.

4. If X distributes as Y (not necessarily independent), we know that X − Y is

symmetric and hence that m−
(
π
4

)
= µ−

(
π
4

)
= 0. This yields:

EF ≥ EF (
π

4
) =

2σ2X

2σ2X +
(
µ+
(
π
4

)
−m+

(
π
4

))2 ≥ 2σ2X
3σ2X + Cov(X, Y )

Assume that (X1, Y1) and (X2, Y2) belong to the same Frechet class M(F1, F2) of bi-

variate distributions with fixed marginals F1 and F2. Moreover, assume that (X1, Y1)

≤PQD (X2, Y2) where PQD stands for the positive quadrant order (see Lehmann

[1966]). This stochastic order measures the amount of positive dependence of the un-

derlying random vectors.22 We obtain that all one-dimensional variances are identical,

but that Cov(X1, Y1) ≤ Cov(X2, Y2). Thus, the worst case effi ciency bound is higher

when the variates are less positive dependent. In particular, for given marginals, the

highest worst-case effi ciency of the π
4
rotation is achieved for the I.I.D. case where

Cov(X, Y ) = 0, and where:

EF ≥ EF (
π

4
) ≥ 2σ2X

3σ2X
≥ 2

3

The polar case to independence is the case where X and Y are co-monotonic: then,

their covariance is maximized for given marginals, and, moreover, their convolution

is quantile-additive (see Kaas et al. [2002]). In other words, quantiles and thus

medians (the 50% quantile) are linear functions. Hence we obtain for the median

that m+(π
4
) =
√

2mX , that m2
+(π

4
) ≤ 2σ2X and hence that

∀θ, EF = EF (
π

4
) ≥ 2σ2X

4σ2X
=

1

2

In the co-monotonic scenario expected utility cannot be improved by rotation.

5. Consider now the I.I.D. case with log-concave densities.23 Then X and Y

are unimodal. Their convolution is log-concave (Prekopa [1973]), and hence also

22It is implied, for example, by the supermodular order.
23Note that any log-concave distribution on the plane yields log-concave marginals (Prekopa

[1973]).
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unimodal.24 Let fX = fY denote the respective logconcave densities. Bobkov and

Ledoux [2014] prove that25

1

12σ2X
≤ f 2X(mX) ≤ 1

2σ2X

On the other hand, Ball and Böröczky [2010] prove that:

fX(mX)· | mX − µX |≤ ln

(√
e

2

)
Combining the two inequalities above yields:

(mX − µX)2 ≤ 1

f 2X(mX)
ln2
(√

e

2

)
≤ 12σ2X ln2

(√
e

2

)
The effi ciency bound in the log-concave case becomes then:

EF ≥ EF (
π

4
) ≥ 2σ2X

2σ2X + 12σ2X ln2
(√

e
2

) =
1

1 + 6 ln2
(√

e
2

) = 0.876.

It is important to note that the above calculations also show that the improve-

ment obtained by rotation may be significant. Just to give one example, consider

the distribution for which the Hotelling-Solomons bound is achieved with equality.26

Then, the second-best welfare in the I.I.D. case without rotation is exactly half of

the first-best welfare, while the welfare following the 45 degree rotation is at least

two-thirds of the original first best, yielding an improvement of at least 30%.

In Appendix B, we show how the above bounds can be obtained for the case of

more dimensions. For example, in the I.I.D, case, the relative effi ciency tends to 1

when the number of dimensions becomes infinite.

5 Concluding Remarks

A re-definition of issues facilitates the search for an optimal consensus among ex-

ante conflicting interests. We have shown that voting by simple majority on each

24The convolution of unimodal densities need not be unimodal ! But, the convolution of X and

Y is unimodal for any Y iffX is log-concave (see Ibragimov [1956])
25Interestingly enough, the left hand side of the inequality applies to all probabiliy densities on

the real line.
26This is a discrete distribution concentrated on two points. But, it can be easily approximated

by continuous distribution that satisfy the bound with almost equality, for any needed degree of

precision.
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dimension becomes a highly effi cient aggregation mechanism when combined with

a judicious choice of the issues that are put up for vote. Our study endogenizes

the process by which a “structure induced equilibrium” can be reached in a com-

plex multi-dimensional collective decision problem with incomplete information about

preferences. While we have focused on welfare maximization, other goals (such as

maximizing the utility of an agenda setter) can be analyzed by the same methods. A

companion paper will explore in more detail the case of a finite number of voters.

