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Abstract

We compare sequential, binary voting schemes conducted by privately informed agents

with interdependent preferences. In addition to two “extreme” positions on the left and on

the right, we consider the effect of a compromise alternative. The Anglo-Saxon amend-

ment procedure (AV) always selects the (complete-information) Condorcet winner. In

contrast, the continental successive procedure (SV) does not. This holds because AV

allows gradual learning about the preferences of both leftists and rightists, while SV only

allows one-directional learning at each step. In addition, under SV the agenda that puts

the ”extreme” alternative with ex ante higher support last elects the Condorcet winner

with a higher probability than the agenda that puts that alternative first. We illustrate

our main findings with the vote on the flag of the Weimar republic.

1 Introduction

Sequential, binary voting schemes are used by almost all democratic legislatures to decide

among more than two alternatives (see Rasch [2000]). In this paper we generalize the associ-

ated, standard voting model by introducing interdependent preferences. Since others’ signals

are private information, each agent is ex ante uncertain about her own preferred alternative.
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The voting process gradually reveals and aggregates information, and agents respond to new

information by adjusting their voting strategy. Our main results show how commonly used

voting procedures - that are outcome-equivalent under complete information or under private

values - yield starkly different outcomes if values are interdependent. The new phenomena

arise because different voting rules induce different dynamic processes of information aggre-

gation and learning. In particular, we show that the Anglo-Saxon voting by amendment

always selects the complete information Condorcet winner, while this is not the case for the

Central-European successive voting procedure.

We model a situation where ex ante opinions are dichotomous and cross the traditional

left-right party lines.1Several privately informed agents have single-peaked preferences over

three alternatives, and each agent’s peak is determined by his/her own signal and by the

mean signal of others. In addition to the two “extreme” positions on the “left” and on the

“right”, we consider a compromise alternative whose location may be endogenous.2 The in-

terdependence of preferences is what makes the compromise salient, whereas the compromise

alternative would never be elected in our model under a private values assumption.

We focus here on two most frequently used sequential, binary procedures: all English-

speaking democracies, several Scandinavian countries and Switzerland regularly use the

amendment voting procedure (AV) where alternatives are considered two-by-two, and where

the majority winner advances to the next stage, as in an elimination tournament. In contrast,

most continental European parliaments (including the EU parliament) use the successive vot-

ing procedure (SV) where alternatives are put to vote, one after another, until one of them

gets a majority. Moreover, we consider convex agendas where each of the binary Yes/No

votes in the sequence must be among two subsets of options such that each of them covers

a well-defined, coherent segment of positions in the respective ideological spectrum (see the

Literature Review below for a justification of this choice).3

1For example, in the German 2017 vote to legalize same-sex marriage, the main Government party, the

CDU, was split with 225 MPs against vs. 75 in favor. The CDU and their leader Angela Merkel, who voted

against, were defeated since all other parties voted in favor. Similarly, in 2019 Prime Minister Boris Johnson

lost his first two crucial votes in parliament because many in his own party voted with the opposition in order

to avoid a no-deal Brexit.
2For example, during March 2019 the UK parliament struggled to identify and elect a compromise deal

between the “hard” Brexit demanded by a large faction of the Tories, and the “soft” version, closer in spirit

to economically remaining in the EU, supported by Labour and other smaller parties.
3The amendment procedure will satisfy convexity if the pairing is such that the most “extreme” alternatives

compete against each other at each round of voting. The successive procedure will satisfy convexity if, at each

stage, the considered alternative is one of the two most extreme ones.
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An example of a convex agenda formation rule is given by the long-standing practice of

the German parliament and its Weimar precursor:

“if several proposals are made to the same subject, then the first vote shall be

on the farthest-reaching proposal. Decisive is the degree of deviation from status

quo.”

In contrast, when the U.S. Congress, say, takes a decision involving, say, the status quo,

a proposed change and an amendment to that change, the status quo is usually put up to

vote at the second, final stage independnetly of its ideological position. If the status quo is

an extreme—more to the “left” or to the “right” relative to the other two alternatives—this

procedure is not convex.

Our first main result is that, for any constellation of parameters, the amendment proce-

dure with a convex agenda has an equilibrium that always selects the (complete-information)

Condorcet winner. In contrast, the successive procedure does not always possess such an equi-

librium even if convex agendas are used. The reason is that the amendment procedure—that

considers two alternatives at a time—allows bi-directional learning about the preferences of

both leftists and rightists, while the successive procedure only allows one-directional learning

at each stage. Thus, these two procedures are not equivalent once preferences are interde-

pendent, in stark contrast to the private values case (see Literature Review below).

A second main result is that, under the successive procedure, the two possible convex

agendas (that are also equivalent under a private values assumption) are not anymore equiv-

alent with interdependent values: the agenda that puts the ”extreme” alternative with ex ante

higher support last elects the Condorcet winner with a higher probability than the agenda

that puts that alternative first. The reason is, again, connected to the direction of learning:

putting the alternative with ex ante higher support first on the ballot risks of “hastily” giving

up that alternative in some cases: voters rally around the compromise before anything new

has been learned about the number of opponents. Indeed, if the number of opponents is rela-

tively small, the Condorcet winner is the foregone extreme alternative, rather than the chosen

compromise. Such an undesirable outcome is less likely if the first alternative on the ballot

is the more extreme one with less ex ante support. This result fits well the well-documented

practice to consider last on the agenda the Government’s proposal that, supposedly it has

a higher ex ante chance of getting a majority (see also the agenda in the Weimar flag case

studied below).

Finally, we analyze the optimal location of the compromise.4 We first identify the main

4For example, the quest for a Brexit compromise continued via an “indicative voting” process, designed to
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forces motivating this: (i) to elect an alternative that is superior to those already on the table

or (ii) to insure against the election of another, worse alternative. The optimal location of the

compromise is shown to finely depend on several important parameters such as the size and

ideology of the ex ante expected majority and the degree of interdependence in preferences,

but, importantly, also on the underlying voting procedure.

We conclude the paper with an illustration: we describe the Weimar Flag Controversy

where a compromise flag—a combination of the pre-WWI German Reich’s flag on the one

side, and the flag mostly associated with the progressive 1830 and 1848 revolutions on the

other—was ultimately selected following a process where learning about the position of others

affected the voting behavior and outcome.

1.1 Related Literature

Enelow [1983] contains an early model of optimal compromise location under an amendment

procedure with a non-convex agenda. His model is neither game-theoretic nor otherwise

micro-founded: the (numerical) results depend on the agenda setter’s exogenously given

beliefs about the probabilities of various outcomes.

Following the pioneering work by Farquharson [1969], almost the entire literature on

binary, sequential voting assumed that agents are completely informed about the preferences

of others (see Miller [1977], McKelvey and Niemi [1978] and Moulin [1979], among others, for

early important contributions). Under complete information, the associated extensive form

games are amenable to analysis by backward induction: voters can, at each stage, foresee

which alternative will be finally elected, essentially reducing each decision to a vote among

two alternatives. If a simple majority is used at each stage, then, whenever it exists, a

Condorcet winner is selected by sophisticated voters, independent of the particular structure

of the binary voting tree, and independent of its agenda.5

An early analysis of strategic, sequential voting under incomplete information with private

values is Ordeshook and Palfrey [1988]. They constructed Bayesian equilibria for an amend-

ment procedure with three alternatives and with preference profiles that potentially lead to

a Condorcet paradox. Gershkov, Moldovanu and Shi [2017] (GMS hereafter) analyzed vot-

ing by qualified majority in SV via a model where agents’ preferences are single-peaked and

establish which one out of at least 8 suggested compromises might get a majority (none did).
5If a Condorcet winner does not exist, then a member of the Condorcet cycle is elected. The influence

of agenda manipulations has been emphasized by Ordeshook and Schwartz [1987], Austen-Smith [1987] and,

more recently by Barbera and Gerber [2017]. Apesteguia et al. [2014] axiomatically characterize SV and AV

under complete information,
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follow the private values paradigm.6 In their study, the order in which alternatives are put

to vote follows the order defining single-peakedness (or its reverse). Kleiner and Moldovanu

[2017] generalized the GMS results to the class of all sequential, binary procedures with a

convex agenda. Recall that in a binary, sequential procedure each vote is taken by (possibly

qualified) majority among two, not necessarily disjoint, subsets of alternatives. Convexity

says that if two alternatives a and c belong to the left (right) subset at a given node, then

any alternative b such that a < b < c (in the ideological order governing single-peakedness)

also belongs to the left (right) subset.

Under single-peaked, private values preferences, Kleiner and Moldovanu showed that sin-

cere voting constitutes an ex post perfect equilibrium in any voting game derived from a

sequential, binary voting tree with any convex agenda.7. An important corollary is that, if

simple majority is used at each stage of the voting tree, the associated equilibrium outcome

is always the complete information Condorcet winner. Thus, all sequential binary voting

trees with convex agendas and all information policies are equivalent under single-peaked,

private values preferences, and this theory cannot discriminate among them.

There are only a few papers that study voting models with more than two alternatives

and with interdependent values (note that interdependence generalizes the more ubiquitous

assumption of common values).8 Gruener and Kiel [2004] and Rosar [2015] analyze static

voting mechanisms in a setting where agents have interdependent preferences, focusing on the

mean and the median mechanisms. Moldovanu and Shi [2013] analyze voting in a dynamic

setting where multi-dimensional alternatives appear over time and where voters are only

partially informed about some aspects of the alternative. Piketty [2000] studies a two-period

voting model where a large number of agents care about the decisions taken at both stages.

As in our model, voting at the first stage reveals information about preferences that is relevant

at the second stage. Piketty concludes that electoral systems should be designed to facilitate

efficient communication, e.g. by opting for two-round rather than one-round systems—this

6Their focus was on finding the welfare maximizing procedure. This is achieved by varying the thresholds

needed for the adoption of each alternative.
7In other words, voters cannot gain by manipulating their vote, regardless of their beliefs about others’

preferences, and regardless of the information disclosure policy along the voting sequence. Under a mild

refinement, this equilibrium is unique.
8Dekel and Piccione [2000] analyzed sequential voting with interdependent values in a model with only

two alternatives: sequentiality is with respect to individual voting. They showed that, although the history of

the first votes should intuitively affect the behavior of the later voters, equilibrium conditioning on pivotality

leads voters to ignore the revealed history. Ali and Kartik [2012] displayed other equilibria where voters do

take into account the observed history.
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is congruent with the kind of multi-stage procedures observed in legislatures and discussed

in this paper.

Martin and Vanberg [2014] empirically test several models of legislative compromise in

coalition governments, and conclude that these tend to be positions that average opinions in

coalitions rather than representing, say, the view of the median coalition member. Ezrow et

al. [2011] conducted an analysis of political parties in 15 Western European democracies from

1973 to 2003 and showed that the larger, mainstream parties tend to adjust their positions on

the Left-Right spectrum in response to shifts in the position of the mean voter, while being

less sensitive to policy shifts of their own supporters. The opposite pattern holds for smaller,

niche parties. Chappel et al. [2004] studied the Federal Open Market Committee’s detailed

voting patterns on monetary policy, and test the hypothesis that the chairman’s preferred

policy is a weighted average of her own and the other members’ signals – the same functional

form as the one adopted here.9,.10

Finally, our model and results are pertinent to voting in other committee settings. For

example, Posner and Vermeulen [2016] note that a more or less evenly split decision by several

judges, or by a jury, may be logically incompatible with a conviction based on guilt “beyond

reasonable doubt”. They propose a dynamic voting procedure where members learn about

the positions of others and adjust their opinion, and also argue that a formal procedure where

the revealed numbers of supporters for each option speak for themselves is better than an

informal, hard to quantify deliberation.

