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Abstract

We study how the predictive power of level-k models changes as we perturb the classical

beauty contest setting along two dimensions: the strength of the coordination motive and the

information symmetry. We use a variation of the Morris and Shin (2002) model as the uni�ed

framework for our study, and �nd that the predictive power of level-k models varies considerably

along these two dimensions. Level-k models are successful in predicting subject behavior in

settings with symmetric information and a strong coordination motive. However, the predictive

power of level-k models is signi�cantly weakened when private information is introduced or the

importance of the coordination motive is decreased.

1 Introduction

The experimental literature on beauty contests and related guessing games has documented sub-

stantial evidence that individuals tend to have a limited degree of strategic sophistication, especially

in settings where the strategic reasoning is not straightforward. This is best illustrated by the �p-

beauty contest� in which participants choose a number between 0 and 100 and whoever picks the

number closest to a multiple p of the group average wins a prize. When p is less than one the game

can be solved by iterative elimination of strictly dominated strategies, and the unique equilibrium

is where every player chooses 0. In order to reach this equilibrium subjects need to go through

a large number of rounds of elimination of dominated strategies. The experimental literature on

beauty contests, however, shows that subjects usually perform one to three rounds of elimination

and that their behavior is consistently di¤erent from the equilibrium prediction.

The theory of level-k reasoning, �rst proposed by Stahl and Wilson (1995) and Nagel (1995)

with further extensions by Ho, Camerer and Weigelt (1998), Costa-Gomes, Crawford and Broseta
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(2001) and Costa-Gomes and Crawford (2006), can be used to rationalize subject behavior in the

p-beauty contest. The level-k model is based on the presumption that subjects� behavior can

be classi�ed into di¤erent levels of reasoning. The zero level of reasoning, L0, corresponds to

non-strategic behavior when strategies are selected at random without forming any beliefs about

opponents�behavior. In the literature L0 is typically considered to be a person�s model of others

rather than an actual person. Level-1 players, L1, believe that all their opponents are L0 and play

a best response to this belief. Level-2 players, L2, play the best response to the belief that all their

opponents are L1 and so on. For example, when p is equal to 2=3 in the beauty contest, level-1

players choose 33 and level-2 players choose 22. As was shown in Nagel (1995) and many other

papers, there is indeed a salient pattern of levels of reasoning in the beauty contest setting.

While level-k thinking is not particularly unique to the beauty contest (see e.g. Costa-Gomes

and Crawford, 2006), the structure of the game and its simplicity are very conducive to this type

of behavior. Success in the beauty contest largely depends on a person�s ability to correctly predict

the average choice made by others. This explicitly forces individuals to think about decisions of

other players. Moreover, the symmetry of information makes this task relatively simple, which can

further encourage participants to focus on the behavior of others.

In many real applications, however, market participants often have access to both public and

private information on the underlying fundamentals, and choose actions that are not only responsive

to peer action choices but also appropriate to the fundamentals. A natural question then arises:

how will level-k models perform beyond the classical beauty contest setting?

To answer this question, we introduce a framework which generalizes the classical beauty contest

setting along two dimensions. First, it allows players to have private information that is relevant

for their action choice. Second, it allows the importance of coordination to change so that the

ability of correctly guessing other players�actions may have a di¤erent impact on players�payo¤s.

We then analyze how the predictive power of the level-k models varies along these two dimensions.

The generalized framework that we use for our study is a modi�cation of the Morris and Shin

(2002) model (hereafter MS) on the social value of public information. In our setting, just as

in Morris and Shin, the agents�payo¤ is determined by two criteria: how well an agent�s action

matches an unknown state of the world and how well his action matches the average actions of other

agents. The relative importance of both factors can be varied within the model. In particular, as the

latter becomes more important it makes the coordination motive of the game stronger. Agents in

our model receive two signals about the (unknown) underlying state. If both signals are public the

information is symmetric. If one signal is public and the other is private (as in the original Morris

and Shin setting) then the information is asymmetric and, in particular, di¤erent participants have

di¤erent information.

Based on this framework we design several experimental treatments that di¤er from each other

in the symmetry of information and in how important it is to predict the average action of other

players. Our main �ndings are as follows. First, in aggregate we �nd that subjects place less

weight on the public signal than the MS model predicts. We show that this is consistent with the

theoretical prediction of level-k models. An important implication is that, if agents have limited
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cognitive ability, the detrimental e¤ect of increased public disclosure on social welfare may not be

as strong as the MS model predicts.

Next, we compare individual subjects�behavior with level-k predictions. We �nd that in treat-

ments with public information and a strong coordination motive subjects�behavior is consistent

with level-k reasoning. In these treatments the percentage of individuals playing according to

level-k models is high. Furthermore, subjects who followed a particular level of reasoning in the

beginning would either continue to follow the same level or move to a higher one. We interpret

such a consistent pattern as evidence that subjects actually did play according to the level-k logic

rather than choosing level-k actions by coincidence. In contrast, when information was private or

the coordination motive was weak few subjects played according to level-k predictions. Moreover,

those who followed level-k reasoning in early periods often stopped following any level of reasoning

or regressed in their level-k thinking in later periods.

