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In the classical sequential sampling model of Wald (1945), a decision maker (Alice)

learns a binary state from a noisy signal. We study the effects of disinformation by

introducing an adversary (Bob) who can pay a cost to distort the signal. Both players

are Bayesian, ex-ante symmetrically informed, and share a common prior about the

state. Alice wants to choose an action that matches the state, while Bob prefers

her to choose a high action regardless of the state. We show that disinformation

invariably reduces Alice’s welfare and decision accuracy, but its effect on her decision

time is ambiguous. Although Bob has an incentive to engage in distortion, it may

backfire on him in equilibrium. We also analyze how the distribution of Bob’s

distortion cost affects the equilibrium strategies and outcomes of both players. The

basis for our results are novel insights into the classic sequential sampling problem

with more than two states.

1. Introduction

A major problem we face is the spread of disinformation. Disinformation is false or misleading

information deliberately created to influence public perception or individual behavior.1 Disin-

formation affects various domains, such as politics, public health, and social issues. For instance,

foreign actors use disinformation tactics to meddle with other countries’ democratic processes

and advance their own agendas; anti-vaccine groups disseminate false information about the

safety and effectiveness of vaccines to deter people from immunizing themselves and their fam-

ilies; and fossil fuel lobbyists fund disinformation campaigns to create uncertainty about the

effect of greenhouse gas emissions on global warming with the intent of prolonging the use of

fossil fuels. Disinformation campaigns do not always succeed in deceiving their intended tar-

gets. Some targets are aware of the risk of being misled and take steps to protect themselves

from false or biased information. For instance, they critically evaluate information and discount

information that favors the agenda of the disinformation source. If the evidence is inconclusive,

they may seek more information until a desired level of confidence is reached.
†Preliminary draft. Comments welcome.
1Misinformation, on the other hand, refers to false or misleading information without the intention to mislead.
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Common problems of disinformation share several distinctive features. First, prior to the

disinformation campaign, the manipulator and the receiver of disinformation are similarly

(un)informed about the ground truth. For example, the interfering foreign government may

not have better insights than domestic voters about which party or candidate is best for the

country; and anti-vaccine activists and individuals considering vaccination have similar access

to information about the safety and effectiveness of vaccines. Second, the manipulator has a

clear motive, and their interest is not aligned with the receiver. Third, although the receiver has

no control over the data quality, they can choose how much information to collect, for example,

by delaying their decision and waiting for more information to arrive. Finally, it is costly for the

receiver to collect information and for the manipulator to launch a disinformation campaign.

One way to approach the problem of disinformation is to focus on the psychological factors

that influence how people process and evaluate information, such as confirmation bias or mo-

tivated reasoning. However, this perspective does not account for the strategic interactions

between the players who produce and consume disinformation. We assume that both the ma-

nipulator and the receiver are rational and Bayesian. We then ask: How does the decision maker

optimally balance the cost of information gathering and the benefit of better decision-making

under the influence of disinformation? To what extent can the manipulator achieve their de-

sired outcome by distorting information? How does disinformation affect the quality and timing

of the decision maker’s choices? Can the (negative) effects of disinformation be mitigated by

raising the cost of manipulation?

To answer these questions, we develop a model of disinformation where a decision maker

(Alice) solves Wald’s sequential sampling problem (Wald, 1945) when the data-generating pro-

cess may be influenced by a manipulator (Bob). We consider a variant of the drift-diffusion

model in which the data is generated from a Brownian motion with a drift that depends on an

underlying state and Bob’s manipulation action. In that model, both players share a common

prior belief over a binary state. In the beginning, Bob’s manipulation cost is drawn from a

known distribution and observed by Bob. Bob once and for all decides whether to manipulate,

and his action is hidden from Alice. Manipulation increases the drift of the Brownian motion

by a fixed amount so that the drift takes one of four values depending on the state and Bob’s

action. Alice can learn about the state and Bob’s action by observing the Brownian motion at

a constant flow cost, and she has to decide when to stop sampling and choose an action, either

high or low, based on her observations. Alice prefers her action to be aligned with the state,

while Bob wants her to choose the high action in either state. The game ends, and payoffs are

realized as soon as Alice acts.

In our model of disinformation, an equilibrium always exists. In any equilibrium, Bob ma-

nipulates if his cost is below a cutoff. Alice collects data as long as her belief about the state

lies between two cutoff paths, and she takes the high (low, respectively) action when the upper

(lower, respectively) cutoff is first reached. In contrast to the standard Wald problem, in which

the goal is to discern two possible drifts and the optimal cutoffs are constant over time, here,
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the upper cutoff path decreases over time while the lower cutoff path increases over time. Alice

learns not only about the state but also about Bob’s action. Until one of the cutoffs has been

reached, Alice’s updates towards distributions of the drift for which the process is less informa-

tive, which decreases her continuation value. Hence, the continuation region becomes narrower

as time proceeds. Disinformation always hurts Alice. Since both parties are symmetrically

informed about the state, Bob’s manipulation does not convey any information about the state

and serves as a pure obfuscation for Alice’s learning. This is in contrast to the signaling model,

where the strategic sender is informed, and hence, the receiver may benefit from signaling in

equilibrium. Disinformation hurts Alice because it always lowers her decision accuracy, although

the expected decision time may be higher or lower compared to the case of no disinformation.

Bob may or may not gain from engaging in disinformation. Increasing the manipulation cost

leads to equilibria in which Bob manipulates less frequently. This suggests that higher barriers

to manipulation effectively deter manipulation and thereby prevent harm to the receiver.

2. Related literature

This paper investigates the effects of disinformation on rational and fully Bayesian individuals.

Disinformation is a pervasive phenomenon that can have harmful consequences for various

domains, such as politics, health, and climate change (see, e.g., Benkler et al., 2018; Melchior

and Oliveira, 2022; Gwiazdon and Brown, 2023). Previous research has mainly explored the

psychological biases that make people susceptible to disinformation, and proposed interventions

such as Internet literacy education, critical thinking, and digital citizenship. In contrast, we

take a different approach: we model all players as rational and Bayesian, using a sequential

sampling model based on Wald (1945) to analyze the equilibrium and welfare implications of

disinformation.

Our paper is related to the theoretical literature on fake news and online manipulation (see,

e.g., Dellarocas, 2006; Glazer et al., 2021, and reference therein). Dellarocas (2006) studies a

static signaling model of online forum manipulation and shows that a separating equilibrium

exists in which only high-quality sellers buy fake reviews, and consumers benefit from these

sellers’ strategic manipulation. Glazer et al. (2021) examine whether a strategic rating platform

can design a dynamic reporting policy about (potentially fake) messages to inform the receiver

better and show that any manipulation by the platform always hurts the receiver. The result

of the latter is similar to the one obtained in this paper, but the settings of the two models are

very different. There is no third party like platform in our model which is based on the classical

sequential sampling model by Wald (1945).

Since the pioneering work of Wald (1945), Wald and Wolfowitz (1948), and Arrow et al. (1949),

the optimal stopping problems of sequential hypothesis testing have been extensively studied

in statistics . For a survey, see Lai (1997), and for a textbook treatment, see Chernoff (1972)

or Shiryaev (2008). However, most of the literature relies on a Gaussian or two-point prior

distribution. Ekström and Vaicenavicius (2015) generalize the sequential hypothesis testing
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problem to a general prior distribution and establish properties of the optimal solution. Our

model also adopts a two-point prior, but the presence of manipulation makes it equivalent to a

problem with a four-point prior. Drawing on insights from Ekström and Vaicenavicius (2015),

our analysis of the single-agent benchmark derives new comparative statics with respect to the

prior distribution.

There is a growing literature in economic theory that applies the Wald model to study optimal

stopping problems in both a single-agent and a strategic multi-agent setting. For example,

Fudenberg et al. (2018) use the Wald model with a Brownian prior distribution to study the

joint distribution of the accuracy and timing of decisions and show that earlier decisions are

more accurate. Their insight about speed and accuracy is generalized by Liang et al. (2022),

where an agent optimally allocates attention among several different information sources to

learn about a Gaussian multidimensional state.2 By contrast, we compare the accuracy under

optimal stopping across different prior distributions and show that if a prior distribution is

obtained from another by adding independent noise, the expected accuracy is lower under the

former prior than under the latter. This result, with independent interest, is essential for us to

show that Alice is always worse off from disinformation. The Wald model has also been used

to study strategic interaction among different agents, such as persuasion (Henry and Ottaviani,

2019),3 committee deliberation (Chan et al., 2018), and delegation (McClellan, 2022). In these

models, the upper and lower cutoff in the stopping problem are controlled by different agents,

while in our model, the same agent (Alice) controls both cutoffs.

Our model assumes that both Alice and Bob are uninformed about the state, differentiating it

from recent papers on stopping problems with manipulated signals. These papers take either the

perspective of dynamic signaling, where the informed sender’s signals may reveal their private

information (see, e.g., Daley and Green, 2012; Dilmé, 2019; Gryglewicz and Kolb, 2022; Cetemen

and Margaria, 2023), or the perspective of reputation formation where the signals generated by

the informed agent’s action may reveal the agent’s private type (see, e.g., Ekmekci and Maestri,

2022; Ekmekci et al., 2022). In all these papers, agents are ex-ante asymmetrically informed,

and the informed agent’s manipulated signals may reveal what they know. By contrast, in our

model, both agents are symmetrically uninformed, so Bob’s manipulation can only add noise

to the signals that Alice observes, making her worse off.

Finally, our paper connects to the computer science literature on adversarial learning and

robust estimation (see, e.g., Diakonikolas et al., 2019; Lai et al., 2016; Charikar et al., 2017).