6 Appendix A: Omitted Proofs

6.1 Proof of Theorem 2

As we noted in the text, in order to show that θ = 0 is suboptimal, it is suffi cient to

show

m−(0)m′−(0) +m+(0)m′+(0) = 0, (10)

and

m′′−(0)m−(0) + (m′−(0))2 +m′′+(0)m+(0) + (m′+(0))2 < 0. (11)

: 2m′2+2m′′<0.0
By definition of m+ (θ), we note that

1

2
= FX sin θ+Y cos θ (m+ (θ))

=

∫ ∞
−∞

Pr

(
Y <

m+ (θ)− x sin θ

cos θ

)
fX (x) dx

=

∫ ∞
−∞

FY

(
m+ (θ)− x sin θ

cos θ

)
fX (x) dx

Since it holds for all θ, we take a derivative with respect to θ to obtain

0 =

∫ ∞
−∞

fY

(
m+ (θ)− x sin θ

cos θ

)(
m′+ (θ) cos θ − x+m+ (θ) sin θ

cos2 θ

)
fX (x) dx (12)

By taking the second derivative with respect to θ, we obtain

0 =

∫ ∞
−∞

f ′Y

(
m+ (θ)− x sin θ

cos θ

)(
m′+ (θ) cos θ − x+m+ (θ) sin θ

cos2 θ

)2
fX (x) dx

+

∫ ∞
−∞

fY

(
m+(θ)−x sin θ

cos θ

)
cos4 θ

( [
m′′+ (θ) cos θ +m+ (θ) cos θ

]
cos2 θ

+2 cos θ sin θ
(
m′+ (θ) cos θ − x+m+ (θ) sin θ

) ) fX (x) dx

(13)
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If θ = 0, then conditions (12) and (13) reduce to

0 =

∫ ∞
−∞

fY (m+ (0))
(
m′+ (0)− x

)
fX (x) dx

and

0 =

∫ ∞
−∞

f ′Y (m+ (0))
(
m′+ (0)− x

)2
fX (x) dx+

∫ ∞
−∞

fY (m+ (0))
(
m′′+ (0) +m+ (0)

)
fX (x) dx

Note that m+ (0) = mY , so that we have

m′+ (0) =
fY (mY )

∫∞
−∞ xfX (x) dx

fY (mY )
∫∞
−∞ fX (x) dx

= µX = 0,

and

m′′+ (0) = −mY −
f ′Y (mY )

fY (mY )

∫ ∞
−∞

x2fX (x) dx.

Similarly, we can write

1

2
= FX cos θ−Y sin θ (m− (θ)) =

∫ ∞
−∞

FX

(
m− (θ) + y sin θ

cos θ

)
fY (y) dy

Taking the derivative with respect to θ, we obtain

0 =

∫ ∞
−∞

fX

(
m− (θ) + y sin θ

cos θ

)(
m′− (θ) cos θ + y +m− (θ) sin θ

cos2 θ

)
fY (y) dy (14)

Taking the second derivative with respect to θ, we obtain

0 =

∫ ∞
−∞

f ′X

(
m− (θ) + y sin θ

cos θ

)(
m′− (θ) cos θ + y +m− (θ) sin θ

cos2 θ

)2
fY (y) dy

+

∫ ∞
−∞

fX

(
m−(θ)+y sin θ

cos θ

)
cos4 θ

( [
m′′− (θ) cos θ +m− (θ) cos θ

]
cos2 θ

+2 cos θ sin θ
[
m′− (θ) cos θ + y +m− (θ) sin θ

] ) fY (y) dy

If θ = 0, then the above two conditions reduce to

0 =

∫ ∞
−∞

fX (m− (0))
(
m′− (0) + y

)
fY (y) dy

and

0 =

∫ ∞
−∞

f ′X (m− (0))
(
m′− (0) + y

)2
fY (y) dy+

∫ ∞
−∞

fX (m− (0))
(
m′′− (0) +m− (0)

)
fY (y) dy

Since m− (0) = mX , we have

m′− (0) = −
∫∞
−∞ yfY (y) dy∫∞
−∞ fY (y) dy

= −µY = 0
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and

m′′− (0) = −mX −
f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy

Therefore, the first-order condition (10) holds because m′− (0) = m′+ (0) = 0. For

the second order condition (11), note that

m′′−(0)m−(0) + (m′−(0))2 +m′′+(0)m+(0) + (m′+(0))2

= mX

(
−mX −

f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy

)
+mY

(
−mY −

f ′Y (mY )

fY (mY )