The rest of the paper is organized as follows: In Section 2 we describe the social choice

model, the calculation of the Condorcet winner with interdependent preferences, and the

considered voting procedures. In Section 3 we analyze voting in the continental successive

procedure, and compare the outcomes under various agendas. Section 4 considers the Anglo-

Saxon amendment procedure, and compares its outcome to the one under the successive

procedure. Section 5 studies the optimal location of the compromise alternative. In Section

6 we describe the voting process that determined the flag of the Weimar republic. Section

7 concludes. In Appendix A we briefly describe two basic probabilistic tools employed in

several arguments that involve a large number of voters. All proofs are collected in Appendix

B.

9There are twelve members, and the chairman’s weight on his own signal is estimated to be between 0.15

and 0.20. Chappel et al. take their cue from an earlier study by Yohe [1966] who writes “...there is also no

evidence to refute the view that the chairman adroitly detects the consensus of the committee, with which he

persistently, in the interests of Systems harmony, aligns himself.”
10They also estimate the opposite influence of the chairman on members.
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2 A Model of Compromise

2.1 The Basic Features

There are 2n+ 1 voters who collectively choose among three alternatives: L (left), C (com-

promise) and R (right). Let xa denote the “location” of alternative a, a ∈ {L,C,R}, on

a left-right ideological spectrum. The locations of alternatives L and R are exogenously

given and normalized to be xL = −1 and xR = +1, while the location of the compromise,

xC ∈ [−1, 1] may be chosen endogenously, e.g., in order to maximize some goal.

Before voting, each agent i, i = 1, ..., 2n+1, obtains a signal si ∈ {−1, 1}. Signals {si}2n+1
i=1

are assumed to be i.i.d., and we let p ∈ (0, 1) denote the ex ante probability of drawing signal

−1. Hence, voters with signal −1 are in an ex ante minority if and only if p < 1/2.

We denote by ñ−1 the random variable representing the number of voters with signals

−1 and by n−1 its realization. The realized number of voters with signal +1 is denoted

by n+1 = 2n+1−n−1. The expected number of voters with signal −1 is E [ñ−1] = (2n+ 1) p.

Each voter, i = 1, ..., 2n+ 1, has an “ideal” location yi for the elected alternative. Voter

i’s ideal point depends both on her own private signal si and also on the mean of all other

voters’ private signals sj , j 6= i. Let γ−1, γ1 ∈
[

1
2n+1 , 1

]
denote the weight that voters with

signal −1 and +1 assign to their own signal, respectively. The ideal location yi (si, s−i) for

voter i is

yi (si, s−i) = γisi +
1− γi

2n

∑
j 6=i

sj , (1)

where γi = γ−1 if si = −1 and γi = γ1 if si = +1. Note that, in order to avoid a complex

model with more than two types determining preferences, we assumed that the degree of

interdependence in the preferences is determined by the obtained signal.

Thus, preferences are assumed here to be interdependent, and the weight γi on own signal

si, captures the level of interdependence. A special case is the one where all agents share

a common γ = γ1 = γ−1. Then γ = 1 yields the private values case (no interdependence),

while γ = 1
2n+1 yields the pure common values case where, ex post, all voters share the same

ideal point.

If alternative a ∈ {L,C,R} is elected, the utility of voter i with ideal point yi is given

by u (xa, yi) where u(·, yi) is single-peaked at, and symmetric around xa = yi. In particular,

any utility function u (xa, yi) that is monotonically decreasing in the absolute value of the

difference between yi and xa is feasible. We use the cardinal representation only for welfare

comparisons, while all other results, such as equilibrium constructions, are solely based on

ordinal information.
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For some results we assume that the number of voters is large, and we use Hoeffding’s

Inequality and the Gärtner-Ellis Large Deviations Theorem (see Appendix A for details).

2.2 The Condorcet Winner: Interdependence and Compromise

An alternative is the complete information Condorcet winner if it is the Condorcet winner

when all voters’ types are public information. For any given realization of signals, the as-

sumed preferences are here single-peaked according to the left-right natural order L,C,R (or

R,C,L). Therefore, the Condorcet winner always exists.

To compute the Condorcet winner, note first that the ideal point of voter i with signal

+1 can be written as

yi (+1, s−i) = γ1 +
1− γ1

2n
(−n−1 + (2n− n−1)) = 1− (1− γ1)

n−1
n
.

In the private values case where γ1 = 1, such a voter has a peak on alternative R. If γ1 < 1,

the peak monotonically shifts to the left as the number of voters with the opposite signal

increases. Let

k =
n

2

1− xC
1− γ1

(2)

and observe that, if k is an integer and if n−1 = k, then voters with signal +1 are indifferent

between alternatives C and R, because their peak is then given by

1− (1− γ1)
n

2

1− xC
1− γ1

1

n
=

1

2
(1 + xC) ,

exactly half-way between 1 and xC . Thus, if n−1 ≤ n, the voters with signal +1 form a

majority, and the Condorcet winner is given by

CW =

 R if n−1 ≤ dke − 1,

C if n−1 > dke − 1
(3)

where dze denotes the smallest integer no less than a real number z. In this case, C can be

the Condorcet winner only if k ≤ n which is equivalent to γ1 ≤ 1
2 (1 + xC). If the majority

group n+1 puts a relatively high weight on own signal, the Condorcet winner is always R.

Similarly, the ideal point of a voter i with signal −1 can be written as

yi (−1, s−i) = −γ−1 +
1− γ−1

2n
(n+1 − (2n− n+1)) = −1 + (1− γ−1)

n+1

n
.

In the private values case where γ−1 = 1, such a voter has a peak on alternative L. If γ−1 < 1,

then the peak monotonically shifts to the right as the number of voters with the opposite

signal increases. Let

κ =
n

2

1 + xC
1− γ−1

(4)
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and observe that, if κ is an integer and if n+1 = κ, then voters with signal −1 are indifferent

between L and C, because their peak is given by

−1 + (1− γ−1)
n+1

n
= −1 + (1− γ−1)

n

2

1 + xC
1− γ−1

1

n
=

1

2
(−1 + xC) ,

exactly half way between −1 and xC . If n−1 ≥ n + 1, then voters with signal −1 form a

majority, and the Condorcet winner is

CW =

 L if n+1 ≤ dκe − 1,

C if n+1 > dκe − 1
. (5)

In this case, C can be the Condorcet winner only if κ ≤ n which is equivalent to γ−1 ≤
1
2 (1− xC) . If the majority group n−1 puts a high enough weight on own signal, then the

Condorcet winner is always L.

To conclude, if the voters whose signal is in majority put a high enough weight on the

opinion of others (given a fixed compromise location xC), they will prefer the compromise

alternative if and only if the number of voters with the opposite signal exceeds a certain

threshold. As we shall see below, the cutoffs κ and k defined above play an important role

also in the construction of strategic voting equilibria.

2.3 The Voting Procedures

A strategy profile is an ex post equilibrium if, given that all other agents follow their equi-

librium strategies, each voter plays a best-response for all signal realizations. We study and

compare equilibria of two main voting procedures.

1. Successive voting (SV): alternatives are ordered according to an agenda, say [L, {C,R}].

With this agenda, voters first decide by simple majority to accept, or to reject alter-

native L. If L is accepted, voting ends. Otherwise, voters decide whether to accept

alternative C. Alternative C is accepted if it has majority support and R is accepted

otherwise. The general results of GMS and Kleiner and Moldovanu (2017) for private

values and single-peaked preferences imply that this procedure yields the Condorcet

winner in an ex post and sincere voting equilibrium if the agenda is either [L, {C,R}]

or [R, {C,L}]. We focus here on these convex agendas, where the alternative put to

vote in the first stage is one of the two ”extreme” alternatives. Sincere voting need not

be an equilibrium for the agenda that starts by voting on the compromise C, and, even

under private values, this agenda may not elect the Condorcet winner
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2. Voting by amendment (AV): alternatives are ordered according to an agenda, say

[{L,C}, {C,R}]. Voters vote first by simple majority between alternatives L and R.

If L(R) is chosen, then at the second stage voters decide by simple majority between

C and L(R). The general results of Kleiner and Moldovanu (2017) for private values

imply that this procedure also yields a Condorcet winner in a sincere equilibrium, while

this is not necessarily the case for an agenda where the middle alternative C is one of

the alternatives considered at the first step.

As we show below, the introduction of interdependent values yields quite different insights

from the above.

3 Successive Voting: One-Directional Vote Shifting

We start with successive voting, and focus on the information policy that reveals the margin

of victory at the first stage. The derived strategies remain an equilibrium even if individual

voting behavior is reported, as long as we focus on type-symmetric equilibria where all voters

with the same signal behave in the same way.11

3.1 Vote-Shifting Equilibrium

We first introduce an important phenomenon, vote shifting, as a response to information

disclosure and interdependent values: at the second stage, some voters may want to condition

their behavior on the voting outcome of the first stage since this past result conveys valuable

information about the signals of other agents (that directly affect their own preferences here).

Consider agenda [L, {C,R}] and the following strategy profile: Voters with signal −1

vote in favor of L in the first stage and in favor of C at the second stage; Voters with signal

+1 vote against L in the first stage, and in the second stage vote for C if L received at

least dke votes in the first stage, and vote against C otherwise. We denote this profile by

(L1C2,¬L1C2 if ≥ k), where the first component denotes the strategy of voters with signal

−1 at stage 1 (L1) and at stage 2 (C2), and the second component analogously denotes the

strategy of voters with signal +1 at the two stages. The symbol ¬ denotes voting against

the respective alternative.

11One can also consider the minimal information policy where, if the second stage is reached, voters know

only that the first stage alternative did not get the support of a majority. For both SV and AV, the policy

of revealing the margin of defeat at the first stage is better than the minimal information policy in electing

the Condorcet winner. The formal analysis of the minimal information policy is available from authors upon

request.
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Remarkably, the same cutoff k defined in (2) that appeared in the non-strategic determi-

nation of a Condorcet winner plays a role in the strategic analysis below: it is chosen such

that, when there are k voters with signal −1, voters with signal +1 are indifferent between

C and R. Intuitively, k is increasing in γ1 and decreasing in xC . That is, vote-shifting will

be more likely when voters with signal +1 care more about other voters’ private information

(lower γ1), or when the compromise is located closer to R.

With interdependent values, the successive voting procedure with convex agenda [L, {C,R}]

critically relies on vote shifting to dynamically discover the Condorcet winner. This discovery

process need not be always successful, contrasting the private values case.

Proposition 1 Consider SV with agenda [L, {C,R}].

(i) If γ−1 ≥ 1
2 (1− xC), then the strategy profile (L1C2,¬L1C2 if ≥ k) constitutes an

equilibrium that always selects the complete information Condorcet winner. If, in addition,

γ1 ≤ 1
2 (1 + xC), actual vote-shifting may occur in equilibrium.

(ii) If γ−1 <
1
2(1 − xC), then there is no equilibrium that always results in the selection

of the full information Condorcet winner.

The main reason for the failure to select the Condorcet winner is that no information

may be revealed in the first vote on L: if γ−1 <
1
2(1 − xC), voters may unanimously reject

L even though L may be the Condorcet winner. This cannot happen in the private values

setting. As we shall see below, this defect cannot occur in the amendment procedure with a

convex agenda that always reveals information about votes received by both L and R at the

first stage.