These papers adopt a worst-case analysis—the adversary has the exact opposite preferences

as the decision maker, the decision maker solves maxmin problem, and there is no cost for

2Che and Mierendorff (2019) apply a Wald model with Poisson signals to explore how a decision maker should

allocate their attention among different information sources and find that with Poisson signals, speedy de-

cisions are not necessarily more accurate. Auster et al. (2024) generalize the Bayesian analysis of the Wald

model to the case where the decision maker is ambiguity-averse.
3See also Orlov et al. (2020) for a related dynamic persuasion model where an agent discloses information over

time to persuade the principal to delay exercising an option.
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manipulation. Moreover, their models assume static learning rather than dynamic learning as

in our paper.

3. The Model

We start with an informal description of the model. Consider a decision maker, called Alice, who

must choose a binary action (e.g., whether to vote for a candidate, whether to get vaccinated,

or whether to support a climate initiative). She holds a prior about an underlying state and

would like her action to match the state. She can either act on her prior or she can collect more

information sequentially to sharpen her belief. There is an adversary (e.g., a foreign government,

an anti-vaccine activist, or a fossil-fuel firm) called Bob, who has a clear agenda and can incur

a cost to manipulate the additional information that Alice wishes to collect. Both players are

rational and Bayesian.

We cast our problem in a strategic variant of the sequential sampling model of Wald (1945).

Alice incurs a constant flow cost to observe a Brownian motion whose drift depends on the

unknown state and Bob’s hidden action of manipulation. Alice can learn about the state from

the Brownian signals over time, but her signals are distorted by Bob’s hidden manipulation.

Based on observed signals, Alice decides when to stop observing and when she stops she must

choose one of the two actions, high or low, to take. Alice would like her action to match the

state, but Bob always wants her to take the high action independent of the state. We are

interested in how equilibrium manipulation affects decision time, decision quality and players’

welfare.

3.1. Basic Setup

Formally, let (Ω,F , P ) be a probability space supporting a standard Brownian motion W =

(Wt)t∈R+ and two random variables, θ and γ. We assume that θ, W , and γ are independent. We

call θ the state and its distribution µ the prior distribution. The prior belief is p0 = P (θ ≥ 0) ∈
(0, 1).4 We call γ Bob’s lump-sum manipulation cost and we assume that its distribution Γ

is absolutely continuous with full support on [0, 1]. The distributions µ and Γ are common

knowledge among the players, but the manipulation cost γ is privately observed by Bob and

neither player knows the realization of the state θ.

Time t ∈ [0,∞) is continuous. At time t = 0, Bob privately observes the realization of γ, and

chooses an action y ∈ {0,m} with cost γy/m. That is, Bob incurs a lump-sum cost γ when

choosing m and 0 otherwise. From time t = 0 on, Alice observes a process Xy = (Xy
t )t≥0 with

dXy
t = (θ + y)dt+ dWt

We call Xy the manipulated process. The (completed) filtration generated by Xy is denoted by

4We assume that θ has bounded support, and that p0 ∈ (0, 1) and P (θ = 0) = 0.
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X y = (X y
t )t∈R+ . It induces the belief process πy = (πy

t )t∈R+ given by

πy
t = P (θ ≥ 0 | X y

t ).

We assume 0 < m < ess inf |θ| so that θ and θ+ y(γ) have the same sign, and hence Xy almost

surely reveals the sign of θ in the limit.

Alice faces a Wald problem with a manipulated process. That is, she chooses a stopping time

τ for the manipulated process X y, and upon stopping, she chooses one of two actions {h, l},
called the high and the low action, optimally based on her belief πy

τ . Alice wants to match the

state: her utility is 1 if she takes the high (low) action in a positive (negative) state, and 0

otherwise. The observation cost is c > 0 per unit of time. Both players do not discount. Hence,

Alice’s expected payoff given τ is

E [g(πy
τ )− cτ ],

where g(p) = p ∨ (1− p) for p ∈ [0, 1].

Bob prefers Alice to take the high action independently of the state: his utility is 1 if Alice

takes the high action, and 0 otherwise. Hence, if Bob chooses y and Alice chooses the stopping

time τ for Xy (and chooses an action optimally upon stopping), then for given γ, Bob’s expected

payoff is

P

(
πτ ≥ 1

2

)
− γ

y

m
.

The players’ utility functions and Alice’s observation cost c are common knowledge. Table 1

summarizes these and later definitions.

3.2. Strategies and Equilibrium Concept

The two players’ strategies are modeled as follows. Bob’s manipulation strategy is represented

a measurable function y(γ) with y : R+ → {0,m}. The restriction of Bob’s strategy to be

deterministic is without loss because γ is continuous and has a full support distribution.

For a fixed manipulation strategy for Bob, Alice faces an optimal stopping problem with two

types of uncertainties: a non-strategic uncertainty about the state θ and a strategic uncertainty

about Bob’s manipulation choice y(γ). The strategic uncertainty, absent in the standard Wald

model, complicates Alice’s learning problem. Fortunately, we can translate Alice’s problem

with strategic uncertainty into a Wald problem with non-strategic uncertainty only. For any

given manipulation strategy y(γ), we can redefine the “manipulated state” as θ + y(γ) and let

µy denote the distribution of θ + y(γ), called the “manipulated prior”. Then Alice’s optimal

stopping problem for a given manipulation strategy becomes a standard Wald problem with

prior µy. The characterization of solutions to the Wald problem with a general prior is given

below in Section 4.

Since Alice’s stopping problem for given y(γ) can be reformulated as a Wald problem, we can

restrict Alice’s strategies to stopping times induced by two time-dependent boundaries bh(t)
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and bl(t) on the anticipated observed process Xy (see Appendix A for the definition of bh, bl).

Note that Bob’s best response involves reasoning about Alice’s belief process if she anticipates

y and Bob plays ỹ. We characterize this belief process in Appendix B through a stochastic

differential equation. We then translate the optimal boundaries βh, βl for the belief process πy

to optimal boundaries bh, bl on Alice’s anticipated observed process Xy and let Alice stop the

process X ỹ according to these boundaries bh, bl. We refer to bh, bl as the boundaries for the

observed process Xy induced by boundaries βh, βl for the belief process πy. The formulation

based on bh, bl for the anticipated observed process Xy is sometimes more convenient, especially

in computing Bob’s expected deviation gains. The restriction to deterministic boundaries entails

no substantial loss since optimal deterministic boundaries bh, bl always exist.

We consider Bayes-Nash equilibria of this game.

Definition 1. A triple (bh, bl, y) is an equilibrium if the following hold.

1. Optimality for Alice: bh and bl are optimal boundaries for the observed process Xy with

respect to the prior distribution µy, where µy is the distribution of θ + y(γ).

2. Optimality for Bob:

P (Xy
τ = bh(τ))− γ

y(γ)

m
≥ P

(
X ỹ

τ̃ = bh(τ̃)
)
− γ

ỹ

m

for any measurable function ỹ : [0, 1] → {0,m}, where τ = inf{t ∈ R+ : Xy
t ∈ {bh(t), bl(t)}}

and τ̃ = inf{t ∈ R+ : X ỹ
t ∈ {bh(t), bl(t)}}.

Recall that Bob’s manipulation cost is independent of the state and the Brownian motion

W . Hence, the probability of changing Alice’s action from low to high by manipulating is

independent of the manipulation cost. It follows that Bob’s gain from manipulation is strictly

decreasing in the manipulation cost, and so a best response for Bob is given by a cutoff such that

he manipulates if his manipulation cost is below the cutoff and does not manipulate otherwise.

The optimal cutoff is the difference between the probability that Alice takes the high action if

Bob plays m and the probability that she takes the high action if Bob plays 0.

Definition 2. A manipulation strategy y : [0, 1] → {0,m} is a cutoff strategy if there is γ0 ∈ [0, 1]

such that y = m1[0,γ0].

The preceding remarks give the following statement.

Proposition 1. For any strategy for Alice given by boundaries bh, bl for the observed process,

Bob’s unique (up to a set of measure 0) best response is a cutoff strategy.

We thus take Bob’s strategy set to be [0, 1] from now on, where γ0 ∈ [0, 1] corresponds to the

cutoff strategy m1[0,γ0].

As we mentioned earlier, to solve our strategic Wald problem, we first have to solve the Wald

problem with a general prior, which we will do below.
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4. The Single-Agent Problem

We begin this subsection by presenting in Section 4.1 the solution of the single-agent Wald

problem under a general prior. This part of the analysis follows Ekström and Vaicenavicius

(2015). Then, we examine in Section 4.2 how optimal boundaries depend on the prior distri-

bution, which is key to our later analysis of how information manipulation affects equilibrium

and welfare outcomes. This part of the analysis is original and may be of independent interest.

4.1. Optimal Stopping with a General Prior

A decision maker wants to choose one of the two actions {h, l} to match the state θ: her utility is

1 if she takes the high (low) action in a positive (negative) state, and 0 otherwise. The observed

process X = (Xt)t∈R+ is given by:

dXt = θdt+ dWt.

The filtration X = (Xt)t∈R+ generated by X induces the belief process π = (πt)t∈R+ given by

πt = P (θ ≥ 0 | Xt).

It can be shown that π satisfies

dπt = σ(t, πt)dŴt

for σ : R+ × (0, 1) → R continuously differentiable and Ŵ = (Ŵt)t∈R+ a standard Brownian

motion. We give details in the Appendix A.

The decision maker chooses a stopping time τ for the process X, and upon stopping, she

chooses optimally based on her belief πτ . The decision maker’s expected payoff given τ is

E [g(πτ )− cτ ],

where g(p) = p∨ (1−p) for p ∈ [0, 1]. We say that τ is optimal if it is payoff-maximizing among

all X -stopping times.