∫ ∞
−∞

x2fX (x) dx

)
= −m2

X −m2
Y −mX

f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy −mY
f ′Y (mY )

fY (mY )

∫ ∞
−∞

x2fX (x) dx

As a result, condition (11) is equivalent to

m2
X +m2

Y +mX
f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy +mY
f ′Y (mY )

fY (mY )

∫ ∞
−∞

x2fX (x) dx > 0.

Therefore, a suffi cient condition for the sub-optimality of zero rotation is

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0 and m2

X +m2
Y 6= 0.

6.2 Proof of Proposition 1

Suppose FX (mX + ε) + FX (mX − ε) ≤ 1 for all ε > 0. The other case is completely

analogous. We first use an argument by van Zwet [1979] to claim that mX < µX .

Note that

mX − µX =

∫ mX

−∞
(mX − x) fX (x) dx+

∫ ∞
mX

(mX − x) fX (x) dx

=

∫ mX

−∞
FX (x) dx−

∫ ∞
mX

(1− FX (x)) dx

=

∫ ∞
0

[FX (mX − x) + FX (mX + x)− 1] dx

It follows frommX 6= µX thatmX < µX , and that FX (mX − x)+FX (mX + x)−1 <

0 for some interval of x. Next, we use an argument adapted from Watson and Gordon

[1986] to prove that the median function is super-additive. The super-additivity of

the median function is equivalent to

Pr (X + Y < mX +mY ) <
1

2
(15)
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Note that

Pr (X + Y < mX +mY )

=

∫ ∞
mY

∫ mX+mY −y

−∞
fX (x) fY (y) dxdy +

∫ mY

−∞

∫ mX

−∞
fX (x) fY (y) dxdy

+

∫ ∞
mX

∫ mX+mY −x

−∞
fX (x) fY (y) dxdy

=

∫ ∞
mY

FX (mX +mY − y) fY (y) dy +
1

4
+

∫ ∞
mX

fX (x)FY (mX +mY − x) dx

=

∫ ∞
0

FX (mX − ε) fY (mY + ε) dε+

∫ ∞
0

fX (mX + ε)FY (mY − ε) dε+
1

4

Therefore, condition (15) is equivalent to

4

∫ ∞
0

FX (mX − ε) fY (mY + ε) dε+ 4

∫ ∞
0

fX (mX + ε)FY (mY − ε) dε < 1 (16)

Let us define non-negative random variables X+, X−, Y +, Y − as

X+ = X −mX |X ≥ mX and X− = mX −X|X ≤ mX

Y + = Y −mY |Y ≥ mY and Y − = mY − Y |Y ≤ mY

Then

Pr
(
X− > Y +

)
=

∫ ∞
0

2FX (mX − ε) 2fY (mX + ε) dε

Pr
(
Y − > X+

)
=

∫ ∞
0

2FY (mX − ε) 2fX (mX + ε) dx

Therefore, condition (16) is equivalent to

Pr
(
X− > Y +

)
+ Pr

(
Y − > X+

)
< 1 (17)

A suffi cient condition for (17) is

Pr
(
X+ < ε

)
≤ Pr

(
X− < ε

)
and Pr

(
Y + < ε

)
≤ Pr

(
Y − < ε

)
(18)

for all ε > 0 , and with strict inequality for some open interval of ε, because by setting

ε = Y + and ε = X+, respectively, we obtain

Pr
(
X+ < Y +

)
< Pr

(
X− < Y +

)
and Pr

(
Y + < X+

)
< Pr

(
Y − < X+

)
and thus (17). Since X and Y are I.I.D., the suffi cient condition (18) reduces to

Pr
(
X+ < ε

)
≤ Pr

(
X− < ε

)
for all ε > 0.
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Equivalently,

Pr (X −mX < ε) ≤ Pr (mX −X < ε) .

which simplifies into the first inequality in (9). As we argued above, since mX 6= µX ,

we must have FX (mX − ε) + FX (mX + ε) − 1 < 0 for some open interval of ε, as

desired.