The results for agenda [R, {C,L}] are analogous: consider the strategy profile

(¬R1C2 if ≥ κ, R1C2)

where, if alternative R receives at least dκe votes in the first stage, voters with signal −1 shift

and vote for C in the second stage. The cutoff κ in a vote-shifting equilibrium is the same

cutoff (4) used to determine the complete information Condorcet winner. In order to have

effective vote shifting in equilibrium, we need κ ≤ n which is equivalent to γ−1 ≤ 1
2 (1− xC).

3.2 Agendas and Their Likelihood of Selecting the Condorcet Winner

Since, by Proposition 1, the selection of the complete information Condorcet winner is not

guaranteed, we now compare the two convex agendas [L, {C,R}] and [R, {C,L}] according

to their respective likelihood of selecting the Condorcet winner. We find that the agenda
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where the alternative with ex ante higher support is put to vote last is superior,. This agrees

well with observed practice in many parliaments.

For the comparison, we need an intuitive and consistent method of selecting equilibria

for each possible parameter constellation: the multiplicity of voting equilibria is a standard

problem in voting games, and pivotality considerations alone are not sufficient for equilibrium

selection. We base our selection criterion, and hence our comparison, on the following concept:

Definition 1 A voter’s strategy in SV is sincere if, at each stage in the process, and con-

ditional on all available information, the voter approves the current alternative if it yields

the highest expected payoff among the remaining ones, and rejects it otherwise. A strategy

is sincere if all agents use sincere strategies. A strategy profile is semi-sincere if one type of

voters votes sincerely, but not both.

If the equilibrium strategy is not sincere, legislators may have difficulties explaining their

behavior to constituents. This feature often constrains opportunistic equilibrium behavior

and is the subject of a large literature in Political Science (see Fenno [1978]). Semi-sincerity

is needed here for a few special cases where sincere equilibria do not exist.

In this subsection (and some of the later subsections), we also assume the following:

Assumption A Ex ante, voters with signal −1 are in minority (i.e., p < 1/2), and weakly

prefer L to R.

Assumption A has two parts. The first part, p < 1/2 is without loss of generality. The

second part assumes that, ex ante, there is indeed a conflict of interest between the two types

of voters (otherwise the situation is trivial). Formally, it requires that

−γ−1 +
1− γ−1

2n
(2n (1− p)− 2np) ≤ 0⇔ γ−1 ≥

1− 2p

2 (1− p)
.

Let us define cutoffs γ∗1 and γ∗−1 as follows:

γ∗−1 ≡ 1

2
(1− xC) +

1− 2p

2 (1− p)
1

2
(1 + xC) ,

γ∗1 ≡ 1

2
(1 + xC)− 1− 2p

2p

1

2
(1− xC) .

Then, voters with signal −1 ex ante prefer L to C if and only if γ−1 ≥ γ∗−1 and voters with

signal +1 ex ante prefer R to C if and only if γ1 ≥ γ∗1.
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We compute the sincere/semi-sincere equilibria in the Appendix. Based on Proposition 6

and Tables 2 and 3 there, the possible outcomes under the two agendas are:

γ1 ∈ [ 1
2n+1 , γ

∗
1) γ1 ∈ (γ∗1,

1+xC
2 ) γ1 ∈ (1+xC2 , 1]

γ−1 ∈ [ 1
2n+1 ,

1−xC
2 ) n−1 ≥ n+ 1 (C,C) (C,C)

(
C,
{C if n+1≥dκe
L if n+1<dκe

)
n−1 ≤ n (C,C) (C,C) (R,R)

γ−1 ∈ (1−xC2 , γ∗−1) n−1 ≥ n+ 1 (C,C) (C,C) (C,L)

n−1 ≤ n (C,C) (C,C) (R,R)

γ−1 ∈ (γ∗−1, 1] n−1 ≥ n+ 1 (L,L) (L,L) (L,L)

n−1 ≤ n
({C if n−1≥dke

R if n−1<dke , C
) ({C if n−1≥dke

R if n−1<dke , C
)

(R,R)

Table 1: Equilibrium outcomes under the two agendas

The first and second component in each cell denote the potential outcomes under agendas

[L, {C,R}] and [R, {C,L}], respectively.12

The outcome tally in Table 1, and an application of the Hoeffding inequality yield:

Proposition 2 Suppose that Assumption A holds.

(i) If γ1 >
1+xC

2 and γ−1 < γ∗−1, then [R, {C,L}] selects the Condorcet winner with

a higher probability than [L, {C,R}], but this probability decays exponentially to zero as n

grows.

(ii) If γ1 <
1+xC

2 and γ−1 > γ∗−1, then [L, {C,R}] selects the Condorcet winner with a

higher probability than [R, {C,L}]. Moreover, this probability remains significantly different

from zero as n grows.

(iii) If γ1 >
1+xC

2 and γ−1 > γ∗−1, or if γ1 <
1+xC

2 and γ−1 < γ∗−1, the two agendas are

outcome equivalent.

Interestingly, agenda [L, {C,R}] dominates [R, {C,L}] not because voters with signal

+1 shift their votes to C in the second stage when there is sufficiently strong support for L

in the first stage (in this case, the outcomes are identical under two agendas), but because,

under [L, {C,R}], these voters choose not to shift to C when there is not enough support

for L in the first stage. This case is captured by part (ii) in the above proposition and is

illustrated by the blue cells in Table 1.

Intuitively, if both types of voters put a high enough weight on own signal (γ−1 > γ∗−1,

γ1 >
1
2 (1 + xC)), no vote-shifting occurs in equilibrium, and the same extreme alternative

12The slight asymmetry between the agendas is due to the assumption that p < 1/2: while this is without

loss of generality per-se, it obviously implies that γ∗−1 >
1
2

(1− xC) and γ∗1 <
1
2

(1 + xC).
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(either L or R) is chosen under both agendas. On the other hand, if both types of voters

care a lot about other voters’ signals (γ−1 < γ∗−1, γ1 <
1
2 (1 + xC)), they all vote in the

sincere/semi-sincere equilibrium against the first extreme alternative on the ballot, and then

all vote for the compromise. This gives part (iii).

To understand parts (i) and (ii), note from Table 1 that the equilibrium outcomes of the

two agendas may differ only when the voter type that has the ex post majority puts a high

enough weight on the signals of others (n−1 ≥ n + 1 and γ−1 < γ∗−1 in part (i) – the red

cells in Table 1, or n−1 ≤ n and γ1 <
1
2 (1 + xC) in part (ii) – the blue cells in Table 1).

In those cases, the agenda that puts first the extreme alternative with ex post less support

induces the ex post majority voters to condition their second stage votes on the first stage

outcome, and thus always selects the Condorcet winner. To induce information revelation in

the first stage, however, the ex post minority voters must put a high enough weight on their

own signal (γ1 >
1+xC

2 in part (i) and γ−1 ≥ γ∗−1 in part (ii)) so that they will vote for the

first extreme alternative in the ballot. Since p < 1/2 by Assumption A, alternative R has

more ex ante support than alternative L. As the number of voters grows, with probability

approaching one, alternative R also has more ex post support than alternative L. Therefore,

[L, {C,R}] dominates [R, {C,L}].

For a further illustration, consider the special case where γ−1 = γ1 = γ. If γ∗−1 ≤
1
2 (1 + xC), the scenario described in part (i) never occurs, and thus [R, {C,L}] never domi-

nates [L, {C,R}]. The condition γ∗−1 ≤ 1
2 (1 + xC) is equivalent to

xC ≥ x̂C ≡
1− 2p

3− 2p
.

The lower bound x̂C is between 0 and 1/3 when voters with signal +1 have an ex ante

majority (p < 1/2). If xC ≥ x̂C , then alternative L can be intuitively considered as the most

“extreme” alternative among the three. The above Proposition suggests that it is better to

vote on such an alternative first, confirming the standing practice in many parliaments that

use the successive procedure.

4 The Amendment Procedure: Bidirectional Vote Shifting

We now proceed to AV, where voters choose between L and R at the first stage, and where,

at the second stage, they choose between C and the winner of the first stage. This is the

only possible convex agenda for AV with three alternatives. As in SV, we assume that the

information regarding the margin of victory at the first round is disclosed before the second-

stage vote. Recall that a voter with signal +1 prefers C to R if at least dke voters have signal

14



−1, and that a voter with signal −1 prefers C to L if at least dκe voters have signal +1.

Consider the following strategy profile denoted by Π:13

1. Voters with signal −1 vote for L in the first stage. In the second stage they vote for C

in a vote R vs. C; in a vote L vs. C they vote for C if and only if at least dκe voters

voted for R in the first stage;

2. Voters with signal +1 vote for R in the first stage. In the second stage they vote for C

in a vote L vs. C; in a vote R vs. C they vote for C if and only if at least dke voters

voted for L in the first stage.

Proposition 3 The strategy profile Π is an equilibrium under AV with a convex agenda, and

the complete information Condorcet winner is always elected.

Thus, for any parameter values there is an equilibrium of AV with bi-directional (poten-

tial) shifting that always elects the Condorcet winner. It follows that AV is superior in this

respect to SV (Proposition 1),

For a welfare comparison, note that the first stage voting in AV fully reveals the voters’

signals, so the second stage voting is under complete information. For SV, we focus on agenda

[L, {C,R}].14 As we argue below, AV dominates SV if the first stage voting under [L, {C,R}]

reveals n−1, or the first stage voting is not revealing and R is elected. The welfare comparison

is ambiguous and depends on n−1 only if the first stage voting of SV is not revealing and C

is elected.

(i) If alternative L is elected in the first stage of [L, {C,R}], then AV eventually elects

either L or C; in the latter case, AV improves welfare relative to SV because it allows voters

with signal −1 to shift their votes to C when they prefer C to L (voters with signal +1 are

also better off since they prefer C to L).

(ii) If alternative L is rejected by a split vote in the first stage of [L, {C,R}], then the

second stage equilibrium play is also under complete information in SV. In this case, the two

procedures are equivalent.

(iii) If alternative L is unanimously rejected in the first stage and if R is elected under

[L, {C,R}], then AV improves welfare because it allows voters with signal +1 to shift to

13Note that Π is the unique sincere equilibrium if 1
2
− 1

2

γ−1

1−γ−1
≤ p ≤ 1

2
+ 1

2

γ1
1−γ1

. The first stage voting is

sincere because voters with signal −1 ex ante prefer L to R, and voters with signal +1 ex ante prefer R to L.

Voting at the second stage is under complete information, and hence also sincere.
14The comparison for the other convex agenda [R, {C,L}] is analogous.
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the compromise alternative, and because vote shifting benefits both types of voters when it

occurs.

(iv) If alternative L is unanimously rejected in the first stage and if C is elected under

[L, {C,R}], the comparison is ambiguous, and it depends on the realization of n−1. If n−1 ∈

[dke, 2n + 1 − dκe] so that C is the Condorcet winner, then the outcomes of SV and AV

coincide. When C is not the Condorcet winner, SV dominates AV if n−1 is close to either

dke or 2n+ 1− dκe, and the reverse is true otherwise.15

To conclude, the above findings—strong rationales in favor of AV—starkly contrast the

results under complete information or under private values, where the two procedures are

always equivalent under a convex agenda and single-peaked preferences.

5 The Location of the Compromise

So far we have assumed that xC , the location of the compromise alternative C on the ideo-

logical scale, is exogenous. We consider now varying its location.