We denote by πt,p the belief process from time t onwards conditional on having belief p at t.

That is, for t ∈ R+ and p ∈ (0, 1), let πt,p = (πt,p
t+s)s∈R+ be the unique solution to

dπt,p
t+s = σ(t+ s, πt,p

t+s)dŴt+s and πt,p
t = p.

The continuation value depending on the time and the belief, denoted by V : R+ × (0, 1) → R,

is defined as

V (t, p) = sup
τ

E
[
g(πt,p

t+τ )− cτ
]
,

where the supremum is taken over all X -stopping times. Heuristically, V (t, p) is the expected

payoff (net of the observation cost ct incurred thus far) conditional on having belief p at t.
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Ekström and Vaicenavicius (2015) show that an optimal stopping time is given by two time-

dependent boundaries on the belief process, one above 1
2 and weakly decreasing, and one below

1
2 and weakly increasing, and determined their limit value as t goes to infinity. These results

are derived from the fact that V (t, p) is non-increasing in t for each p, and convex in p for each

t. The case when the prior distribution µ is supported on two points is special since it is the

unique instance where the value function and thus the optimal boundaries are constant in time.

Theorem 1 (Ekström and Vaicenavicius, 2015). Under the assumptions above, the following

hold.

(i) V (t, p) is continuous, and it is convex in p for all t ≥ 0 and non-increasing in t for all

p ∈ (0, 1). Moreover, V (t, p) is constant for all p ∈ (0, 1) if and only if µ is supported on

two points.

(ii) Let βh, βl : R+ → (0, 1) be defined by

βh(t) = sup{p ∈ [
1

2
, 1) : V (t, p) > g(p)} and βl(t) = inf{p ∈ (0,

1

2
] : V (t, p) > g(p)}.

Then, the following stopping time τ is optimal:

τ = inf{t ∈ R+ : πt ∈ {βh(t), βl(t)}}.

(iii) βh is continuous and non-increasing and βl is continuous and non-decreasing, and both are

constant if and only if µ is supported on two points. Moreover, 0 < βl(t) <
1
2 < βh(t) < 1

for all t ∈ R+.

(iv) Let z+ = inf{z ≥ 0: µ([z, z + ϵ)) > 0 for all ϵ > 0} and z− = sup{z ≤ 0: µ((z −
ϵ, z]) > 0 for all ϵ > 0}. Then, limt→∞ βh(t) = limt→∞ βl(t) = 1

2 if z+ = z− = 0, and

limt→∞ βh(t) = ph and limt→∞ βl(t) = pl if z+ > z−, where ph, pl are the constant optimal

boundaries for a two-point prior distribution supported on {z+, z−}.

4.2. Comparative Statics of Prior Distributions

We study how the continuation value and, thus, the optimal boundaries depend on the prior

distribution. We write V µ, βµ
h , πµ, and so forth to indicate which prior distribution the objects

are derived from. When two prior distributions µ, µ̃ are considered, we use the shorthands V, Ṽ ,

βh, β̃h, π, π̃, and so forth.

First, we show that the expected payoff, that is, the continuation value at time 0, is convex in

the prior distribution. This follows from the fact that for fixed boundaries, the expected payoff

is linear in the prior distribution. Applying this fact to the optimal boundaries for the convex

combination of two prior distributions, and using that a maximum of linear functions is convex

gives the statement.

Lemma 1. For any prior distribution µ, let pµ0 = µ([0,∞)). Then, V µ(0, pµ0 ) is convex in µ.
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Lemma 1 shows that more randomness in the prior distribution decreases the expected payoff.

We show that for certain convex combinations of prior distributions—the ones which arise in the

strategic sampling problem considered in Section 3—the optimal boundaries become narrower

at time 0 as a consequence.

Definition 3. Let θ, ξ be independent random variables with distributions µ, ν such that ν has

finite support and θ > 0 if and only if θ + ξ > 0. Then, we say that the convolution µ̃ = µ ∗ ν
is a sign-preserving random shift of µ.

In other words, µ̃ is a sign-preserving random shift of µ if it is a convex combination of shifts

of µ, each preserving the the probability on positive states.5 Proposition 2 shows that replacing

a prior distribution by a sign-preserving random shift moves the optimal boundaries at time 0

and for any sufficiently late time closer to 1
2 .

Proposition 2. Let µ be a prior distribution, and let µ̃ be a sign-preserving random shift of

µ. Then, for all p ∈ (0, 1), V (0, p) ≥ Ṽ (0, p). Moreover, βh(0) ≥ β̃h(0) and β̃l(0) ≥ βl(0), and

there is t0 ∈ R+ such that βh(t) ≥ β̃h(t) and β̃l(t) ≥ βl(t) for all t ≥ t0.

When the prior distribution is supported on two points, one can say more about how sign-

preserving random shifts change the continuation value, the optimal boundaries, and the accu-

racy of the decisions. Recall that the continuation value and the optimal boundary are indepen-

dent of time for two-point prior distributions, and that the optimal boundaries are monotonic

for any prior distribution (Theorem 1(iii)). In combination with the fact that sign-preserving

random shifts decrease the continuation value and narrow the optimal boundaries at time 0

(Proposition 2), this implies that both effects hold for all times.

Corollary 1. Let µ be a prior distribution supported on two points, and let µ̃ be a sign-preserving

random shift of µ. Then, for all t ∈ R+ and p ∈ (0, 1), V (t, p) ≥ Ṽ (t, p). Moreover, for all

t ∈ R+, βh(t) ≥ β̃h(t) and β̃l(t) ≥ βl(t).

Fudenberg et al. (2018) define the accuracy of a stopping time at some time t as the probability

of choosing the correct action conditional on stopping at t. They show that under optimal

stopping, the accuracy is non-increasing in the decision time for normal prior distributions. By

contrast, we compare the accuracy under optimal stopping across different prior distributions.

The expected accuracy of a stopping time is the probability with which it leads to choosing the

correct action.

Definition 4. Let τ be an X -stopping time. Then, the expected accuracy of τ is

Acc(τ) = E [g(πτ )1{τ < ∞}].

From the preceding results, we can conclude that sign-preserving random shifts of two-

point prior distributions decrease the expected accuracy under optimal stopping. In fact, the
5The statements about random shifts extend to distributions ν with infinite support. We restrict to the finite

case since it is sufficient for the rest of the paper and avoids technicalities.
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same arguments show that the choices for two-point prior distributions are almost surely more

accurate—that is, taken with a more extreme belief—than for the random shift. It is open

whether Corollary 2 holds if µ is supported on more than two points.

Corollary 2. Let µ be a prior distribution supported on two points, and let µ̃ be a sign-preserving

random shift of µ. Let τ, τ̃ be optimal stopping times for µ, µ̃ given by Theorem 1(ii). Then,

Acc[τ̃ ] ≤ Acc[τ ].

Lastly, we consider the expected observation time. Since the cost of observations is constant,

the expected observation time is proportional to the expected observation cost.

Definition 5. Let τ be an X -stopping time. Then, the expected observation time of τ is E [τ ].

We show that sign-preserving random shifts can increase or decrease the expected observa-

tion time under optimal stopping. The examples we give use two-point prior distributions and

sign-preserving random shifts thereof that are symmetric about 0. Hence, even symmetry of

the optimal boundaries and the fact that sign-preserving random shifts of two-point prior dis-

tributions narrow the optimal boundaries do not suffice to pin down the change in the expected

observation time.6

Proposition 3. There exists a prior distribution µ supported on two points and a sign-

preserving random shift µ̃ of µ such that E [τ ] < E [τ̃ ] when τ, τ̃ denote optimal stopping times

for µ, µ̃, respectively. Likewise, there exist such µ, µ̃ such that the opposite inequality holds.

5. Equilibrium Analysis

We study properties of equilibria, compare equilibrium outcomes to the counter-factual case

where Bob cannot influence the observed process, and analyze the comparative statics of differ-

ent prior distributions and different distributions for the manipulation cost.

5.1. Equilibrium Existence

We first show that an equilibrium always exists as follows. Consider the function mapping

q ∈ [0, 1] to optimal boundaries bqh, b
q
l for the observed process when Bob manipulates with

probability q, and the function mapping the pair bqh, b
q
l to Φ(q) = P (γ ≤ γq0), where γq0 is the

optimal cutoff against bqh, b
q
l . Composing these maps gives a continuous function Φ from [0, 1]

to [0, 1], which has a fixed-point by the intermediate value theorem. Since Φ is defined through

iterated best responses, any such fixed-point induces an equilibrium.

Proposition 4. For any prior distribution µ and any distribution Γ of the manipulation cost

satisfying the above assumptions, there exists an equilibrium (βh, βl, γ0).

6Note that the expected observation time can increase despite narrower boundaries since sign-preserving random

shifts also change the volatility σ.
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Next, we show that in any equilibrium, Alice almost surely observes for a positive amount

of time and Bob manipulates non-trivially (with probability strictly between 0 and 1), unless

the prior belief is extreme and Alice would stop at time 0 for the (non-manipulated) prior

distribution.

Proposition 5. Let µ be any prior distribution, let βh, βl be the optimal boundaries for µ as

defined in Theorem 1(ii), and assume that βl(0) < p0 < βh(0). Then, in any equilibrium,

(i) Alice almost surely observes past time 0, and (ii) Bob manipulates with probability strictly

between 0 and 1.

5.2. Welfare, Timing, and Accuracy

Consider two scenarios. In the first, Bob cannot influence the process observed by Alice, and

Alice solves the optimal stopping problem for the given prior distribution. In the second, Bob

can manipulate the process observed by Alice, and we consider an equilibrium where Alice

solves the optimal stopping problem for the manipulated prior distribution. We refer to the

first scenario as the no manipulation benchmark, and to the second as equilibrium play. We

compare the players’ welfare and the accuracy and timing of Alice’s decisions between both

scenarios.