6.3 Proof of Proposition 2

If X and Y are iid, then we have

m− (π/4) = 0 and m+ (π/4) =

√
2

2
mX+Y .

Therefore, θ = π/4 is a critical point if

0 = m− (π/4)m′− (π/4) +m+ (π/4)m′+ (π/4) =

√
2

2
mX+Ym

′
+ (π/4)

Recall (12) from the proof of Theorem 2 that

0 =

∫ ∞
−∞

fY

(
m+ (θ)− x sin θ

cos θ

)(
m′+ (θ) cos θ − x+m+ (θ) sin θ

cos2 θ

)
fX (x) dx

Hence, if X and Y are IID and θ = π/4, we have

0 =

∫ ∞
−∞

f
(√

2m+ (π/4)− x
)(√

2m′+ (π/4)− 2x+
√

2m+ (π/4)
)
f (x) dx

It follows that
√

2m′+ (π/4) fX+Y

(√
2m+ (π/4)

)
=

∫ ∞
−∞

f
(√

2m+ (π/4)− x
)(

2x−
√

2m+ (π/4)
)
f (x) dx.

Note that by change of variable y =
√

2m+ (π/4)− x, we have∫ ∞
−∞

f ′
(√

2m+ (π/4)− x
)(

2x−
√

2m+ (π/4)
)2
f (x) dx

=

∫ ∞
−∞

f ′ (y)
(

2y −
√

2m+ (π/4)
)2
f (y) dy.

Therefore,

0 =

∫ ∞
−∞

[
f ′
(√

2m+ (π/4)− x
)
f (x)− f ′ (x) f

(√
2m+ (π/4)− x

)](
2x−

√
2m+ (π/4)

)2
dx

=

[
f
(√

2m+ (π/4)− x
)
f (x)

(
2x−

√
2m+ (π/4)

)2]∞
−∞

−
∫ ∞
−∞

f
(√

2m+ (π/4)− x
)
f (x) 4

(
2x−

√
2m+ (π/4)

)
dx

= 4
√

2m′+ (π/4) fX+Y

(√
2m+ (π/4)

)
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where we assume that

lim
x→∞

f
(√

2m+ (π/4)− x
)
f (x)

(
2x−

√
2m+ (π/4)

)2
= lim

x→−∞
f
(√

2m+ (π/4)− x
)
f (x)

(
2x−

√
2m+ (π/4)

)2
= 0.

Therefore, m′+ (π/4) = 0. It follows that
√

2mX+Ym
′
+ (π/4) = 0, so θ = π/4 is indeed

a critical point.

6.4 Examples for Section 3.2

We show here how the super-additivity condition in Theorem 3 is satisfied for two

well-known families of distributions where condition (9) is not easily checked, or does

not hold.27 This requires a few definitions and some results that use majorization

and Schur-convexity arguments.

Definition 1 A vector (a, b) is said to majorize (a′, b′), written as (a, b) � (a′, b′), if

a+ b = a′+ b′ and if max(a, b) > max {a′, b′}. A function h (a, b) is said to be Schur-

convex in (a, b) if h (a′′, b′′) ≥ h (a′, b′) whenever (a′′, b′′) � (a′, b′), and Schur-concave

in (a, b) if h (a′′, b′′) ≤ h (a′, b′) whenever (a′′, b′′) � (a′, b′).

Consider first the large and important family of Gamma distributions with density

fα,β (x) =
βα

Γ (α)
xα−1e−βx for x > 0.

This family contains the Exponential (that can be obtained by setting α = 1) and

many other well known distributions. For any constant c > 0, the random variable

cX is also Gamma with parameters α and β/c. If X and Y are independent Gamma

with parameters (αX , β) and (αY , β), respectively, then X + Y is also Gamma with

parameters (αX +αY , β). Thus, the Gamma family is closed under scaling and under

convolution. In a classic study, Bock et al. [1987] showed that Pr (aX + bY ≤ t),

0 ≤ a, b ≤ 1, is Schur-convex in (a, b) for all t ≤ µX . Since (1, 0) �
(
1
2
, 1
2

)
, we have

F 1
2
X+ 1

2
Y (t) ≤ FX(t) for all t ≤ mX . This implies m 1

2
X+ 1

2
Y ≥ mX as desired.28

27Although the super-additivity (or sub-additivity) condition is derived for normalized distribu-

tions, it is straightward to verify that it is also suffi cient for original distributions.
28Alternatively, let m(α, β) denote the median of Gamma random variable X with parameters α

and β. Then m(α, β) = m(α, 1)/β. Note that

U(
π

4
) = −2σ2 (α, β)−

(
µ+ −m+

)2
= −2σ2 (α, β)−

(√
2α

β
−
√
2

2β
m(2α, 1)

)2
= −2σ2 (α, β)− 1

2β2
(2α−m(2α, 1))2
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A second family is the Rayleigh distribution with cumulative distribution

F (x) = 1− e−x2 for x ≥ 0.