5.1 Electable Compromises

We first prove a key Lemma that identifies the different compromise locations effectively

leading to its election under SV and AV, respectively. For a given n and for a given realization

of signals, let xLC(n+1) denote the compromise location such that, ex post, voters with signal

−1 are indifferent between L and C:

−1 + xLC(n+1)

2
= −γ−1 +

(
1− γ−1

) 1

2n
(n+1 − (2n− n+1)) ,

which yields

xLC(n+1) = 2(1− γ−1)
n+1

n
− 1.

For a given n, voters with signal −1 are ex ante indifferent between L and C if the compro-

mise is located at

xLC = 4
(
1− γ−1

)
(1− p)− 1.

15To see this, suppose that n−1 ≥ n+ 1 and n−1 > 2n+ 2− dκe. Then L is the Condorcet winner, and it

is always elected under AV. On the one hand, SV is welfare superior to AV if n−1 is close to 2n + 2 − dκe,

because voters with signal −1 are almost indifferent between L and C, but voters with signal +1 strictly prefer

C to L. On the other hand, AV is welfare superior to SV if n−1 is close to 2n + 1, because then almost all

voters strictly prefer L to C. As a result, there must exist a cutoff n∗−1 ∈ (2n+ 2− dκe, 2n+ 1) such that

SV dominates AV if n−1 ∈ (2n+ 2− dκe, n∗−1) and the reverse is true if n−1 ∈ (n∗−1, 2n+ 1]. The case where

n−1 < dke is analogous.
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For voters with signals +1 we analogously define:

xRC(n−1) = 1− 2(1− γ1)∞
n−1
n
, and xRC = 1− 4(1− γ1)p.

Lemma 1 (i) Consider SV with agenda [L, {C,R}], and suppose that Assumption A holds.

a. If n−1 ≥ n + 1, then compromise C is elected if and only if xC ≤ xLC . Otherwise,

alternative L gets elected.

b. If n−1 ≤ n, then compromise C is elected if and only if xC ∈
[
−1 + 2γ1, x

L
C

]
∪[

xRC(n−1), 1
]
. Otherwise, alternative R gets elected.

(ii) Consider AV.

a. If n−1 ≥ n+ 1, then compromise C is elected if and only if xC ≤ xLC(n+1). Otherwise,

alternative L gets elected.

b. If n−1 ≤ n, then compromise C is elected if and only if xC ≥ xRC(n−1). Otherwise,

alternative R gets elected.

If the voters with signal −1 form an ex post majority, C will be elected under both voting

procedures if it close enough to L so that even those voters find it more attractive than L

(i.e., if xC ≤ xLC under SV, and if xC ≤ xLC(n+1) under AV).16

If voters with signal +1 form an ex post majority, C will be elected under AV only if

it is sufficiently close to R so that voters with signal +1 ex post prefer C to R (i.e., if

xC ≥ xRC(n−1)). In contrast, C will be elected under SV in more cases: it will be elected if

xC ≥ xRC(n−1), but it can also get elected even if xC < xRC(n−1). In particular, C is elected

under SV if −1 + 2γ1 ≤ xC ≤ min
{
xLC , x

R
C(n−1)

}
. In this case, the equilibrium profile is

(¬L1C2,¬L1C2) , and C is elected with unanimous support because no information is released

after the first stage voting. The difference arises because the strategic voting at both stages

of SV (and the resulting information disclosure) depends on the compromise location, while

in AV only the second stage voting behavior is affected by the compromise location.

5.2 Optimal Location

An optimal compromise location will clearly depend on the underlying goal, on the expected

numbers of voters with the various signals and on the interdependence parameters. Whatever

16This is calculated from an ex ante perspective under SV, and from an ex post perspective under AV.
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the underlying goal is, the main constraint on the optimal location is that, in order to be

effective, the compromise must also be elected with positive probability.17

The above Lemma implies that the employed voting procedure also influences the optimal

location - this is the main new insight in this part. To illustrate this, let us assume that an

agenda setter (for example, the Government) can determine, prior to voting, the location of

C. The decision where to place the compromise is not trivial because the electorate has here

two factions with two different signals, and hence it incorporates diverse preferences.

Throughout the sequel, we assume that the agenda setter has a single-peaked utility func-

tion that is maximized at some alternative x∗ ∈ [−1, 1], and that it locates the compromise

in order to maximize the expected utility it derives from the elected alternative.18

1) We first assume that x∗ ∈ (−1, 1). The agenda setter will propose here a policy

because her first-best alternative hasn’t been put forward yet. For example, x∗ could be the

policy position that maximizes the expected utility of the members of the majority party,

or the expected utility of all voters, etc. The key observation is that the location must be

chosen such that the compromise is elected with high probability. Therefore, the agenda

setter should set xC = x∗ if x∗ belongs to the set of electable compromises (characterized in

Lemma 1), and otherwise choose among the electable compromise locations the one that is

closest to x∗.

Proposition 4 Assume that max
{
γ−1, γ1

}
< 1 and that the agenda setter has a utility

function that is symmetric around its peak x∗ ∈ (−1, 1).

(i) Suppose that Assumption A holds, and that −1+2γ1 6= xLC . Let XC ≡
[
−1 + 2γ1 , x

L
C

]
∪[

xRC , 1
]

denote the set of compromise locations that get elected under SV with agenda

[L, {C,R}] and suppose that minx∈XC |x− x∗| has a unique solution. Then, the optimal

compromise location under SV satisfies

lim
n→∞

xC (n) = arg min
x∈XC

|x− x∗| .

(ii) Under AV, the optimal compromise location satisfies

lim
n→∞

xC(n) =

 max
{
x∗, xRC

}
if p < 1/2

min
{
x∗, xLC

}
if p > 1/2

17Recall Theresa May’s frustration from her continued failure to pass a negotiated Brexit compromise

through Parliament, although her Government party, the Tories, possessed, together with an allied, small

North-Irish party, a theoretical majority.
18The empirical analysis of Martin and Vanberg [2014] suggests that, at least in coalition governments, the

most likely compromise is an average of the positions of the represented parties.
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2) Suppose now that x∗ = 1. That is, the goal of the agenda setter is to elect an

alternative that is as close as possible to R.19 Since R is already on the table, the only reason

for the agenda setter to propose a compromise in this case is to prevent alternative L from

being elected. From his point of view, the compromise would ideally be elected if voters

with signal −1 have a majority (it prevents then outcome L), but not be elected if voters

with signal +1 have a majority (so that their ideal policy R gets elected then). The location

of the compromise must therefore take into account the precise conditions under which the

compromise will be elected.

Proposition 5 Suppose that the agenda setter chooses the location of the compromise xC(n)

in order to maximize the expected location of the elected alternative, i.e., x∗ = 1.

(i) Consider SV with agenda [L, {C,R}] and assume that Assumption A holds. The opti-

mal compromise C is located at

xC (n) =

 just below − 1 + 2γ1 or at xLC if xLC ≥ −1 + 2γ1

at xLC if xLC < −1 + 2γ1
.

(ii) Under AV, the optimal compromise location satisfies

lim
n→∞

xC(n) =

 min{−1 + 2γ1 , 1− 2γ−1} if p < 1/2

xLC if p > 1/2
.

Under SV, the optimal compromise location for a traditionalist agenda setter is often

determined by the position xC = xLC that makes voters with the opposite signal ex ante

indifferent between the compromise and their own traditional position: this is the highest

compromise that will still be elected if those voters do have a majority. Sometimes it is

even better to choose a location further to the left: rather than appealing to voters with the

opposite signal, such a move makes the compromise less attractive for voters with signal +1

and increases the chance that R will be elected when they have a majority.

Under AV, the second stage voting is under complete information, so the realization

(rather than the expectation) of n−1 determines whether the compromise gets elected. The ex

ante optimal compromise location will therefore depend on the exact probability distribution.

But, we can explicitly determine the optimal location for large populations. In that case,

if p > 1/2 then voters with signal −1 have a majority with high probability. The largest

19This may be the case, for example, if its constituent base supports that position more strongly than the

legislators themselves.
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compromise these voters are willing to elect is then close to xLC , which is therefore optimal.

The situation is more subtle if p < 1/2. Then, the optimal location must then take into

account the value provided by the compromise (conditional on being elected), the likelihood

that it gets elected if voters with signal −1 have a majority (in which case it protects against

the election of L), and the likelihood that it gets elected if voters with signal +1 have a

majority (in which case it prevents R from being elected). Using tools from large deviation

theory, we show that the last channel dominates for large n: the optimal compromise satisfies

xC ≤ −1+2γ1 so that it will never be elected by a majority of voters with signal +1. For the

compromise to be elected (at least sometimes) when voters with signal −1 have a majority,

it must satisfy xC ≤ 1 − 2γ−1. We show that, conditional on n−1 ≥ n + 1, the location

xC = 1−2γ−1 gets elected with probability approaching 1, and the limit optimal compromise

is therefore xC = min{−1 + 2γ1 , 1− 2γ−1}.

Remark 1 Let us compare the optimal compromise location under the two procedures for

large populations with x∗ = 1. In both procedures, the optimal compromise is chosen low

enough (xC ≤ −1+2γ1) so that it will not be elected if voters with signal +1 have a majority,

but it is likely to be elected if voters with signal −1 have a majority. For the latter, xC ≤ xLC
is sufficient in SV, but xC ≤ 1 − 2γ−1 is required in AV. If p < 1/2 and γ−1 < 1, then

xLC = 4
(
1− γ−1

)
(1− p) − 1 > 1 − 2γ−1. Therefore, if p < 1/2 and γ−1 < 1, the agenda

setter will choose a larger compromise under SV, and it would strictly prefer SV to AV

whenever 1− 2γ−1 < −1 + 2γ1.

6 Case Study: The Flag of the Weimar Republic

The flag was one of the most contested issues during the Weimar Republic.20 The principal

argument was between the Black-Red-Gold (BRG) flag and the Black-White-Red (BWR)

flag. The BRG flag was associated with progressive, anti-monarchistic ideas, while BWR

were the official colors of the Reich in the period 1871-1919, and, significantly, already from

1867, the flag adorning of North-German Confederation’s fleet.

The 421 seats in the Weimar National Constitutional Assembly were divided among var-

ious parties as follows:

20The flag controversy reflected, in compressed form, the entire century preceding Weimar. See Winkler

[1993]. Article 3, defining defining the flag was the only article of the Constitution (out of 181!) whose

outcome was determined by open roll-calls where individual votes were registered.
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Party SPD Z DDP DNVP USPD DVP BBB DHP SHBLD BL

Seats 163 91 75 44 22 19 4 1 1 1

Table 4: The division of seats among parties

SPD, the left-leaning social democrats constituted the main party of the ruling coali-

tion. Z(entrum) and DDP were centrist parties, also in the government coalition (in bold).

DNVP and DVP were right-leaning conservative parties, both in the opposition. USPD, the

independent social democrats were to the left of the SPD, and were also in opposition.21

6.1 The Proposed Flags

The Assembly considered 4 alternative proposals with respective support that crossed several

party lines, leading to genuine uncertainty about the outcome of a vote:

1. BRG. This was the government’s proposal, considered the ”main” alternative. It was

submitted to the Constitutional Committee on February 21, 1919 but it was subse-

quently adjusted at the initiative of the SPD to include a possible later determination

of a flag for the fleet.

2. BWR. This was supported by the two opposition right-conservative parties DNVP and

DVP, and by conservative factions of the centrist parties in the ruling coalition, Z and

DDP.