First, we observe that in any equilibrium, Alice is worse off compared to the no manipulation

benchmark, and if the prior distribution is supported on two points, her decisions are less

accurate in equilibrium. The first claim follows from Proposition 2 and the fact that Bob

manipulates with probability strictly between 0 and 1 in any equilibrium by Proposition 5. The

second part is a consequence of Corollary 2.

Corollary 3. Let µ be any prior distribution. Then, in any equilibrium, Alice’s expected payoff

is no more than V µ(0, p0). If µ is supported on two points, then in any equilibrium, Alice’s

accuracy is lower than in the no manipulation benchmark.

By contrast, the comparison for Bob’s expected payoff between both scenarios can go either

way. This implies that social welfare—the sum of the players’ expected payoffs—can be lower

in equilibrium than in the no manipulation benchmark. On the other hand, Bob’s gain from

manipulation can outweigh Alice’s loss, and so social welfare can also be higher in equilibrium.

Similarly, the comparison for the expected observation time can go either way.

Proposition 6. There exist a prior distribution µ, a distribution Γ for the manipulation cost,

and an equilibrium such that compared to the no manipulation benchmark,

1. Bob’s expected payoff is higher (lower),

2. social welfare is higher (lower), and

3. the expected observation time is lower (higher).

12
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5.3. Comparative Statics of Equilibria

We examine how equilibria depend on the prior distribution and on the distribution of the

manipulation cost.

First, consider a two-point prior distribution with a prior belief for which Alice would observe

past time 0 under the no manipulation benchmark. By Proposition 5, Bob’s cutoff is non-trivial

and Alice observes past time 0 in any equilibrium. We show that, however, that Bob’s cutoff and

Alice’s expected observation time both go to 0 as the prior belief approaches the boundary of the

observation region at time 0. To see the first part, recall from Proposition 2 and Proposition 5(i)

that the boundary at time 0 in any equilibrium is in between the prior belief and the (constant)

boundary for the no manipulation benchmark, and so as the prior belief goes to, say, the upper

boundary for the no manipulation benchmark, so does the equilibrium boundary at time 0.

Moreover, the upper equilibrium boundary is non-increasing. For a high prior belief, a small

upwards shock thus suffices for Alice to stop and take the high action. Since on small time

scales, the belief process is dominated by the volatility part and the drift part is negligible,

Alice takes the high action with probability close to 1 even if Bob does not manipulate. As

a result, manipulation is optimal for Bob only if his manipulation cost is very small, and so

since Γ is continuous, the probability with which he manipulates is small as well. The fact that

Alice’s expected observation time goes to 0 follows from similar arguments.

Proposition 7. Let µ = p0δ1 + (1 − p0)δ−1 be a prior distribution supported on two points,

and let βh, βl be the constant optimal boundaries for µ, and assume that βl < p0 < βh. Let

(β∗
h, β

∗
l , γ

∗
0) be any equilibrium, and denote by τ∗ the induced stopping time for the belief process

in equilibrium. Then, Bob’s cutoff γ∗0 and his manipulation probability P (γ ≤ γ∗0), and Alice’s

expected observation time E [τ∗] go to 0 as p0 goes to βh or βl.

Now we compare how the distribution of the manipulation cost affects the probability with

which Bob manipulates in equilibrium. It is natural to assume that all else being equal, Bob

manipulates less frequently if manipulation is more expensive. To make this precise, denote

by FΓ the cumulative distribution function of a distribution Γ. If Γ, Γ̃ are two distributions, Γ

stochastically dominates Γ̃ if FΓ ≤ FΓ̃. We show that if Γ stochastically dominates Γ̃, then for

any equilibrium under Γ, there is an equilibrium under Γ̃ where Bob’s manipulation probability

is higher.

Proposition 8. Let µ be any prior distribution, and let Γ, Γ̃ be two distributions for the manipu-

lation cost such that Γ stochastically dominates Γ̃. Assume that under Γ, there is an equilibrium

with cutoff γ∗0 where Bob manipulates with probability q∗ = FΓ(γ
∗
0). Then, under Γ̃, there is an

equilibrium where Bob manipulates with probability at least q∗.
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APPENDIX

A. Preliminaries

In preparation for the proofs, we make further definitions and summarize some known facts.

Recall that X = (Xt)t∈R+ is given by the equation

dXt = θdt+ dWt,

and that X = (Xt)t∈R+ denotes the completion of the filtration generated by X. It follows from

the innovation theorem of Brownian motion (see, e.g., Harrison, 2013, Theorem 1.12) that

dXt = E [θ | Xt]dt+ dŴt,

where

Ŵt = Xt −
∫ t

0
E [θ | Xs]ds

is a standard Brownian motion.7 For each t ∈ R+ and each x ∈ R, let

µt,x(dz) =
exp

(
2zx−z2t

2

)
µ(dz)∫

R exp
(
2z′x−z′2t

2

)
µ(dz′)

,

and

p(t, x) =

∫
R+

µt,x(dz). (1)

Heuristically, µt,x and p(t, x) are the posterior distribution and the posterior belief upon observ-

ing Xt = x.8 Following Ekström and Vaicenavicius (2015, Proposition 3.1, Proposition 3.4), for

each t ∈ R+, almost surely,

πt = p(t,Xt).

7Clearly, Ŵ is adapted to the filtration X . In fact, it can be shown that the completion of the filtration generated

by Ŵ equals X (see, e.g., Bain and Crisan, 2009, p. 35).
8To see that µt,x and p(t, x) can be extended to t = 0, observe that µ0,x can be seen as updating a belief at

time t = −2ϵ on an observation at t = 0 (see also Ekström and Vaicenavicius, 2015, Section 3.3). Let

ν(dz) =
exp(z2ϵ)µ(dz)∫

R exp(z
′2ϵ)µ(dz′)

,

which is well-defined if µ has bounded support. Then,

ν2ϵ,x(dz) =
exp

(
2zx−2z2ϵ

2

)
ν(dz)∫

R exp
(

2z′x−2z′2ϵ
2

)
ν(dz′)

=
exp

(
2zx
2

)
µ(dz)∫

R exp
(
2z′x
2

)
µ(dz′)

= µ0,x(dz).

Hence, if θ has distribution ν and X̃t = θ(t + 2ϵ) + Wt+2ϵ for t ≥ −2ϵ, X̃−2ϵ = 0, then µ0,X̃0
(dz) =

P
(
θ ∈ dz | X̃0

)
.
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Moreover, for each t ∈ R+, p(t, ·) : R → (0, 1) is differentiable in both variables, strictly in-

creasing, and bijective. Hence, its inverse p(t, ·)−1 = x(t, ·) : (0, 1) → R exists and has the same

properties. Hence, observing Xt = x(t, p) induces the belief p.

The belief process π satisfies the equation

dπt = σ(t, πt)dŴt,

where the volatility σ : R+×(0, 1) is given by σ(t, p) = ∂2p(t, x(t, p)) for all t ∈ R+ and p ∈ (0, 1).

A calculation shows that

σ(t, p) = (1− p)

∫
R+

zµt,x(t,p)(dz)− p

∫
R−

zµt,x(t,p)(dz). (2)

If µ is supported on two points z− < 0 < z+, then σ(t, p) = p(1− p)(z+− z−). In that case, the

constant optimal boundaries are given by βh, βl, where βh is the unique solution to

(z+ − z−)
2

2c
=

βh
1− βh

− 1− βh
βh

+ 2 log

(
βh

1− βh

)
and βl = 1− βh (Shiryaev, 2008, Section 4.2, Theorem 5 and the remark thereafter). Since the

term on the right-hand side is strictly increasing in βh, it follows that, conversely, βh is strictly

increasing in z+ − z−.

B. The Off-Path Belief Process

Checking the equilibrium condition for Bob requires determining the probability that Alice

chooses each action for deviations by Bob from his equilibrium strategy. To this end, the

following lemma determines Alice’s belief process evolves if she anticipates the cutoff strategy

γ0 but Bob chooses m ∈ {0,m} irrespective of his manipulation cost γ. Since θ,W, γ are

independent, the distribution of this process does is independent of γ.

Lemma 2. Let µ be any prior distribution, let Γ be any distribution of the manipulation cost,

and let γ0 ∈ [0, 1] be a cutoff strategy for Bob. For m ∈ {0,m}, define πγ0,m = (πγ0,m
t )t∈R+ by

letting πγ0,m
t = pγ0(t,Xm

t ), called Alice’s belief process when anticipating γ0 and observing Xm.

Then, πγ0,m satisfies

dπγ0,m
t =

(
E [θ | Xm

t ] +m−
∫
R
zµγ0

t,Xm
t
(dz)

)
σγ0(t, πγ0,m

t )dt+ σγ0(t, πγ0,m
t )dŴm

t .

Here, the superscripts γ0 and m refer to the corresponding manipulated prior distributions.

For example, Xm is the observed process with drift term θ +m, which has distribution µ ∗ δm.

Proof. We omit the superscript γ0 since it is fixed throughout the proof. Using (1), we observe
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that p(t, x) ∈ C∞(R++ × R) and calculate partial derivatives of p(t, x).

∂1p(t, x) = −
∫
R+

z2

2
µt,x(dz) +

∫
R+

µt,x(dz)

∫
R

z2

2
µt,x(dz)

∂2p(t, x) =

∫
R+

zµt,x(dz)−
∫
R+

µt,x(dz)

∫
R
zµt,x(dz)

∂2
2p(t, x) =

∫
R+

z2µt,x(dz)− 2

∫
R
zµt,x(dz)

∫
R+

zµt,x(dz)

−
∫
R+

µt,x(dz)

∫
R
z2µt,x(dz) + 2

∫
R+

µt,x(dz)

(∫
R
zµt,x(dz)

)2

.