Suppose X, Y are I.I.D. distributed according to Rayleigh.29 Then, according to

Lemma 4 in Hu and Lin [2000], we have

Pr (X cos θ + Y sin θ ≤ z) = 1−
∫ π/2

0

sin(2τ)
(
1 + φ2(θ, τ , z)

)
e−φ

2(θ,τ ,z)dτ

where φ(θ, τ , z) = z/ cos(θ − τ). The medians of X and of Y are mX = mY =
√

ln 2.

It can be (numerically) verified that

Pr
(

(X + Y ) /
√

2 ≤
√

2mX

)
= 1−

∫ π/2

0

sin(2τ)
(

1 + φ2(
π

4
, τ ,
√

2 ln 2)
)
e−φ

2(π
4
,τ ,
√
2 ln 2)dτ

≈ 0.4658

< 0.5

= Pr
(

(X + Y ) /
√

2 ≤ m+(
π

4
)
)

where the last equality follows from the definition of m+(π
4
). Hence, m+(π

4
) >
√

2mX

as desired.

By assuming independence between X and Y , we were able to derive operational,

suffi cient conditions for the π/4 rotation to dominate the zero rotation, but indepen-

dence is not necessary. We now present an example where, even though X and Y are

correlated, the median function is super-additive (sub-additive) so the π/4 rotation

is welfare superior to the zero rotation. The standard tool we use to model corre-

lation between X and Y for given marginals is the copula (see Nelson [2006] for an

introduction).

and

U(0) = −2σ2(α, β)− 2 (µX −mX)
2
= −2σ2(α, β)− 2

β2
(α−m(α, 1))2

Therefore,

U(
π

4
) > U (0) ⇔ 1

2β2
(2α−m(2α, 1))2 < 2

β2
(α−m(α, 1))2

⇔ (2α−m(2α, 1))2 < 4(α−m(α, 1))2

⇔ m2(2α, 1)− 4αm(2α, 1) < 4m2(α, 1)− 8αm(α, 1)
⇔ m(2α, 1) > 2m(α, 1)

The last inequality holds because, as shown in Berg and Pedersen [2008], m(α, 1) is convex in α.
29If Z1, Z2 is a random sample of size 2 from a normal distribution N(0, 1) then the distribution

of X =
√
Z21 + Z

2
2 is Rayleigh. In other words, the Rayleigh is the distribution of the norm of a

two-dimensional random vector whose coordinates are normally distributed.
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Example 3 Suppose that X and Y are identically distributed on [0, 1] with marginals

FX (x) = x2 and FY (y) = y2. To model correlation between X and Y , we consider

here the Farlie-Gumbel-Morgenstern (FGM) copula

Cδ (p, q) = pq + δpq (1− p) (1− q)

with p, q ∈ [0, 1] and δ ∈ [−1, 1]. The correlation coeffi cient for FGM copula is

ρ = δ/3 ∈ [−1/3, 1/3]. It follows from the Sklar theorem that we can write the joint

distribution F (x, y) in terms of its marginals and a copula C (p, q):

F (x, y) = C (FX (x) , FY (y)) .

With some algebra, we can derive the joint density as

f (x, y) = 4xy + 4δxy
(
2x2 − 1

) (
2y2 − 1

)
.

Therefore, as in the proof of Proposition 1, we can write Pr (X + Y < mX +mY ) as

2

∫ 1

mY

∫ mX+mY −y

0

f (x, y) dxdy +

∫ mY

0

∫ mX

0

f (x, y) dxdy

= 2

∫ 1

√
2/2

∫ √2−y
0

(
4xy + 4δxy

(
2x2 − 1

) (
2y2 − 1

))
dxdy

+

∫ √2/2
0

∫ √2/2
0

(
4xy + 4δxy

(
2x2 − 1

) (
2y2 − 1

))
dxdy

=

(
146

35
− 104

35

√
2

)
δ − 8

3

√
2 +

13

3
> 0.5

for all δ ∈ [−1, 1]. Consequently, we have mX+Y < mX + mY . Since FX (x) = x2

is convex, µX < mX . Hence, the suffi cient condition (8) in Theorem 3 is fulfilled.