3. R. Red, the color of the Socialist International, was supported by the more radical left,

the USPD.22

4. BRG/BWR. This was the compromise arrangement: BRG as national colors, together

with an adjusted BWR flag with BRG canton for the fleet.23 The compromise was

proposed by members of both Z and DDP.

The clear left-right ideological order was

R−BRG−BRG/BWR−BWR

21The other 4 very small parties in opposition, BBB, DHP, SHBLD and BL mostly represented regional

interests.
22This proposal was also adjusted to include a provision about a future, possibly different flag for the fleet.
23A canton is a small flag within a flag, usually at the NW corner.
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6.2 The Voting Outcome and Its Analysis

The standard decision making procedure of the Assembly was successive voting. Mention-

ing the “voting on the farthest alternative first” logic, the agenda-setting Elders’ Council

suggested24

A : 1) R −→ 2) BWR −→ 3) BRG/BWR −→ 4) BRG

The first substantial vote was thus on R.25 The outcome of the vote on R was widely antici-

pated, and this also explains why it was not deemed necessary to conduct a roll-call in that

case.26 We thus focus focus on the remaining agenda

A′ : 2) BWR −→ 3) BRG/BWR −→ 4) BRG

Voting was by roll-call, where each individual vote was carefully registered. BWR was also

defeated: 111 members voted in favor, 190 members voted against, and 6 abstained. Finally,

BRG/BWR was accepted: 211 voted in favor, 90 against and 1 abstained. According to the

rules of the successive procedure, the remaining proposal BRG was not put to vote anymore.

This situation precisely fits the set-up analyzed in the theoretical part: we show below how

vote-shifting can explain the observed outcome. Note also that the government’s proposal

BRG, that presumably had the highest ex ante support is put to here to vote last, as suggested

by our theory. The following table displays the results in disaggregated form:27

24This is the method proposed by Trendelenburg, 1850, and Tecklenburg, 1914, for cases where the proposals

are on both sides of the ”main” alternative, taken here to be the Government’s position. See Protocols [1919].
25A conservative member proposed a non-convex agenda that was defeated by simple majority before the

substantial vote
26It is probable that only members of USPD—who had proposed R and who presumably had their peak on

it—voted in its favor, while all other parties— who had peaks to the right—voted against.
27111 members missed both votes, most of them from the ruling coalition. For simplicity, we do not list here

the few incomplete profiles where one roll-call was missed, nor the few profiles that contained abstentions.

Adding all these, a total of 17 (out of which 8 voted Yes on the compromise), does not change the result or

its interpretation.
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Y − Y Y −N N −N N − Y

SPD 0 0 0 106

Z 10 1 0 49

DDP 21 19 0 14

DNVP 0 33 0 0

USPD 0 0 18 0

DVP 1 16 0 0

BBB 0 0 0 1

DHP 0 0 1 1

BVP 0 0 0 1

Total 32 69 19 172

Table 5: The outcome of the roll-calls

1. 106 out of the 107 present SPD members voted N-Y.28 This is consistent with either

a peak on the compromise BRG/BWR, or with an initial peak on BRG together with

a subsequent shift to BRG/BWR caused by the relatively large and vocal support for

BWR.29 Fixing the behavior of all other actors, adding 106 No votes of SPD members

would have led to a clear rejection of the compromise and the likely election of the

Government’s proposal BRG. The omission to do so therefore suggests that these vot-

ers shifted their vote from BRG to the compromise BRG/BWR. The interdependent

component of their preferences was clearly expressed in the Government’s willingness

to adjust its initial proposal to allow for a later determination of a fleet flag. Hence, we

conclude that, after observing more than 100 votes in favor of BWR—about one third

of the total—the members of the SPD most likely shifted their votes from an initial

peak BRG to the compromise BRG/BWR.

2. All 18 present members of USPD voted N-N, consistent with sincere voting given a

presumed peak on R.

3. A large majority of members of Z voted N-Y (49), while 7 abstained/missed the first vote

and voted Y at the second. This is, again, consistent with either a peak on BRG/BWR,

or with a peak on BRG and a subsequent shift after the BWR vote. But, the fact that

BRG/BWR was formally proposed by this party, points to the first alternative. 10

28One member missed the first vote, and voted Y on the second.
29Note that, given the chosen agenda, this shift is immaterial for the behavior in the first two votes on R

and BWR.
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other members of Z voted Y-Y, which is consistent with sincere voting and a peak on

BWR.

4. The DDP party was also split: 21 members voted Y-Y, consistent with a peak on

BWR,30 while 14 of its members voted N-Y, which, as we saw above, is consistent with

a peak on BRG/BWR.

5. 49 out of the 50 present members of the right-wing, conservative parties DNVP and

DVP, , voted Y-N,31 They were joined by 20 members of the coalition ( 19 DDP and 1

Z). All these voters had a presumed peak on BWR and were expected to vote Y-Y, since

BRG/BWR was their preferred alternative after the defeat of BWR. But they didn’t,

and their choice of seemingly dominated action cannot be explained by looking at the

voting game in isolation. Therefore, we advance here a more speculative explanation:

the radical conservative voters wanted to signal their unwillingness to compromise on

the flag, thus lending credibility to their threat of rejecting the entire constitution

because of it. This explanation is a twist on Fenno’s “home-style” hypothesis.32 Home-

style—the need to justify behavior to constituents—is invoked to explain seemingly sub-

optimal behavior (such as sincere voting) instead of behavior that exploits each strategic

opportunity. Here sincere voting was in fact optimal but, at the last binary vote, it

delivered the wrong signal. It is also very likely that the conservatives anticipated the

vote shifting by the SPD, and hence believed that the compromise will be adopted

anyhow, rendering their otherwise risky signaling behavior costless.

Remark 2 We check the above outcome for consistency in light of the theoretical considera-

tions. Consider SV with agenda [R, {C,L}] and the profile (¬R1C2 if ≥ κ,R1C2) which is an

equilibrium if γ1 is relatively high, i.e., when right-leaning voters are close to weighing solely

their own signal. This assumption certainly fits well their total unwillingness to compromise.

We obtain an estimate of γ−1, the weight on own signal of the left leaning members. For

the shifting parameter, we obtain that κ = n
2

1+xC
1−γ−1

≤ 111 (since 111 voters voted in favor of

BGR). Observing that n ≈ 159 (since about 319 voters participated in the vote), this yields

γ−1 ≤ 0.3− 0.7xC . Note that the compromise location xC of the cantoned flag BRG/BWR is

best thought to satisfy −1 < xC ≤ 0: it was definitely closer in spirit to the left alternative

BRG (main flag) than to right alternative BWR (canton). The weighted average compromise

30Another 2 members of this party voted Y-Miss.
31The remaining member voted Y and then missed the second vote.
32See Fenno [1978], Denzau, Riker and Shepsle [1985], and Austen-Smith [1992].
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in the spirit of the coalitional analysis of Martin and Vanberg [2014] would be about −0.52

in this case. Setting xC = −0.5 yields γ−1 ≤ 0.65, a high degree of interdependence, explain-

ing the governing coalition’s willingness to compromise. Finally, the cantoned flag was most

probably the Condorcet winner CW since

n+ 1 = 160 < n−1 ' 201 < 208 ≤ 2n+ 1− dκe,

where we estimated n−1 by counting the legislators that voted against BWR.

The short history of the Weimar Republic was marred by political instability and govern-

ment falls, often connected to the flag. The BWR flag was restored by the Nazis immediately

after taking power in 1933, and later another official flag, personally designed by Hitler,

combining the BWR colors and the Swastika was added.33

BRG is again the flag of the re-united Germany, while the BWR colors are often used as a

surrogate for illegal Nazi symbols. Demonstrators opposing Corona regulations attempted to

storm the Reichstag in 2020 while adorning huge BWR flags. Subsequently, several German

states completely banned its use.

7 Conclusion

Under complete information and single-peaked preferences all sequential binary procedures

and all agendas are equivalent: if simple majority is used at each step, the Condorcet winner

is always elected. The situation changes under incomplete information and a private val-

ues assumption: the Condorcet winner is elected by any sequential, binary procedure under

any convex agenda, but this may not be true if the agenda is not convex. Assuming inter-

dependent preferences, our present results allowed us to differentiate among various voting

procedures and among convex agendas pertaining to the same procedure. Our results explain

the emergence of compromises and describes the forces that determine their location on the

ideological spectrum.

These insights may be used to explain a variety of observed phenomena in real-life voting

situations. For example, in a case, the German Bundestag considered a reform of Paragraph

219a, the law governing the advertising of abortion procedures. The ”extreme” alternatives

were: 1) keeping the status quo that forbids any such advertising, and includes criminal

33This discredited use of the BWR colors led both East and West Germany’s to return to the same (!) BRG

flag after WWII. At least in West Germany this decision was controversial, and many pleaded for a complete

new start (see Die Zeit, 1949). East Germany added a communist emblem in 1959.
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charges against doctors that do so, and 2) scraping this paragraph altogether. Both the

ruling coalition and the opposition contain parties on the left and on the right, and were split

on this question. A compromise was forged that allows doctors and hospitals to advertise

that they perform abortions, but does not allow them to provide further information about

the methods, etc... The sequential voting agenda started with the two motions that wanted

to scrap the law altogether. After these were defeated, the compromise was elected by a large

majority.

On the other hand, Theresa May’s inability to get her Brexit selected by the UK parlia-

ment points to a non-optimal choice of compromise, one that does not respect the majority

opinion in that divided house.

8 Appendix A: Probabilistic Tools

For several comparison results we consider the case where the number of voters is large. For

this purpose, we use two well-known probabilistic tools, the Hoeffding inequality and the

Gärtner-Ellis Large Deviation Principle that allow us to approximate the probabilities with

which both typical and atypical realizations of random variables deviate from their mean.

The approximations are very precise for large democracies that often have more than 500

members of parliament.34

Definition 2 A random variable X is σ-subgaussian if for all t ∈ R there is σ > 0 such that

its moment generation function E(etX) satisfies E
[
et(X−E[X])

]
≤ eσ2t2/2.

A Bernoulli random variable X ∼ Bernoulli(p) is σ-subgaussian with σ = 1/2. A binomial

random variable X ∼ B (N, p), the sum of N independent Bernoulli random variables, is
√
N/2-subgaussian. Any σ-subgaussian random variable X satisfies the Hoeffding bounds:

for all t ≥ 0,

Pr {X − E [X] ≥ t} ≤ e−t2/(2σ2), (6)

and

Pr {X − E [X] ≤ −t} ≤ e−t2/(2σ2). (7)

We shall repeatedly use (6) or (7) to bound (tail) probabilities since the random variable

ñ−1, the number of agents with signal −1, is
√

2n+ 1/2-subgaussian. For example, applying

34To get an idea about the involved numbers, consider n = 250 which yields 501 voters. Assume that

pL−1 = pR−1 = 0.45 which gives an expected value for the number of −1 signals of 225, a minority. The

probability of nevertheless having a majority – at least 251 voters – with this signal is then less than 1% !
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inequality (6) to ñ−1 yields

Pr {ñ−1 − E [ñ−1] ≥ t} ≤ e−2t
2/(2n+1). (8)

By setting t = n+ 1− E [ñ−1], we can rewrite the above inequality as

Pr {ñ−1 ≥ n+ 1} ≤ e−2(n+1−E[ñ−1])
2/(2n+1) ' e−(n+

3
2
)(1−2p)2 . (9)

In other words, if voters with signal −1 are in an ex ante minority (i.e., p < 1/2), the

probability that they are in an ex post majority (i.e., n−1 ≥ n + 1) decays exponentially to

zero as n grows.