Recall from Appendix A that

dXm
t = E [θ +m | Xm

t ]dt+ dŴm
t = (E [θ | Xm

t ] +m) dt+ dŴm
t ,

and by definition,

σ(t, πy,m
t ) = ∂2p(t, x(t, π

y,m
t )) = ∂2p(t, x(t, p(t,X

m
t ))) = ∂2p(t,X

m
t ).

Applying Ito’s formula (see, e.g., Kuo, 2006, Theorem 7.4.3) to πy,m
t = p(t,Xm

t ) and using the

expressions for the partial derivatives above, we get9

dπy,m
t =

(
∂1p(t,X

m
t ) + ∂2p(t,X

m
t ) (E [θ | Xm

t ] +m) +
1

2
∂2
2p(t,X

m
t )

)
dt+ ∂2p(t,X

m
t )dŴm

t

=

(
∂1p(t,X

m
t ) + ∂2p(t,X

m
t )

∫
R
zµt,Xm

t
(dz) +

1

2
∂2
2p(t,X

m
t )

)
dt+ ∂2p(t,X

m
t )dŴm

t

+

(
E [θ | Xm

t ] +m−
∫
R
zµt,Xm

t
(dz)

)
∂2p(t,X

m
t )dt

=

(
E [θ | Xm

t ] +m−
∫
R
zµt,Xm

t
(dz)

)
σ(t, πy,m

t )dt+ σ(t, πy,m
t )dŴm

t .

C. Proofs Omitted From Section 4

Lemma 1. For any prior distribution µ, let pµ0 = µ([0,∞)). Then, V µ(0, pµ0 ) is convex in µ.

Proof. Let bh, bl : R+ → R be continuous such that bl(t) < bh(t) for all t ∈ R+. For any prior

distribution µ, let

τµ = inf{t ∈ R+ : Xµ
t ∈ {bh(t), bl(t)}}

denote the first (possibly infinite) time at which Xµ hits one of the boundaries bh, bl. Since the

distribution of sample paths of Xµ is linear in µ, it follows that E [τµ] is linear in µ. Similarly,

the probability of choosing the high action when θµ ≥ 0,

P (τµ < ∞∧Xµ
τµ = bh(τ

µ) ∧ θµ ≥ 0),

9A useful way of verifying that the first “dt”-term after the second equality cancels is the symbolism ∂1p(t, x) =

− 1
2
z2R+ + (z0R+)(

1
2
z2R), etc.
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and the corresponding expression for bl and θµ < 0 are linear in µ. Observe that

V µ(0, pµ0 ) = sup
τ

E [g(πτ )− cτ ]

≥ P (τµ < ∞∧Xµ
τµ = bh(τ

µ) ∧ θµ ≥ 0) + P (τµ < ∞∧Xµ
τµ = bl(τ

µ) ∧ θµ < 0)− cE [τµ]

= Acc(τµ)− cE [τµ],

(3)

where equality holds if bh, bl are optimal boundaries for the observed process Xµ.

Now fix a prior distribution µ. By Theorem 1(iii), the optimal boundaries βµ
h , β

µ
l on the

belief process are continuous, and xµ is continuous, and so bh(t) := bµh(t) = xµ(t, βµ
h (t)) and

bl(t) := bµl (t) = xµ(t, βµ
l (t)) are continuous. If µ = λµ1 + (1 − λ)µ2 for two prior distributions

µ1, µ2 and λ ∈ [0, 1], then linearity of the right-hands-side in (3) and equality for µ imply that

λV µ1(0, pµ1
0 ) + (1− λ)V µ2(0, pµ2

0 ) ≥ λ (Acc[τµ1 ]− cE [τµ1 ]) + (1− λ) (Acc[τµ2 ]− cE [τµ2 ])

= Acc[τµ]− cE [τµ] = V µ(0, pµλ
0 ).

which proves the claim.

Proposition 2. Let µ be a prior distribution, and let µ̃ be a sign-preserving random shift of

µ. Then, for all p ∈ (0, 1), V (0, p) ≥ Ṽ (0, p). Moreover, βh(0) ≥ β̃h(0) and β̃l(0) ≥ βl(0), and

there is t0 ∈ R+ such that βh(t) ≥ β̃h(t) and β̃l(t) ≥ βl(t) for all t ≥ t0.

Proof. For a random variable θ, denote by Mθ(a) = E
[
eaθ
]
, a ∈ R, its moment generating

function. If θ has distribution µ, we also write Mµ for its moment generating function. For all

a, x ∈ R, we have

Mµx(a) =

∫
R
eazµx(dz) =

∫
R e(a+x)zµ(dz)∫

R exzµ(dz)
=

Mµ(x+ a)

Mµ(x)
,

where we write µx = µ0,x.

Now let θ, ξ be independent random variables with distributions µ, ν as in the definition of

sign-preserving random shifts. Let µ̃ = µ ∗ ν be the distribution of θ + ξ. We show that

V (0, p) ≥ Ṽ (0, p) for all p ∈ [0, 1]. For p ∈ {0, 1}, we have V (0, p) = g(p) = Ṽ (0, p). So assume

from now on that p ∈ (0, 1). Let x = xµ(0, p) be the observation at time 0 that induces belief

p, so that µx([0,∞)) = p. The idea is to show that µ̃x = µx ∗ νx, and thus that µ̃x is an

sign-preserving random shift µx. This reduces the problem to the case p = p0 since for µx, p is

the belief induced by observing 0 at time 0. Then the statement follows from Lemma 1.

For all a ∈ R,

Mµx(a)Mνx(a) =
Mµ(x+ a)

Mµ(x)

Mν(x+ a)

Mν(x)
=

Mµ∗ν(x+ a)

Mµ∗ν(x)
= Mµ̃x(a),

where the second equality uses that the moment generating function of the convolution of

two distributions is the product of their moment generating functions. Since a distribution is

uniquely determined by its moment generating function, it follows that µ̃x = µx ∗ νx, and so µ̃x
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is the distribution of the sum of two independent random variables, say θx, ξx, with distributions

µx, νx. Note that θx > 0 if and only if θx + ξx > 0 since this property holds for θ and ξ and

the supports of µ, ν are the same as those of µx, νx, respectively. This shows that µ̃x is a sign-

preserving random shift of µx, and reduces the problem to the case p = p0, which follows from

Lemma 1.

Using that V (0, p) ≥ Ṽ (0, p) all p ∈ [0, 1], the definition of the boundaries (cf. Theorem 1(ii))

implies that βh(0) ≥ β̃h(0) and β̃l(0) ≥ βl(0). Let z+ = inf{z ≥ 0: µ([z, z+ϵ)) > 0 for all ϵ > 0}
and z− = sup{z ≤ 0: µ((z − ϵ, z]) > 0 for all ϵ > 0}, and define z̃+, z̃− analogously. Then,

z+ ≥ z̃+ and z̃− ≥ z−, and the inequalities are strict if µ ̸= µ̃. By the remarks at the end of

Appendix A, the optimal boundaries for a two-point prior distribution with support {z̃+, z̃−}
are closer to 1

2 than the optimal boundaries for a two-point prior with support {z+, z−}. It thus

follows from Theorem 1(iv) that limt→∞ βh(t) ≥ limt→∞ β̃h(t) and limt→∞ β̃l(t) ≥ limt→∞ βl(t),

where both equalities are strict if µ ̸= µ̃. Hence, the last statement follows.

Corollary 1. Let µ be a prior distribution supported on two points, and let µ̃ be a sign-preserving

random shift of µ. Then, for all t ∈ R+ and p ∈ (0, 1), V (t, p) ≥ Ṽ (t, p). Moreover, for all

t ∈ R+, βh(t) ≥ β̃h(t) and β̃l(t) ≥ βl(t).

Proof. By Proposition 2, V (0, p) ≥ Ṽ (0, p) for all p ∈ [0, 1], and βh(0) ≥ β̃h(0) and β̃l(0) ≥ βl(0).

Theorem 1(i) shows that V (t, p) is constant in t for all p, and Ṽ (t, p) is non-increasing in t for

all p. Hence, V (t, p) ≥ Ṽ (t, p) for all t ≥ 0 and p ∈ [0, 1]. Moreover, βh, βl are constant,

and β̃h, β̃l are non-increasing and non-decreasing, respectively, which implies βh(t) ≥ β̃h(t) and

β̃l(t) ≥ βl(t) for all t ∈ R+.

Corollary 2. Let µ be a prior distribution supported on two points, and let µ̃ be a sign-preserving

random shift of µ. Let τ, τ̃ be optimal stopping times for µ, µ̃ given by Theorem 1(ii). Then,

Acc[τ̃ ] ≤ Acc[τ ].

Proof. Let βh, βl and β̃h, β̃l be the optimal boundaries for µ and µ̃ respectively. By Theorem 1,

βh, βl are constant, and we also write βh, βl for the corresponding constants. Moreover, the

optimal boundaries for any two-point prior distribution are symmetric about 1
2 (Shiryaev, 2008,

Section 4.2, Theorem 5 and the remark thereafter), and so βh = 1 − βl.10 Hence, if τ is the

optimal stopping time induced by βh, βl, then g(πτ ) = πτ ∨ (1 − πτ ) = βh almost surely. By

Corollary 1, βh ≥ β̃h(t) > 1
2 > β̃l(t) ≥ βl for all t ∈ R+. Hence, if τ̃ is the optimal stopping

time induced by β̃h, β̃l, then

g(π̃τ̃ ) ≤ β̃h(π̃τ̃ ) ∨ (1− β̃l(π̃τ̃ )) ≤ βh.