Alternatively, suppose FX (x) =
√
x and FY (y) =

√
y. If we again restrict attention

to the FGM copula, we can follow the same procedure to show that mX+Y > mX +mY

and µX > mX .

7 Appendix B: More than Two Dimensions

In this appendix, we illustrate how to generalize our main results (Theorems 2-4) to

higher dimensions. Consider K independent issues, denoted by Xk, k = 1, ..., K. We

writeX = (X1, ..., XK)T and assume that all random variablesXk are normalized. Let

SOK denote the special orthogonal group in dimension K which consists of K × K
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orthogonal matrices with determinant +1. This group is isomorphic to the set of

rotations in RK . A K ×K orthogonal matrix Q ∈ SOK is a real matrix with

QTQ = QQT = I

where QT is the transpose of Q, and where I is the K × K identity matrix. As a

result

Q−1 = QT .

Each K × K special orthogonal matrix Q transforms an orthogonal system X into

another orthogonal system while preserving the orientation in RK . The transformed
orthogonal system X is denoted as QX. Then, the planner’s objective is to choose Q

in order to maximize welfare.

7.1 Sub-optimality of the Zero Rotation

We first extend Theorem 2 to higher dimensions. The idea is to apply our previous

two-dimensional analysis to the first two dimensions, while keeping all other dimen-

sions fixed. It then follows that one can improve welfare by rotating the first two

dimensions. Therefore, it is never optimal to vote on independent issues.

The zero-angle rotation is captured of course by the K ×K identity matrix. In

order to show that this rotation is sub-optimal for higher dimensions, consider the

following special orthogonal matrix

Q (θ) =


cos θ − sin θ 0 · · · 0

sin θ cos θ 0 · · · 0

0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · 1


It is easy to verify that [Q (θ)]−1 = [Q (θ)]T , so that Q (θ) is indeed an orthogonal

matrix with determinant +1. This matrix represents a rotation in the plane of the

first two dimensions, while keeping fixed all other dimensions. Hence, for our purpose,

it is suffi cient to show that

∆ (θ) ≡ E ||Q (θ)X−median (Q (θ)X)||2 ≤ E ||X−median(X)||2 ≡ ∆ (0)

for some θ close to 0.
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In particular, it is suffi cient to show that ∆ (θ) has a local maximum at θ = 0.

But

Q (θ)X =


cos θ − sin θ 0 · · · 0

sin θ cos θ 0 · · · 0

0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · 1




X1

X2

X3

...

XK

 =


X1 cos θ −X2 sin θ

X1 sin θ +X2 cos θ

X3

...

XK


Therefore,

∆ (θ) =
K∑
k=1

σ2Xk+

K∑
k=3

m2
Xk

+[median (X1 cos θ −X2 sin θ)]2+[median (X1 sin θ +X2 cos θ)]2

and the sub-optimality of the zero-angle rotation follows directly from our two-

dimensional analysis.

7.2 The Analog of the π/4 Rotation

Suppose X1, ..., XK are I.I.D. drawn from a common distribution. What is the coun-

terpart of π/4 rotation (or equivalently the top-down procedure) in higher dimensions?

We need to look for an orthogonal matrix Q that transforms X into a new vector QX

whose one coordinate is given by the sum X1 + ...+XK while the other coordinates

consists of various differences. For example, if K = 4, the orthogonal matrix Q (with

determinant equal to +1) is given by
1
2

1
2
−1
2
−1
2

1
2
−1
2
−1
2

1
2

−1
2

1
2
−1
2

1
2

1
2

1
2

1
2

1
2




X1

X2

X3

X4

 =
1

2


X1 +X2 −X3 −X4

X1 +X4 −X2 −X3

X2 +X4 −X1 −X3

X1 +X2 +X3 +X4


More generally, consider an orthogonal matrix Q̂ with

1√
K
Q̂ij =

{
either 1 or − 1 for all j if i 6= K

1 for all j if i = K
(19)

such that for all k 6= K, Q̂kX contains an equal number of Xk’s appearing with

positive and negative signs. The matrix Q̂k is a Hadamard matrix. Its existence was

shown for all dimensions of the form 2l where l is an integer (See Sylvester [1867]).30