We now the state the Large Deviation Principle due to Gärtner and Ellis (see for example

Ellis [2006]) that will be used in the proof of Proposition 5 below:

Theorem 1 Suppose that Xn , n ∈ N, is a family of real-valued random variables such that

Λ(t) := lim
n→∞

(
1

n
logE

[
entXn

]
)

exists, and is finite for all t ∈ R. If Λ is differentiable, then, for all Borel sets A such that

the closure of A equals the closure of its interior, it holds that

lim
n→∞

1

n
log Pr(Xn ∈ A) = − inf

x∈A
I(x) (10)

where I(x) = supt∈R[xt− Λ(t)] is the Fenchel-Legendre transform of Λ.35

9 Appendix B: Proofs

9.1 Proofs of Proposition 1

(i) We first show that the profile (L1C2,¬L1C2 if ≥ k) is an equilibrium. We only need to

consider signal realizations such that an individual voter is pivotal at a given stage.

Consider first voters with signal −1. They play a best response by voting for C in the

second stage because their ideal point is at most

−γ−1 +
1− γ−1

2n
(2n) = 1− 2γ−1 ≤ xC .

Voter i with signal −1 is pivotal in the first stage if (1) there are dke− 1 other voters having

signal of −1 (in this case, voter i is pivotal between C and R), or if (2) there are exactly n

35The function Λ, the logarithm of the moment generating function, is also known as the cumulant generating

function.
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other voters having signal of −1 (in this case, voter i is pivotal between L and C). The ideal

point of voter i for the first case is

−γ−1 +
1− γ−1

2n
(− (dke − 1) + (2n− dke+ 1)) = −γ−1 +

1− γ−1
n

(n− dke+ 1) .

The ideal point for the second case is −γ−1. Therefore, in the first case, voter i with signal

−1 will vote for L in the first stage if

−γ−1 +
1− γ−1

n
(n− dke+ 1) ≤ 1

2
(xC + 1)⇔ γ−1 ≥

n+ 2− 2dke − nxC
4n− 2dke+ 2

(11)

Since −2dke+ 2 ≤ 0 and γ−1 ≥ 1
2 (1− xC) by assumption, we get

γ−1 ≥
1− xC

2
≥ n− nxC − 2dke+ 2

2n− 2dke+ 2
≥ n− 2dke+ 2− nxC

4n− 2dke+ 2
.

Therefore, condition (11) is always satisfied. In the second case, since γ−1 ≥ 1
2 (1− xC),

voter i with signal −1 will vote for L in the first stage.

Consider next voters with signal +1. By the definition of cutoff k, they play a best

response in the second stage by voting for C if and only if at least dke voters support L in

the first stage. Voter i with signal +1 is pivotal in the first stage if (1) there are dke − 1

voters having signal of −1 (in this case, voter i is pivotal between C and R), or if (2) there

are exactly n voters having signal of −1 (in this case, voter i is pivotal between L and C).

Therefore, for the first case, voter i plays a best response by voting against L in the first

stage if

γ1 +
1− γ1

2n
(− (dke − 1) + (2n− dke+ 1)) ≥ 1

2
(1 + xC) ,

which always holds since dke − 1 ≤ k and k satisfies by definition

γ1 +
1− γ1

2n
(−k + (2n− k)) =

1

2
(1 + xC) .

For the second case, since her ideal point γ1 ≥ 1
2 (xC − 1), voter i plays a best response by

voting against L in the first stage.

. To see that the complete information Condorcet winner will be selected under this

strategy profile, note that. if at least n + 1 voters have signal −1, L will be selected and

this is the preferred alternative for voters with signal −1 since γ−1 ≥ 1
2 (1− xC). If at least

n+ 1 voters have signal +1, L will be rejected in the first stage. In the second stage, agents

are, essentially, completely informed about signals of others, and C gets elected if and only

if voters with signal +1 prefer C to R given the realized preferences.

Finally, note that if k > n, then, whenever L receives at least dke votes in the first stage,

L is chosen and thus vote shifting from voters with signal +1 never occurs in equilibrium.
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In order for vote shifting to possibly occur in equilibrium, we must have k ≤ n, which is

equivalent to γ1 ≤ 1
2 (1 + xC).

(ii) To obtain a contradiction, suppose there is a pure strategy profile that always selects

the Condorcet winner, and let σ denote the corresponding profile of actions for the first stage.

For each voter i this yields a mapping σi : {−1,+1} → {L,¬L}. Observe that, for any signal

realization such that n−1 = n + 1, L is not the Condorcet winner: the ideal point of voters

with signal −1 is then −γ−1, which is closer to xC than to −1 because γ−1 <
1
2(1− xC).

Suppose first that there are at most n voters whose strategy satisfies σi(−1) = ¬L.

Consider a signal realization such that these voters have signal +1 , and such that n−1 = n+1.

Then L gets selected even though it is not the Condorcet winner because all voters that have

signal −1 vote for L. We conclude that, for at least n + 1 voters, the profile σ must satisfy

σi(−1) = ¬L. But this implies that L will not be selected even if all voters have signal −1,

in which case L is the Condorcet winner, a contradiction.

Finally, since there is no pure strategy profile that always selects the Condorcet winner,

there can also be no mixed strategy profile that always selects the Condorcet winner.

9.2 Proof of Proposition 2

We first combine sincerity and pivotality considerations to characterize the sincere and semi-

sincere equilibria under [L, {C,R}]:

Proposition 6 Consider SV with agenda [L, {C,R}] and suppose that Assumption A holds.

(i) The profile (¬L1C2,¬L1C2) is a sincere equilibrium if γ−1 ≤ γ∗−1 and γ1 ≤ γ∗1. This

is the unique such equilibrium for any γ−1 and γ1 in these ranges such that γ−1 6= γ∗−1 and

γ1 6= γ∗1.

(ii) The profile (¬L1C2,¬L1¬C2) is a sincere equilibrium if γ−1 ≤ γ∗−1 and γ1 ≥ 1
2 (1 + xC).

This is the unique such equilibrium for any γ−1 and γ1 in these ranges such that γ−1 6= γ∗−1.

(iii) The profile (L1C2,¬L1C2 if ≥ k) is a sincere equilibrium if γ−1 ≥ γ∗−1. This is the

unique such equilibrium for any γ−1 and γ1 in these ranges such that γ−1 6= γ∗−1, and such

that k is not an integer.

(iv) There is no sincere equilibrium if γ−1 ∈ [ 1
2n+1 , γ

∗
−1) and γ1 ∈ (γ∗1,

1
2 (1 + xC)). The

profile (¬L1C2,¬L1C2) forms a semi-sincere equilibrium: no voter is ever pivotal, and voters

with signal −1 use a sincere strategy.

Proof. Sincerity Considerations: Consider the first stage voting. By Assumption A,
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voters with signal −1 weakly prefer L to R ex ante. These voters prefer C to L ex anter if

−γ−1 + (1− γ−1) (1− 2p) ≥ 1

2
(−1 + xC)

which is equivalent to γ−1 ≤ γ∗−1. Voters with signal +1 prefer R to L ex anter if γ1 + (1−

γ1) (1− 2p) ≥ 0, which is always satisfied. Therefore, it is a sincere strategy for voters with

signal +1 to always vote against L, and it is a sincere strategy for voters with signal −1 to

vote for L if and only if γ−1 ≥ γ∗−1.

For the second stage, we need to consider two possible cases:

(a) γ−1 ≤ γ∗−1: all voters vote against L in the first stage, and no information about n−1

is revealed. By Assumption A, voters with signal −1 prefer L to R ex anter, and because

γ−1 ≤ γ∗−1 they also ex ante prefer C to L. As a result, these voters prefer C to R ex ante.

Voters with signal +1 prefer R to C ex anter if

γ1 + (1− γ1) (1− 2p) ≥ 1

2
(1 + xC)

which is equivalent to γ1 ≥ γ∗1. Therefore, if γ−1 ≤ γ∗−1, it is a sincere strategy for voters

with signal −1 to always vote for C, while for voters with signal +1 it is sincere to vote

against C if and only if γ1 ≥ γ∗1.

(b) γ−1 ≥ γ∗−1: not all voters vote against L and n−1 is revealed. In this case, voters with

signal −1 always prefer C to R, because γ∗−1 ≥ 1
4 (1− xC) and because a voter with signal

−1 prefers C to R in the situation where she is the lone −1 voter if

−γ−1 +
1− γ−1

2n
(2n) ≤ 1

2
(1 + xC)⇔ γ−1 ≥

1

4
(1− xC) .

By the definition of the cutoff k, voters with signal +1 prefer R to C in the second stage if

and only if n−1 ≥ k. Therefore, if γ−1 ≥ γ∗−1, it is a sincere strategy for voters with signal

−1 to always vote for C, while voters with signal +1 vote sincerely against C if and only if

n−1 ≥ k.

To summarize, in the first stage, it is a sincere strategy for voters with signal −1 to vote in

favor of L if and only if γ−1 ≥ γ∗−1, and for voters with signal +1 to always vote against L. In

the second stage, sincerity requires that (1) if γ−1 ≤ γ∗−1, voters with signal +1 vote for C if

and only if γ1 ≤ γ∗1 while voters with signal −1 always vote for C, and that (2) if γ−1 ≥ γ∗−1,

voters with signal +1 vote for C if and only if n−1 ≥ k while voters with signal −1 always

vote for C. As a result, the profiles (¬L1C2,¬L1C2), (¬L1C2,¬L1¬C2), and (L1C2,¬L1C2

if ≥ k) are the unique sincere profiles corresponding to the cases (γ−1 ≤ γ∗−1 and γ1 ≤ γ∗1),

(γ−1 ≤ γ∗−1 and γ1 ≥ γ∗1), and (γ−1 ≥ γ∗−1), respectively. Moreover, if k is not an integer,

and if γ−1 6= γ∗−1, and γ1 6= γ∗1 the sincere strategies are uniquely defined.
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Equilibrium Considerations: In profiles (¬L1C2,¬L1C2) and (¬L1C2,¬L1¬C2), all

voters vote against L in the first stage, so that we only need to consider pivotality at the second

stage. Conditional being on pivotal between R and C, voters with signal +1 prefer C if and

only if γ1 ≤ 1
2 (1 + xC), while voters with signal −1 prefer C for all γ−1. It follows from the

proof of Proposition 1 that profile (L1C2,¬L1C2 if ≥ k) is an equilibrium if γ−1 ≥ 1
2 (1− xC).

Note that, by Assumption A we obtain γ∗1 ≤ 1
2 (1 + xC) and γ∗−1 ≥ 1

2 (1− xC) . Therefore,

(¬L1C2,¬L1C2) is a sincere equilibrium if γ−1 ≤ γ∗−1 and γ1 ≤ γ∗1, (¬L1C2,¬L1¬C2) is a

sincere equilibrium if γ−1 ≤ γ∗−1 and γ1 ≥ 1
2 (1 + xC), and (L1C2,¬L1C2 if ≥ k) is a sincere

equilibrium if γ−1 ≥ γ∗−1.