10The symmetry is crucial for the argument. In general, if βh, βl and β̃h, βl are two pairs of boundaries (not

necessarily optimal) for two belief processes π, π̃ such that βh(t) ≥ β̃h(t) >
1
2
> β̃l(t) ≥ βl(t) for all t ∈ R+, it

is not true that βh, βl induce higher expected accuracy than β̃h, β̃l, not even if π = π̃. For example, if βh is

close to 1 and βl is close to 1
2
, it is very likely that π hits βl before βh, and so the high accuracy of decisions at

βh rarely matters. Moving βh closer to 1
2

reduces the accuracy of decisions at βh but increases the probability

that π hits βh before βl. The second effect can outweigh the first effect.
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almost surely. It follows that g(πτ ) ≥ g(π̃τ̃ ) almost surely. In particular, Acc[τ̃ ] ≤ Acc[τ ].

Heuristically, it is clear that if the prior distribution is concentrated on states with high

absolute value, then the value is close to 1; likewise, if it is concentrated on states with low

absolute value, the value is close to the accuracy achieved by deciding based on the prior belief.

The next lemma makes this precise. Via a time change of the underlying Brownian motion,

analogous statements hold for small (large) observation cost c.

Lemma 3. For each α > 0, let µα be the distribution of αθ. Then, V µα(0, p0) → 1 for α → ∞
and V µα(0, p0) → g(p0) for α → 0.

Proof. We write V α instead of V µα , and so forth. First, consider the case α → ∞. Fix T, x > 0,

and consider the Xα-stopping time τ induced by the first exit from the rectangle [0, T ]× [−x, x].

That is,

τα = inf{t ∈ R+ : Xα
t ̸∈ [−x, x]} ∧ T.

Standard estimates for normal distributions show that Acc[τα] → 1 for α → ∞. Hence,

lim infα→∞ V α(0, p0) ≥ 1− cT . Since T was arbitrary, we have V α(0, p0) → 1 for α → ∞.

Second, consider the case α → 0. Since µ has bounded support, there is z ∈ R++ such that

the support of µ is contained in [−z, z]. Let ν = p0δz + (1 − p0)δ−z. Then, for all α > 0,

t ∈ R+, and p ∈ (0, 1), σνα(t, p) ≥ σµα(t, p) by (2). Hence, for all α > 0, t ∈ R+, and p ∈ (0, 1),

V να(t, p) ≥ V µα(t, p) (see, e.g., Janson and Tysk, 2003, Theorem 7). But V να(0, p0) → g(p0)

for α → 0 since βνα
h , βνα

l → 1
2 , and so the claim follows.

A straightforward consequence of Lemma 3 is the following. If τα is an optimal stopping time

for µα, then Acc[τα] → 1 and E [τα] → 0 for α → ∞.

The next lemma shows that quick decisions necessarily come at the cost of accuracy. More

precisely, any stopping time with an expected observation time close to 0 has an expected

accuracy close to the accuracy of deciding based on the prior belief.

Lemma 4. Let µ be any prior distribution with prior belief p0. Let ϵ > 0. Then, there exists

δ > 0 such that for any X -stopping time τ with E [τ ] ≤ δ, it holds that Acc(τ) ≤ g(p0) + ϵ.

Proof. Assume for contradiction that for each δ > 0, there is an X -stopping time τ with

E [τ ] ≤ δ and Acc(τ) > g(p0) + ϵ. For each α > 0, define the process Xα = (Xα
t )t∈R+ by letting

Xα
t = α− 1

2Xαt. Then, Xα
t = α

1
2 θt+W̃t where W̃t = α− 1

2Wαt is a standard Brownian motion by

the scaling property of Brownian motion. But then, V α(0, p0) → g(p0) for α → 0 by Lemma 3.

Now let α > 0 such that V α(0, p0) ≤ g(p0) +
ϵ
2 . By assumption, there is an X -stopping time

τ with E [τ ] ≤ αϵ
2c and Acc(τ) > g(p0) + ϵ. Since Xα

t = Xαt, τα = α−1τ is an Xα-stopping time

with E [τα] ≤ ϵ
2c and Acc(τα) = Acc(τ) > g(p0) + ϵ. But then, V α(0, p0) ≥ Acc(τα)− cE [τα] >

g(p0) +
ϵ
2 , which contradicts the choice of α.
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Proposition 3. There exists a prior distribution µ supported on two points and a sign-

preserving random shift µ̃ of µ such that E [τ ] < E [τ̃ ] when τ, τ̃ denote optimal stopping times

for µ, µ̃, respectively. Likewise, there exist such µ, µ̃ such that the opposite inequality holds.

Proof. For z ∈ R++, let µz = 1
2δz +

1
2δ−z, and so the prior belief pz0 = 1

2 . Denote by τ z the

corresponding optimal X z-stopping time defined by Theorem 1(ii).

First, we show that a sign-preserving random shift can increase the expected observation time

under optimal stopping. Let 1
6 > ϵ > 0. Let z ∈ R++ such that V z(0, 12) ≥ 1 − ϵ, which exists

since V z(0, 12) → 1 for z → ∞ by Lemma 3. Let δ > 0 such that for any X z-stopping time τ

with E [τ ] ≤ δ, we have Acc(τ) ≤ 1
2 + ϵ, which exists by Lemma 4.

Now let z′ ∈ R++, z′ > z, such that E
[
τ z

′
]

≤ δ
2 , which exists by (the remarks after)

Lemma 3. Let µ̃ = µz′ ∗ µz′−z. More concretely, µ̃ = 1
4δz′′ +

1
4δz + 1

4δ−z + 1
4δ−z′′ , where

z′′ = z′ + (z′ − z). From (2), it follows that σ̃(t, p) ≥ σz(t, p) for all t ∈ R+ and p ∈ (0, 1),

and so Ṽ (0, 12) ≥ V z(0, 12) ≥ 1 − ϵ (see, e.g., Janson and Tysk, 2003, Theorem 7). Denote

by β̃h, β̃l and τ̃ the optimal boundaries and the optimal X̃ -stopping time for µ̃ defined by

Theorem 1(ii). Assume for contradiction that E [τ̃ ] ≤ δ
2 . The corresponding optimal boundaries

b̃h, b̃l : R+ → R on the observed process X̃ are given by b̃h(t) = x̃(t, β̃h(t)) and b̃l(t) = x̃(t, β̃l(t)).

Let τ∗ = inf{t ∈ R+ : Xz
t ∈ {b̃h(t), b̃l(t)}} and τ∗∗ = inf{t ∈ R+ : Xz′′

t ∈ {b̃h(t), b̃l(t)}} be the

X z and X z′′-stopping times induced by these boundaries. Then, since the expected observation

time and the expected accuracy for fixed boundaries on the observed process are linear in the

prior distribution (cf. the proof of Lemma 1), and µ̃ = 1
2µ

z + 1
2µ

z′′ , it follows that

E [τ̃ ] =
1

2
E [τ∗] +

1

2
E [τ∗∗] and Acc[τ̃ ] =

1

2
Acc[τ∗] +

1

2
Acc[τ∗∗].

Hence,

E [τ∗] ≤ 2E [τ̃ ] ≤ δ and Acc[τ∗] ≥ 2Acc[τ̃ ]− 1 ≥ 1− 2ϵ,

which contradicts the choice of δ.

D. Omitted Proofs From Section 5

We prove the statements in Section 5 along with some auxiliary statements. The first shows

that the value of the optimal stopping problem in Section 4 depends continuously on the prior

distribution.

Lemma 5. For all t ∈ R+ and p ∈ (0, 1), V µ(t, p) is continuous in µ with respect to the weak

topology on the set of prior distributions.

Proof. Let t ∈ R+ and p ∈ (0, 1) be fixed throughout. For T ∈ R+∪{∞} and a prior distribution

µ, denote by T µ
T the set of X µ-stopping times τ such that τ ≤ T . Let

V µ
T (t, p) = sup

τ∈T µ
T

E
[
g(πµ,t,p

t+τ )− cτ
]
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be the value of the optimal stopping problem in Section 4 restricted to stopping times bounded

by T . For T ∈ R+, it follows from Coquet and Toldo (2007, Theorem 5) (applied to the time-

restricted belief process (πµ,t,p
t+s )s∈[0,T ]) that V µ

T (t, p) is a continuous function of µ with respect

to the weak topology on the set of prior distributions.

If τ is an X µ-stopping time, then since g is bounded by 1,

E
[
g(πµ,t,p

t+τ )− cτ
]
≤ E

[
g(πµ,t,p

t+(τ∧T ))− c(τ ∧ T )
]
+ P (τ ≥ T ) ≤ V µ

T (t, p) + P (τ ≥ T ).

If τ ∈ T µ
∞ attains the supremum on the right-hand side above, then P (τ ≥ T ) ≤ 1

2cT since

V µ
∞(t, p) = V µ(t, p) ≥ 1

2 . It follows that V µ
T (t, p) converges to V µ(t, p) as T → ∞ uniformly in

µ. Hence, V µ(t, p) is continuous in µ.

Proposition 9 (Ekström and Vaicenavicius, 2015, Proposition 4.8). For each prior distribution

µ, the data V µ, βµ
h , β

µ
l is a solution to the following free boundary problem.

∂1V
µ(t, p) +

σµ(t, p)2

2
∂2
2V

µ(t, p)− c = 0 βµ
l (t) < p < βµ

h (t)

V µ(t, p) = g(p) p /∈ (βµ
l (t), β

µ
h (t))

Moreover, V µ(t, p) is C1 on (0, 1) for each t ∈ R+.

Proposition 4. For any prior distribution µ and any distribution Γ of the manipulation cost

satisfying the above assumptions, there exists an equilibrium (βh, βl, γ0).