In those cases it is easy to see that the same condition we had before, namely the

super-additivity of the median function, is again suffi cient for the π/4 rotation to

dominate the zero-angle rotation.
30The existence of Hadamard matrices of dimension 4l for any integer l is the well-known Hadamard

conjecture. It was proven for all l up to 668.
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7.3 Effi ciency Bounds

As in the main text, we work here with the non-normalized random variablesX1, ..., XK

representing the marginals of the distribution of ideal points. Note that, when there

are K dimensions, the expected utility of choosing marginal medians under an or-

thogonal transformation Q is given by

U (Q) = −E ||QX−median(QX)||2 = −
K∑
k=1

var (QkX)−
K∑
k=1

(mean (QkX)−median(QkX))2

where Qk is the k-th row of the Q matrix. The first-best expected utility is simply

−
∑K

k=1var(QkX). We define the relative effi ciency of transformation Q relative to

the first-best as:

EF (Q) ≡
∑K

k=1 var (QkX)∑K
k=1 var (QkX) +

∑K
k=1 (mean (QkX)−median(QkX))2

and the maximal relative effi ciency as

EF ≡ max
Q

EF (Q) .

Again, we can apply the Hotelling-Solomons inequality to obtain that

EF (Q) ≥
∑K

k=1 var (QkX)∑K
k=1 var (QkX) +

∑K
k=1 var (QkX)

=
1

2

Analogously, we can use the Basu-DasGupta inequality to show that, for unimodal

distributions, we have

EF > EF (I) ≥
∑K

k=1 var (QkX)∑K
k=1 var (QkX) + 3

5

∑K
k=1 var (QkX)

=
5

8

Now consider any even numberK such that the Hadamard matrix exists. Suppose
X1, ..., XK are I.I.D. with log-concave densities. Consider again an orthogonal matrix

Q̂ given in (19). It follows from the I.I.D. assumption that

mean(Q̂kX)−median(Q̂kX) =

{
0 if k 6= K,

1√
K

(mean(
∑K

k=1Xk)−median(
∑K

k=1Xk)) if k = K.

Therefore, we have

EF (Q̂) =

∑K
k=1 var(Q̂kX)∑K

k=1 var(Q̂kX) + 1
K

(
mean(

∑K
k=1Xk)−median(

∑K
k=1Xk)

)2
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Given that X1, ..., XK have log-concave densities, the convolution Z ≡
∑K

k=1Xk

also has a log-concave densities. Then the inequalities of Bobkov and Ledoux [2014]

and of Ball and Böröczky [2010] together imply

(mZ − µZ)2 ≤ 1

f 2Z(mZ)
ln2
(√

e

2

)
≤ 12σ2Z ln2

(√
e

2

)
Hence,

EF (Q̂) ≥
∑K

k=1 var(Q̂kX)∑K
k=1 var(Q̂kX) + 1

K
12σ2Z ln2

(√
e
2

)
Let σ2Xk denote the variance of Xk. Then we have σ2Z = Kσ2Xk and

var(Q̂kX) = Q̂kQ̂
T
k σ

2
Xk

= σ2Xk

since Q̂kQ̂
T
k = 1 by the definition of an orthogonal matrix. Therefore, we obtain the

following effi ciency bound for log-concave densities

EF ≥ EF (Q̂) ≥
Kσ2Xk

Kσ2Xk + 12σ2Xk ln2
(√

e
2

) =
1

1 + 1
K

12 ln2
(√

e
2

)
For example, if K = 4, the bound is 93.4%. Note that this bound is increasing the

number of dimensions K, and tends to 100% when K goes to infinity.

Remark 4 More generally, consider any I.I.D. random variables X1, ..., XK with

finite means and variances and consider K such that the Hadamard matrix exists.

Then, for the analog of the π/4 rotation we obtain that

EF ≥ EF (Q̂) =
Kσ2Xk

Kσ2Xk + 1
K

(mean(
∑K

k=1Xk)−median(
∑K

k=1Xk))2

=
σ2Xk

σ2Xk + 1
K2 (mean(

∑K
k=1Xk)−median(

∑K
k=1Xk))2

→ 1 as K →∞

where the last assertion follows from the central limit theorem.
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