Finally, when γ−1 < γ∗−1 and γ1 ∈ (γ∗1,
1
2 (1 + xC)], the non-existence of sincere equilib-

rium is due to a conflict between sincerity and pivotality. Sincerity requires that both type

of voters vote against L at the first stage and voters with signal −1 vote for C at the second

stage. Therefore, no new information would be revealed by the vote at the first stage. If

γ1 ∈ (γ∗1,
1
2 (1 + xC)], then, based on ex ante information, voters with signal +1 prefer R to

C. But, conditional on pivotality, this preference is reversed. Hence, sincere voting suggests

that voters with signal +1 vote against C, but pivotality requires that they vote in favor of

C. Thus, sincere voting by voters with signal +1 cannot be part of an equilibrium in this

case.

The table below summarizes sincere/semi-sincere equilibria for agenda [L, {C,R}], where

the strategy profile in quotation marks is semi-sincere, while all other strategy profiles are

fully sincere.36

γ1 ∈ [ 1
2n+1 , γ

∗
1) γ1 ∈ (γ∗1,

1
2 (1 + xC)) γ1 ∈ (12 (1 + xC) , 1]

γ−1 ∈ [ 1
2n+1 , γ

∗
−1) (¬L1C2,¬L1C2) “(¬L1C2,¬L1C2)” (¬L1C2,¬L1¬C2)

γ−1 ∈ (γ∗−1, 1] (L1C2,¬L1C2 if ≥ k) (L1C2,¬L1C2 if ≥ k) (L1C2,¬L1C2 if ≥ k)

Table 2: Sincere/Semi-sincere equilibria for agenda [L, {C,R}]

36We take (half-)open intervals to exclude the cutoff points γ∗1, γ
∗
−1, (1 + xC) /2 and (1− xC) /2 so that the

respective sincere/semi-sincere equilibrium is unique.
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For the alternative convex agenda [R, {C,L}], we can analogously obtain:37

γ1 ∈ [ 1
2n+1 , γ

∗
1) γ1 ∈ (γ∗1,

1
2 (1 + xC)) γ1 ∈ (12 (1 + xC) , 1]

γ−1 ∈ [ 1
2n+1 , γ

∗
−1) (¬R1C2,¬R1C2) “(¬R1C2,¬R1C2)” (¬R1C2 if ≥ κ,R1C2)

γ−1 ∈ (γ∗−1, 1] (¬R1¬C2,¬R1C2) “(¬R1¬C2,¬R1C2)” (¬R1C2 if ≥ κ,R1C2)

Table 3: Sincere/Semi-sincere equilibria for agenda [R, {C,L}]

Again, the profiles within quotation marks are semi-sincere equilibria for the given parameter

values: (¬R1C2,¬R1C2) is an equilibrium because no voter is ever pivotal and voters with

signal −1 vote sincerely. Profile (¬R1¬C2,¬R1C2) is an equilibrium because no one is pivotal

in the first stage: conditional on n other voters having signal −1, a voter with signal −1

prefers L to C and a voter with signal +1 prefers C to R. Voters with signal −1 play a

sincere strategy.

Now we are ready to prove Proposition 2.

Proof of Proposition 2. If γ1 >
1+xC

2 and γ−1 < γ∗−1, we see from Table 1 that the

outcomes of the two agendas differ only when (1) γ−1 ∈ [ 1
2n+1 ,

1−xC
2 ) and n−1 > 2n+1−dκe,

or when (2) γ−1 ∈
(
1−xC

2 , γ∗−1
)

and n−1 ≥ n+1. In both cases, C is chosen under [L, {C,R}]

and L is chosen under [R, {C,L}]. Moreover, whenever L is chosen under [R, {C,L}], it is the

Condorcet winner. In both cases, n−1 ≥ n+ 1 and [R, {C,L}] selects the Condorcet winner

while [L, {C,R}] does not. The event {ñ−1 ≥ n+ 1}, however, has a vanishing probability

as n grows. To see this, recall that p < 1/2 by Assumption A. It follows from (9) that the

probability of the event {ñ−1 ≥ n+ 1} decays exponentially to zero as n grows:

Pr {ñ−1 ≥ n+ 1} ≤ e−2(n+1−E[ñ−1])
2/(2n+1) ' e−(n+

3
2
)(1−2p)2 . (12)

Therefore, as n grows, the advantage of [R, {C,L}] becomes negligible.

If γ1 <
1+xC

2 and γ−1 > γ∗−1, the outcomes of the two agendas differ only if n−1 ≤ dke−1.

In this case, [L, {C,R}] elects R while [R, {C,L}] elects C. Whenever R is chosen under

[L, {C,R}], it is the Condorcet winner. Therefore, agenda [L, {C,R}] selects the Condorcet

winner with a higher probability than agenda [R, {C,L}]. We can set t = dke − E [ñ−1] in

(8) to obtain

Pr {ñ−1 ≥ dke} ≤ e−2(dke−E[ñ−1])
2/(2n+1) ' e−(n+

3
2
)
(

1
2

1−xC
1−γ1

−2p
)2
. (13)

Therefore, if E [ñ−1] ≤ dke−1 (and thus p < 1
4
1−xC
1−γ1

in the limit), then the event {ñ−1 ≥ dke}

has a probability exponentially decaying to 0 as n grows. Equivalently, the event {ñ−1 ≤ dke − 1}
37The formal characterization of sincere equilibria under [R, {C,L}] is analogous to Proposition 6, and is

thus omitted.
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has a probability exponentially approaching one, and the advantage of [L, {C,R}] can be sig-

nificant.

For the other parameter values of γ1 and γ−1, the two convex agendas are outcome

equivalent.

9.3 Proof of Proposition 3

We focus on voters with signal −1. The arguments for voters with signal +1 are analogous.

We start with the second stage. If L wins at the first stage, a voter with signal −1 prefer

C to L if at least dκe voters have signal +1; otherwise she prefers L to C. Given the strategy

profile Π, all first-stage votes for R come from voters with signal +1. Therefore, voters with

signal −1 play a best response. If R wins the first stage, voters with signal −1 are not pivotal

in the second stage and therefore play a best response.

In the first stage, voter i with signal −1 is pivotal if (1) there are exactly n other voters

with signal −1, or if (2) there are exactly dke − 1 other voters with signal −1 and dke ≤ n,

or if (3) there are exactly dκe − 1 others with signal +1 and dκe ≤ n.

In case (1), voter i likes alternative R the least. If she prefers L to C, then the worst

feasible alternative when L wins the first stage is weakly better than the best possible alter-

native when R wins the first stage, so voting for L is a best response. If she prefers C to L,

she will get her preferred alternative by voting for L in the first stage and by voting for C in

the second stage.

In case (2), voter i is pivotal between C and R, and voting L is a best response if her

ideal point satisfies

−γ−1 +
1− γ−1

2n
(−dke+ 1 + 2n− dke+ 1) ≤ 1

2
(1 + xC) .

Using the definition of dke, a sufficient condition for this inequality is

−γ−1 +
1− γ−1

2n

(
−n(1− xC)

1− γ1
+ 2n+ 2

)
≤ 1

2
(1 + xC) .

Note that k ≤ n implies γ1 ≤ 1
2 (1 + xC). The left-hand side is therefore decreasing in both γ1

and γ−1, and is equal to 1
2 (1 + xC) when γ−1 = γ1 = 1

2n+1 . Since γ−1 ≥ 1
2n+1 and γ1 ≥ 1

2n+1 ,

the above inequality always holds. We conclude that voting for L is a best response.

In case (3), voter i is pivotal between L and C. By the definition of κ, she prefers L if

there are dκe − 1 others with signal +1. Voting for L is therefore a best response.

For the Condorcet claim, suppose that alternative R wins in the first stage. Then the

number of voters with signal +1 is at least n + 1. Hence, once all private information
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becomes public, any voter with signal +1 prefers R over L, and therefore L is not the full

information Condorcet winner. At the second stage, the number of voters with signal −1

is public information, and hence the full information Condorcet winner gets elected. The

argument is analogous if L wins in the first stage.

9.4 Proof of Lemma 1

(i). We first prove the claim for SV. Suppose that n−1 ≥ n+ 1. Then C gets elected if and

only if γ−1 ≤ γ∗−1 (see Table 3). By definition, −1 voters are ex ante indifferent between L

and C if γ−1 = γ∗−1 or if xC = xLC . Therefore, γ−1 ≤ γ∗−1 is equivalent to xC ≤ xLC .

Suppose next that n−1 ≤ n. Then C gets elected either if (1) γ−1 ≤ γ∗−1 and γ1 ≤ 1+xC
2

or if (2) γ−1 ≥ γ∗−1, γ1 ≤
1+xC

2 and n−1 ≥ k (see Table 3). As shown above, γ−1 ≤ γ∗−1

is equivalent to xC ≤ xLC . Also, γ1 ≤ 1+xC
2 is equivalent to xC ≥ 2γ1 − 1. Hence, case

(1) applies if and only if 2γ1 − 1 ≤ xC ≤ xLC . Case (2) applies if and only if xC ≥ xLC ,

xC ≥ 2γ1− 1, and n−1 ≥ k (which is equivalent to xC ≥ xRC(n−1) = 1− 2(1− γ1)
n−1

n ). Since

n−1 ≤ n, we have 2γ1 − 1 ≤ xRC(n−1), and therefore, alternative C is chosen in case (2) if

xC ≥ max
{
xLC , x

R
C(n−1)

}
. Finally, since n−1 ≤ n, we have xRC(n−1) ≥ 2γ1 − 1, and thus the

set of implementable compromise locations

[
−1 + 2γ1 , x

L
C

]
∪
[
max

{
xLC , xRC(n−1)

}
, 1
]

can be rewritten as [
−1 + 2γ1 , x

L
C

]
∪
[
xRC(n−1) , 1

]
.

(ii). Consider now AV, and recall that it always selects the Condorcet winner. Alternative

C is the Condorcet winner if either n−1 ≥ n + 1 and n+1 ≥ κ(xC) , or if n+1 ≥ n + 1 and

n−1 ≥ k(xC), where κ(xC) = n
2

1+xC
1−γ−1

and k(xC) = n
2
1−xC
1−γ1

. Rearranging the terms, we obtain

that C gets elected if n−1 ≥ n+ 1 and xC ≤ xLC(n+1) or if n−1 ≤ n and xC ≥ xRC(n−1).

9.5 Proof of Proposition 4

(i). Consider SV and suppose Assumption A holds. For any x in the interior of XC , the

probability that x gets elected converges to 1. To see this, note that, for any t > 0, it follows

from (7) that

Pr
{
xRC(ñ−1)− xRC ≥ t

}
= Pr

{
2(1− γ1)

(
2p− ñ−1

n

)
≥ t
}

= Pr

{
ñ−1
n
− 2p ≤ − t

2(1− γ1)

}
≤ e−

2t2

4(2n+1)(1−γ1)2 .
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Therefore, any compromise x > xRC is elected with probability approaching 1 as n grows.

By analogous arguments, any compromise x ∈ (−1 + 2γ1 , x
L
C) is elected with probability

approaching 1. For x /∈ XC , however, the probability of x being elected converges to 0.

We assume by contradiction that limn→∞ xC (n) 6= arg minx∈XC |x− x∗|. Suppose first

that x∗ ∈ XC , but there exists ε > 0 such that xC(n) > x∗ + ε for infinitely many n

(the argument is analogous if xC(n) < x∗ − ε for infinitely many n). Then, there exists x

∈ int(XC) that is sufficiently close to x∗ such that the utility of the agenda setter if x gets

elected is strictly higher than those obtained when x∗ + ε is elected or R are elected. Since

the probability that x gets elected converges to 1, and since the agenda setter’s utility is

single-peaked, we conclude that, for n large enough, it is strictly better to propose x than to

propose any compromise above x∗ + ε. Since xC(n) is optimal by assumption, this yields a

contradiction.