Proof. For q ∈ [0, 1], denote by µq = µ ∗ (qδm+(1− q)δ0) be the manipulated prior distribution

if Bob manipulates with probability q. Let βq
h, β

q
l and bqh, b

q
l be the optimal boundaries for the

belief process and the observed process for the prior distribution µq defined by Theorem 1(ii).

Similarly, we use throughout a superscript q for objects corresponding to the prior distribution

µq. The proof has two parts: (i) the optimal boundaries on the observed process depend

continuously on Bob’s manipulation probability (in a sense made precise below), and (ii) Bob’s

manipulation probability depends continuously on the boundaries on the observed process.

Then, the equilibrium existence follows from a fixed-point argument.

The following four claims establish that for each T ∈ R+, bqh|[0,T ] is a continuous function of q

in the topology of uniform convergence for functions on [0, T ]. The analogous statement holds

for bql |[0,T ].

Claim 1. The family of functions (βq
h|[0,T ])q∈[0,1] is Hölder-12 equicontinuous.

Proof. We have to show that there is C > 0 such that for all s, t ∈ [0, T ] and q ∈ [0, 1],

|βq
h(s) − βq

h(t)| ≤ C|s − t|
1
2 . Indeed, σq(t, p) is bounded away from 0 uniformly for t ∈ [0, 2T ],

βq
l (t) < p < βq

h(t), and q ∈ [0, 1] since βq
h(0) is bounded away from 1 and βq

l (0) is bounded

away from 0 uniformly in q (by Proposition 2), and for each q, βq
h is non-increasing and βq

l

is non-decreasing (by Theorem 1 (iii)). A routine argument shows that ∂2
2V

q(t, p) is bounded

above uniformly for t ∈ [0, T ], βq
l (t) < p < βq

h(t), and q ∈ [0, 1], say, ∂2
2V

q(t, p) ≤ B for all
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such t, p, q.11 Since the support of µ is bounded by assumption, σq(t, p) is also bounded above.

Then, the upper bound on ∂2
2V

q(t, p) and Proposition 9 imply that there is A ∈ R+ such that

∂1V
q(t, p) ≥ −A for all t ∈ [0, T ], βq

l (t) < p < βq
h(t), and q ∈ [0, 1]. Second, since ∂1V

q(t, q) ≤ 0

(by Theorem 1 (i)) and σq(t, p) is bounded above, it follows from Proposition 9 that there is

c̃ ∈ R++ such that ∂2
2V

q(t, p) ≥ c̃ for t ∈ [0, T ], βq
l (t) < p < βq

h(t), and q ∈ [0, 1].

Then, let 0 ≤ s ≤ t ≤ T . Using that ∂2V
q(s, βq

h(s)) = g′(βq
h(s)) = −1 by the last part of

Proposition 9 and integrating, we have that

V q(s, βq
h(t)) = V q(s, βq

h(s)) +

∫ βq
h(t)

βq
h(s)

(
∂2V

q(s, βq
h(s)) +

∫ p′

βq
h(s)

∂2
2V

q(s, p′′)dp′′

)
dp′

≥ βq
h(t) +

c̃

2
(βq

h(s)− βq
h(t))

2.

Moreover,

V q(s, βq
h(t)) ≤ V q(t, βq

h(t)) + (t− s)A = βq
h(t) + (t− s)A.

Hence, βq
h(s)− βq

h(t) ≤ (2Ac̃ (t− s))
1
2 .

Claim 2. For each t ∈ [0, T ], βq
h(t) is continuous in q.

Proof. Fix t ∈ [0, T ]. Let q0 ∈ [0, 1], and let (qn)n∈N ⊂ [0, 1] such that qn → q0 as n → ∞. Let

bn = βqn
h (t), and assume for contradiction that bn ̸→ b0. By passing to a subsequence, we may

assume that bn → b∗ ̸= b0.

Case 1. Suppose b∗ < b0. Then, V q0(t, b∗) > b∗ by definition of b0, and so by continuity of

V q0(t, p) in p, V q0(t, b̃) > g(b̃) for some b̃ > b∗. For n large enough, bn ≤ b̃, and so V qn(t, b̃) =

g(b̃), which contradicts that V q(t, b̃) is continuous in q as asserted by Lemma 5.

Case 2. Suppose b∗ > b0. As in the proof of Claim 1, one shows that there are c̃ > 0 and δ > 0

such that ∂2
2V

qn(t, p) ≥ c̃ for all p ∈ [b0, b0+ δ] and n large enough. Hence, again as in the proof

of Claim 1, we get that

V qn(t, b0) ≥ b0 +
c̃

2
(bn − b0)

2 = V q0(t, b0) +
c̃

2
(bn − b0)

2

for n large enough. This contradicts that V q(t, b0) is continuous in q as asserted by Lemma 5.

Claim 3. βq
h|[0,T ] is continuous in q in the topology of uniform convergence on [0, T ].

11Assume that σq(t, p) ≥ B′ for all t ∈ [0, 2T ], βq
l (t) < p < βq

h(t), and q ∈ [0, 1]. Fix t, p, q in this region.

Since ∂2
2V

q(t, p′) is continuous in p′ (see, e.g., Strulovici and Szydlowski, 2015), there is ρ > 0 so that

∂2
2V

q(t, p′) ≥ 1
2
∂2
2V

q(t, p) for all p′ ∈ [p − ρ, p + ρ]. For the process πt,p, consider the stopping time τ =

inf{s ∈ R+ : πt,p
t+s ∈ {p + 2ρ, p − 2ρ}}. Then, using Theorem 1.1 of Geiß and Manthey (1994) and the fact

that the expected time for a standard Brownian motion starting at 0 to hit {−2ρ, 2ρ} is 4ρ2, it follows that

E [τ ] ≤ 4ρ2

B′2 . We moreover have that V q(t, p + 2ρ) ≥ V q(t, p) + 2ρ∂2V
q(t, p) + ρ2

2
∂2
2V

q(t, p) and similarly for

V q(t, p− 2ρ). Using the stopping time τ ∧ T , we have that V q(t, p) ≥ V q(t, p) + ρ2

2
∂2
2V

q(t, p)− 4cρ2

B′2 + o(ρ2),

and so letting ρ go to 0, ∂2
2V

q(t, p) ≤ 8cB′2. (Here, the o(ρ2) comes from the fact that P (τ ≥ T ) goes to 0

as ρ goes to 0.)
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Proof. The family (βq
h|[0,T ])q∈[0,1] is Hölder-12 equicontinuous by Claim 1, and so, in particular,

uniformly equicontinuous. Moreover, for each t ∈ [0, T ], βq
h(t) is continuous in q by Claim 2. It

is an exercise in basic calculus to show that together, these statements imply continuity in the

topology of uniform convergence on the compact set [0, T ].

Claim 4. bqh|[0,T ] is continuous in q in the topology of uniform convergence on [0, T ].

Proof. By definition, bqh(t) = xq(t, βq
h(t)). Moreover, xq(t, p) is continuous in t, p, q jointly, and

so for each ρ > 0, it is Lipschitz continuous when restricted to t ∈ [0, T ], p ∈ [ρ, 1 − ρ], and

q ∈ [0, 1]. Choosing ρ such that ρ ≤ βq
l (t) < βq

h(t) ≤ 1 − ρ for all t ∈ [0, T ] and q ∈ [0, 1], the

claim follows from Claim 3.

For each q ∈ [0, 1], let γq0 be Bob’s optimal cutoff when Alice’s boundaries on the ob-

served process are bqh, b
q
l . That is, for τ q = inf{t ∈ R+ : Xt ∈ {bqh(t), b

q
l (t)}} and τ̃ q =

inf{t ∈ R+ : Xt + mt ∈ {bqh(t), b
q
l (t)}}, γq0 = P

(
Xτ̃q +mτ̃ q = bqh(τ̃

q)
)
− P

(
Xτq = bqh(τ

q)
)

is

the probability that Alice takes the high action if Bob manipulates minus that probability if

Bob does not manipulate.12 We claim that γq0 is a continuous function of q. We show that

P
(
Xτq = bqh(τ

q)
)

is continuous in q, and the proof for P
(
Xτ̃q +mτ̃ q = bqh(τ̃

q)
)

is analogous.

Fix q0 ∈ [0, 1] and ϵ > 0, and let (qn)n∈N be a sequence converging to q0. Let T ∈ R+ such that

P (τ qn ≤ T ) ≥ 1 − ϵ
3 for all n ∈ N ∪ {0}, which exists by the same argument as in the proof

of Lemma 5. By Claim 4, bqnh |[0,T ] converges to bq0h |[0,T ] uniformly on [0, T ]. Hence, for n large

enough, |P
(
Xτqn∧T = bqnh (τ qn ∧ T )

)
− P

(
Xτq0∧T = bq0h (τ q0 ∧ T )

)
| ≤ ϵ

3 . Together, we have that

|P
(
Xτqn = bqnh (τ qn)

)
− P

(
Xτq0 = bq0h (τ q0)

)
| ≤ ϵ proving the claim.

To conclude, we observe that since γq0 is a continuous function of q and Γ is absolutely

continuous with full support on [0, 1], Bob’s manipulation probability ϕ(q) = P (γ ≤ γq0) is a

continuous function of q, and hence ϕ has a fixed-point q∗ ∈ [0, 1] by the intermediate value

theorem. By the construction of ϕ, (βq∗

h , βq∗

l , γq
∗

0 ) is an equilibrium, which finishes the proof.

Proposition 5. Let µ be any prior distribution, let βh, βl be the optimal boundaries for µ as

defined in Theorem 1(ii), and assume that βl(0) < p0 < βh(0). Then, in any equilibrium,

(i) Alice almost surely observes past time 0, and (ii) Bob manipulates with probability strictly

between 0 and 1.

Proof. Let (β∗
h, β

∗
l , γ

∗
0) be an equilibrium for the prior distribution µ.

We prove (ii) first. Since Γ has full support, it suffices to show that γ∗0 ∈ (0, 1). Assume

for contradiction that γ∗0 = 0. Then, Alice observes the (non-manipulated) process X, and so

β∗
h = βh and β∗

l = βl. Denote by bh(t) = x(t, βh(t)) and bl(t) = x(t, βl(t)) the corresponding

optimal boundaries for the observed process X. If Bob were to manipulate, Alice would observe

X̃ = (X̃t)t∈R+ with X̃t = Xt +mt. Let

τ = inf{t ∈ R+ : Xt ∈ {bh(t), bl(t)}} and τ̃ = inf{t ∈ R+ : X̃t ∈ {bh(t), bl(t)}}.
12τ q, τ̃ q have finite expectations since bqh, b

q
l are optimal for the prior distribution µq, and so Alice’s expected

observation time is finite.
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It suffices to show that

P
(
X̃τ̃ = bh(τ̃)

)
> P (Xτ = bh(τ)),

since then manipulating is a best response for Bob for γ > 0 small enough. Since βl(0) <

p0 < βh(0) by assumption, we have that τ ̸≡ 0 and P (Xτ = bh(τ)) ∈ (0, 1). Observe that

{Xτ = bh(τ)} ⊂ {X̃τ̃ = bh(τ̃)} = {bh(t)−Xt ≤ mt for some t ∈ R+} as events. Then,

P
(
X̃τ̃ = bh(τ̃)

)
− P (Xτ = bh(τ)) = P

(
X̃τ̃ = bh(τ̃) ∧Xτ = bl(τ)

)
> 0,

where the inequality follows from standard estimates for Brownian motion. This proves the

claim.

If γ∗0 = 1, we also have β∗
h = βh and β∗

l = βl. Denoting by π∗ Alice’s belief process in

equilibrium and letting τ∗ = inf{t ∈ R+ : π∗
t ∈ {βh(t), βl(t)}}, we have that P (π∗

τ∗ = βh(τ
∗)) ∈

(0, 1) since βl(0) < p0 < βh(0). Bob’s expected payoff for m is bounded from above by 1 − γ,

and so his expected payoff for m is smaller than his expected payoff for 0 for γ close to 1. Hence,

γ∗0 = 1 is not a best response, which is a contradiction.

Turning to the proof of (i), observe that it suffices to show that β∗
l (0) < p0 < β∗

h(0). Assuming

for contradiction that p0 ≥ β∗
h(0), it follows that X0 = 0 ≥ b∗h(0), where b∗h(t) = x∗(t, β∗

h(t))

is the optimal boundary for the observed process in equilibrium.13 Hence, Alice almost surely

stops at time 0 and takes the high action, and so Bob’s payoff is 1− γ1[0,γ∗
0 ]
(γ). In particular,

his payoff is not non-increasing in γ since γ∗0 ∈ (0, 1) by (ii). This contradicts that γ∗0 is a best

response. The proof for the case p0 ≤ β∗
l (0) is analogous.

Proposition 7. Let µ = p0δ1 + (1 − p0)δ−1 be a prior distribution supported on two points,

and let βh, βl be the constant optimal boundaries for µ, and assume that βl < p0 < βh. Let

(β∗
h, β

∗
l , γ

∗
0) be any equilibrium, and denote by τ∗ the induced stopping time for the belief process

in equilibrium. Then, Bob’s cutoff γ∗0 and his manipulation probability P (γ ≤ γ∗0), and Alice’s

expected observation time E [τ∗] go to 0 as p0 goes to βh or βl.

Proof. Let (β∗
h, β

∗
l , γ

∗
0) be an equilibrium for the prior distribution µ. Observe that the distribu-

tion of θ +m1[0,γ∗
0 ]
(γ) is a non-trivial (by Proposition 5(ii)) sign-preserving random shift of µ.

Hence, by Proposition 2 and Proposition 5(i), we have βh ≥ β∗
h(0) > p0 > β∗

l (0) ≥ βl. Moreover,

by Theorem 1(iii), β∗
h(0) >

1
2 > β∗

l (0). Denote by π∗ Alice’s belief process in equilibrium, and

let τ∗ = inf{t ∈ R+ : π∗
t ∈ {β∗

h(t), β
∗
l (t)}}. We claim that P (π∗

τ∗ = β∗
h(τ

∗) | γ > γ∗0) goes to 1 as

p0 goes to βh—in words, the probability of Alice taking the high action conditional on Bob not

manipulating goes to 1 as the prior belief goes to βh. The distribution of π∗ conditional on the

event {γ > γ∗0} equals the distribution of πγ∗
0 ,0 in Lemma 2, and by that lemma,

dπ
γ∗
0 ,0

t = ξtdt+ σγ∗
0 (t, π

γ∗
0 ,0

t )dŴt

for some process ξ = (ξt)t∈R+ measurable with respect to X such that ξt is lower bounded

by (−1)σγ∗
0 (t, π

γ∗
0 ,0

t ) ≥ −1 (where the −1 comes from the fact that the manipulated prior
13More precisely, x∗ = xµ∗

, where µ∗ is the distribution of θ +m1[0,γ∗
0 ](γ).
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distribution has support contained in [−1,∞) and we use (2) to bound σγ∗
0 ). Let π̃ = (π̃t)t∈R+

such that

dπ̃t = −dt+ σγ∗
0 (t, π̃t)dŴt.

Then, P
(
π
γ∗
0 ,0

t ≥ π̃t for all t ∈ R+

)
= 1 (see, e.g., Geiß and Manthey, 1994, Theorem 1.1).

Letting τ̃ = inf{t ∈ R+ : π̃t ∈ {β∗
h(0),

1
2}} and using that σγ∗

0 (t, p) is bounded above and away

from 0 uniformly on R+ × [βl, βh] and uniformly in γ∗0 ∈ [0, 1], we have that as p0 goes to βh,

P (π̃τ̃ = β∗
h(0)) goes to 1, and so the probability that πγ∗

0 ,0 hits β∗
h before β∗

l goes to 1 as p0

goes to βh. Hence, for any γ0 ∈ (0, 1], m is not a best response when γ ≥ γ0 for p0 close to

βh. It follows that γ∗0 goes to 0 as p0 goes to βh, and so since Γ is continuous, it follows that

P (γ ≤ γ∗0) goes to 0 as p0 goes to βh.

The proof for the case that p0 goes to βl is similar.

Proposition 8. Let µ be any prior distribution, and let Γ, Γ̃ be two distributions for the manipu-

lation cost such that Γ stochastically dominates Γ̃. Assume that under Γ, there is an equilibrium

with cutoff γ∗0 where Bob manipulates with probability q∗ = FΓ(γ
∗
0). Then, under Γ̃, there is an

equilibrium where Bob manipulates with probability at least q∗.

Proof. Similar to the proof of Proposition 4, define the function ΦΓ : [0, 1] → [0, 1] as follows.

For q ∈ [0, 1], let βq
h, β

q
l be Alice’s optimal boundaries if Bob manipulates with probability

q—that is, the optimal boundaries for the manipulated prior distribution µ ∗ ((1− q)δ0 + qδm)

as defined in Theorem 1(ii). Then, let γq0 ∈ [0, 1] be Bob’s unique best response to βq
h, β

q
l , and

define ΦΓ(q) = FΓ(γ
q
0). Hence, assuming that Alice expects Bob to manipulate with probability

q, γq0 is the probability that Alice takes the high action if Bob plays m minus the probability

that Alice takes the high action if Bob plays 0, and ΦΓ(q) is the that Bob manipulates with

cutoff γq0 under Γ. We show in the proof of Proposition 4 that ΦΓ is continuous.

Observe that the maps q 7→ (βq
h, β

q
l ) and (βq

h, β
q
l ) 7→ γq0 defined above do not depend on

Γ. The map γq0 7→ ΦΓ(q) = FΓ(γ
q
0) is decreasing in the stochastic dominance order. Hence,

since Γ stochastically dominates Γ̃, ΦΓ(q) ≤ ΦΓ̃(q) for all q ∈ [0, 1]. Since under Γ, there

is an equilibrium where Bob manipulates with probability q∗, we have ΦΓ(q
∗) = q∗, and so

ΦΓ̃(q
∗) ≥ q∗. By the intermediate value theorem, there is q̃∗ ∈ [q∗, 1] with ΦΓ̃(q̃

∗) = q̃∗, and

so under Γ̃, there is an equilibrium (β̃ q̃∗

h , β̃ q̃∗

l , γ̃∗0), γ̃
∗
0 = F−1

Γ̃
(q̃∗), where Bob manipulates with

probability q̃∗ ≥ q∗.
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Symbol Name Mathematical object

(Ω,F , P ) probability space

W = (Wt)t∈R+ Brownian motion

θ state random variable

p0, p(t, x) prior & posterior belief elements of [0, 1]

µ, µt,x prior & posterior distribution probability distribution on R
X = (Xt)t∈R+ observed process stochastic process

X = (Xt)t∈R+ observed information process filtration of F
π = (πt)t∈R+ belief process stochastic process

σ volatility of the belief process function R+ × [0, 1] → R+

{h, l} action set set

g stopping payoff function [0, 1] → R
c observation cost per unit of time element of R++

τ stopping time stopping time

V value function function R+ × [0, 1] → R
βh, βl optimal boundaries functions R+ → [0, 1]

γ manipulation cost random variable on R+

Γ distribution of the manipulation cost probability distribution on R+

Table 1: Reference table of mathematical objects and their interpretations.
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