Suppose now that x∗ /∈ XC and that arg minx∈XC |x− x∗| is a singleton, denoted by x′.

To obtain a contradiction, suppose xC(n) > x′ + ε or xC(n) < x′ − ε for infinitely many

n, and let x ∈ int(XC) and sufficiently close to x′. Then x gets elected with probability

approaching 1 and, conditional on being elected, provides strictly greater utility compared to

x′ + ε and compared to R. It follows that, for n large enough, it is strictly better to propose

compromise x than to propose compromise xC(n), a contradiction.

(ii). Consider now AV, and observe that, if p < 1/2, any x > xRC gets elected with

probability approaching 1, and any x < xRC gets elected with probability approaching 0.

Similarly, if p > 1/2, any x < xLC gets elected with probability approaching 1, and any

x > xLC gets elected with probability approaching 0.

Assume that p < 1/2, and suppose that there exists ε > 0 such that xC(n) < max{x∗, xRC}−

ε for infinitely many n. The probability that the compromise x ≡ max{x∗, xRC} + δ with

δ > 0 gets elected approaches 1. If x∗ ≥ xRC and if δ is small enough, then, conditional on

being elected, the compromise x provides strictly higher utility than either max{x∗, xRC}− ε

or R . For n large enough, it is therefore strictly better to propose compromise x than to

propose xC(n). If x∗ < xRC , the probability that xC(n) gets elected approaches 0, and it is

again better to propose compromise x for sufficiently small δ, a contradiction.

Suppose now that there exists ε > 0 such that xC(n) > max{x∗, xRC} + ε for infinitely

many n. The probability that the compromise gets elected along this subsequence approaches

1. Similarly, the probability that the compromise max{x∗, xRC} + ε
2 gets elected also ap-

proaches 1. Since the utility gain of compromise max{x∗, xRC}+ ε
2 compared to compromise

xC(n) is strictly positive and remains bounded away from 0, we conclude that compromise
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max{x∗, xRC}+ ε
2 is strictly better than xC(n) for n large enough, a contradiction. Therefore,

limn→∞max{x∗, xRC} if p < 1/2. The arguments are similar for p > 1/2.

9.6 Proof of Proposition 5

For the proof of Proposition 5-(ii), we need the following Lemma:

Lemma 2 Let p < b < c. Then

lim
n→∞

(
Pr( ñ−1

2n ≥ c)
Pr( ñ−1

2n ≥ b)

)
= 0.

Proof. Let Xi be a Bernoulli random variable with success probability p, and assume all

random variables are independently distributed. We apply the Gaertner-Ellis Theorem to

the family of random variables of the form 1
2n+1 [

∑2n+1
i=1 Xi], n ∈ N. Note that the cumulant

generating function is

Λ(t) = lim
n→∞

1

2n+ 1
log[E

[
etXi

]2n+1
] = log

{
1− p+ pet

}
This shows that Λ(t) < ∞ for all t, and that Λ is convex and twice differentiable. The

Gaertner-Ellis theorem implies that the family of random variables ñ−1

2n+1 = 1
2n+1 [

∑n+1
i=1 Xi] ,

n ∈ N, satisfies the large deviation principle (10) with rate function I(x) = supt∈R xt−Λ(t).

To understand the properties of I(x), fix an arbitrary x and note that the function xt−Λ(t)

is concave and differentiable. For each real x, denote by tx the maximizing t in the definition

of I. The maximizer tx must satisfy the first-order condition:

x = Λ′(tx) =
petx

1− p+ petx

and

Λ′(0) = p > 0

Since Λ
′′
(t) > 0, we obtain that tx > 0 for x > p. By the envelope theorem, we obtain that

the rate function I is strictly increasing for x > p since I ′(x) = tx > 0.

We conclude that

Pr(ñ−1 ≥ an) = e−2nI(a)+o(n)

for all a > p, and that

lim
n→∞

(
Pr( ñ−1

2n ≥ c)
Pr( ñ−1

2n ≥ b)

)
= lim

n→∞
(e−2n[I(c)−I(b)]+o(n)) = 0
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where the last equality follows because p < b < c and because I(x) is strictly increasing for

x > p.

Proof of Proposition 5. (i). SV. Note that Assumption A implies xLC ≤ 1. Also, observe

that n−1 ≤ n implies −1 + 2γ1 ≤ xRC(n−1).

(a). If −1 + 2γ1 ≤ xLC , then, by Lemma 1, we can set xC just below −1 + 2γ1 to get

C elected if n−1 ≥ n + 1, and get R elected if n−1 < n + 1. On the other hand, setting

xC = xLC will always get C elected. No other compromise location can be optimal: Setting

xC substantially below −1 + 2γ1 is dominated by setting it just below −1 + 2γ1. Setting xC

between −1 + 2γ1 and xLC is dominated by setting xC = xLC , while setting xC above xLC is

dominated by setting it just below −1 + 2γ1.
38

(b). If xLC < −1 + 2γ1, then Lemma 1 implies that if we set xC = xLC , then if n−1 ≥ n+ 1

alternative C gets elected, while if n−1 < n + 1 alternative R gets elected. Any higher

compromise location is worse because such a compromise will never be elected if n−1 ≥ n+1.

Any lower compromise location is worse because it will be elected in the same instances, but

will provide lower utility conditional on being elected.

(ii). AV

(a) Assume first that p > 1/2. Suppose, by contradiction, that there exists ε > 0 such

that the optimal compromise satisfies xC(n) < xLC − ε for infinitely many n, and consider the

corresponding subsequence. We argue that, for n large enough, the compromise xLC − ε/2

is strictly better than xC(n) because its location is further to the right, and because it still

gets elected with probability approaching 1. Note that limn→∞ Pr{n+1 ≥ n + 1} = 0 since

p > 1/2. Observe also that

lim
n→∞

Pr{κ(xLC −
ε

2
) ≤ ñ+1 ≤ n} = 1

since κ(xLC −
ε
2) = n

[
2(1− p)− ε

4(1−γ−1)

]
. This yields

Pr{κ(xLC −
ε

2
) ≤ ñ+1} = 1− Pr{− ε

4(1− γ−1)
>
ñ+1

n
− 2(1− p)}.

38Setting xC just below 2γ1 − 1 is not dominated by xC = xLC , because R is elected when xC is set just

below 2γ1− 1 and n−1 ≥ n+ 1. Hence, the optimal location depends on the probability of a realized majority

of voters with signal −1. It is optimal to locate the compromise at xLC if

xLC ≥ Pr (ñ−1 ≥ n+ 1) · (2γ1 − 1) + Pr (ñ−1 ≤ n) · 1.
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By Hoeffding’s inequality, the last expression converges to 1 as n grows. The compromise xLC−

ε/2 will therefore be elected with probability approaching 1, and it dominates compromise

xC(n) for n large enough. This contradicts the assumed optimality of xC(n).

If there exists ε > 0 such that xC(n) > xLC + ε for infinitely many n, then the probability

that L is elected converges to 1 along this subsequence, which is therefore dominated by

choosing a compromise location just below xLC - such a compromise will be elected with

probability approaching 1. We conclude that the optimal compromise converges to xLC .

(b) Assume now that p < 1/2, and let xC(n) denote the optimal compromise. The proof

is divided in several steps:

Step 1: For all n, it holds that xC(n) ≤ 1−2γ−1. If xC(n) > 1−2γ−1 then the compromise

would never be elected if n−1 ≥ n+ 1. It is then strictly better to choose xC(n) < 1− 2γ−1

instead.

Step 2: For any ε > 0, xC(n) ≤ −1 + 2γ1 + ε for all n large enough. Assume, by

contradiction, that there exists ε > 0 such that xC(n) > −1 + 2γ1 + ε for infinitely many

n, and consider the corresponding subsequence of compromise locations. We compare below

any compromise xC ∈ (−1 + 2γ1 + ε , 1− 2γ−1) with the compromise location −1 + 2γ1, and

show that −1 + 2γ1 is superior, which contradicts the optimality of xC(n).

The resulting outcomes differ in the following events: (a) xC gets elected but a compromise

located at −1 + 2γ1 does not; (b) both compromises get elected; (c) compromise −1 + 2γ1

gets elected but xC does not.

By Lemma 1, event (a) can only occur if n+1 ≥ n + 1, in which case R gets elected if

the compromise is located at −1 + 2γ1. Therefore, compromise −1 + 2γ1 is strictly better

than xC in event (a). Event (c) can only occur if n−1 ≥ n + 1, hence L gets elected in

event (c) if the compromise is located at xC . Therefore, compromise −1 + 2γ1 is also strictly

better than xC in event (c). In event (b) both compromises get elected; hence, compromise

xC is strictly better in event (b) because xC > −1 + 2γ1. To show that, in expectation,

compromise −1 + 2γ1 is better than compromise xC it therefore suffices to show that the

probability of event (a) divided by the probability of event (b) grows without bound as n

grows. The probability of event (a) is

Pr{n+ 1 ≤ ñ+1 ≤ 2n+ 1− k(xC)} (14)

and that the probability of event (b) is

Pr{κ(xC) ≤ ñ+1 ≤ n}
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Let β = k(2γ1−1+ε)
n where k(x) = n

2
1−x
1−γ1

and note that β does not depend on n. Since the

function k is decreasing, k(−1 + 2γ1) = n and xC > −1 + 2γ1 + ε imply that k(xC)
n ≤ β < 1.

Since ñ−1 + ñ+1 = 2n+ 1, the probability of event (i) satisfies

Pr{n+ 1 ≤ ñ+1 ≤ 2n+ 1− k(xC)} ≥ Pr{ñ−1 ≥ βn} − Pr{ñ−1 ≥ n+ 1}.

Also, the probability of event (b) satisfies

Pr{κ(xC) ≤ ñ+1 ≤ n} ≤ Pr{ñ−1 ≥ n+ 1}.

Hence,
Pr{event (a)}
Pr{event (b)}

≥ Pr{ñ−1 ≥ βn}
Pr{ñ−1 ≥ n+ 1}

− 1.

Since p < 1/2, Lemma 2 implies that the term on the left side grows without bound as n

goes to infinity.

Step 3: xC(n) converges to min{−1 + 2γ1 , 1 − 2γ−1}. Steps 1 and 2 imply then that

lim supn{xC(n)} ≤ min{−1+2γ1 , 1−2γ−1}. Suppose now that there exists ε > 0 such that

xC(n) < min{−1 + 2γ1 , 1− 2γ−1}− ε for infinitely many n, and consider the corresponding

subsequence. Let x1 := min{−1 + 2γ1 , 1− 2γ−1} − ε
2 . Neither xC(n) nor x1 gets elected if

n−1 ≤ n, and we can focus on the event n−1 ≥ n + 1. Note that x1 gets elected whenever

n−1 ≥ n+ 1 and n−1 is sufficiently close to n.

Since p < 1/2 it follows from Lemma 2 that for all δ ∈ (0, 1), limn→∞ Pr{ ñ−1

n > 1+δ| ñ−1

n >

1} = 0. This allows us to conclude that the probability with which x1 gets elected, conditional

on n−1 ≥ n + 1, approaches 1, and the same holds for xC(n). Since x1 is strictly better

conditional on being elected, the compromise location x1 is strictly superior to xC(n), which

yields a contradiction. Therefore, lim infn{xC} ≥ min{−1 + 2γ1 , 1− 2γ−1}.
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