Finally, we perform maximum likelihood (ML) estimation of the level-k model and a closely

related cognitive hierarchy model (CH) model introduced in Camerer, Ho, and Chong (2004). We

�nd that both models perform better as the coordination motive gets stronger. In particular, in

treatments with public information and a stronger coordination motive, the log-likelihood is higher

and the estimated shares of strategic types (i.e. the types that are not level-0) are higher and

more signi�cant. With few exceptions both models predict subject behavior better than Nash

equilibrium (NE), especially in treatments with public information. For most of the treatments the

performance of the two models is comparable. In treatments with public information and strong

coordination motive the CH model performs better in terms of log-likelihood, despite the fact that

it has fewer parameters.1

Overall, our analysis highlights the strengths and limitations of level-k models. The modi�ed

Morris and Shin framework used in our study is considerably more complicated than those typically

used in the level-k literature. Despite this complexity level-k models are very successful in predicting

subjects� behavior in settings that are close to the classical beauty contest, such as when the

coordination motive is strong and information is symmetric. At the same time we �nd that the

predictive power of level-k models diminishes as we move away from the classical setting and either

weaken the coordination motive or introduce private information.

Our experimental �ndings also have important policy implications. The key insight in the

analysis of Morris and Shin (2002) is that in equilibrium players often place too much weight

on the public signal relative to the weight that would be used by the social planner. Therefore,

individual information aggregation is not socially e¢ cient and enhanced public disclosure could hurt

social welfare. However, our theoretical analysis of level-k reasoning shows that limited cognitive

ability, either due to limited level of reasoning or incapability of Bayesian updating, necessarily

leads to subjects underweighting the public signal compared to the equilibrium prediction. We

�nd in our experiment that subjects indeed put less weight on the public signal than the theory

predicts. This �nding is also documented independently in a recent experimental study by Cornand

1Gneezy (2005) applies the framework of cognitive hierarchy to analyze �rst-price and second-price common value

auctions with complete information, and �nds evidence supporting the CH theory.
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and Heinemann (2009). This implies that limited cognitive ability can limit the detrimental e¤ect

of increased public disclosure.

The rest of the paper is organized as follows. In Section 2 we discuss relevant literature on

level-k thinking and the MS model. In Section 3 we provide a theoretical background for our study.

In Section 3.1 we develop the theoretical framework for our experiments which is largely based

on the MS model. In Section 3.2 we derive the prediction of level-k models in this setting and

show that subjects with limited cognitive ability will put less weight on the public signal than the

equilibrium predicts. Section 4 provides details of our experimental design and various treatments.

Our experimental results are reported in Section 5. Section 6 then concludes and the experimental

instructions are given in the Appendix.

2 Literature Review

Our experimental study contributes to the existing literature on the classical beauty contest begin-

ning with Nagel (1995), who �rst documents the clear pattern of level-k thinking in subject behavior.

Ho, Camerer, and Weigelt (1998); Bosch-Domenech, Montalvo, Nagel, and Satorra (2002); Costa-

Gomes and Crawford (2006); and Crawford and Iriberri (2007a,b), among others, have further

developed and applied level-k models to beauty contests and related settings. However, most of the

existing literature focuses on games with complete information. Notable exceptions are Crawford

and Iriberri (2007a), who applied level-k reasoning to �rst- and second-price auctions, and a recent

independent work by Cornand and Heinemann (2009), which is closely related to our paper.

Cornand and Heinemann (2009) conduct experiments within the framework of the MS model

and �nd that subjects put less weight on the public signal than the theory predicts. By assuming

that all subjects use a common level of reasoning, they �nd that subject behavior is consistent with

the second level of reasoning (L2). They further argue that, if all subjects behave according to L2,

the welfare result in Morris and Shin does not hold: increasing the precision of public information

is always bene�cial. Their paper and ours share the same theoretical framework and both �nd

that the increased disclosure of public information is less detrimental than the theory predicts.

But there are important di¤erences. They exclusively focus on the welfare implications of public

disclosure, whereas our main focus is to test the performance of level-k models across settings with

di¤erent information and payo¤ structures. Moreover, we assume that the population consists of

a mixture of di¤erent levels, whereas for the purposes of Cornand and Heinemann it was su¢ cient

to assume a common level.

The framework underlying our experimental study is �rst developed by Morris and Shin (2002)

to evaluate the value of public information on social welfare in a coordination environment. Sub-

sequently, Angeletos and Pavan (2007) generalize their analysis of the social value of information

by allowing both strategic complementarity and strategic substitutability among agents�actions.

The Morris and Shin framework has been applied to many di¤erent settings including asset pric-

ing (Allen, Morris and Shin, 2006, Bacchetta and Wincoop, 2005), venture capital (Angeletos,

Lorenzoni and Pavan, 2007) and political science (Dewan and Myatt, 2007, 2008).
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3 Theoretical Background

This section provides a theoretical background for our study. The primary goal of our paper is to

analyze performance of level-k reasoning in a setting which on one hand is similar to the classical

beauty contest and, on the other hand, allows us to vary the importance of coordination motive

and information structure. For this purpose we use Morris and Shin (2002) framework as a basis for

our experimental analysis. However, since the original MS model cannot be directly implemented

in the lab due to such assumptions as continuum of agents and improfer uniform distribution we,

�rst, need to modify it to adapt it to experimental environment. This is done in section 3.1. In

section 3.2 we use the modi�ed MS framework to derive predictions of the level-k model.

3.1 Modi�ed Morris-Shin Model

There are n ex-ante identical agents, i = 1; :::; n. Agent i chooses an action ai 2 R. The payo¤
function for agent i is given by

ui (ai; a�i;�) = C � (1� r) (ai � �)2 � r (ai � �a�i)2 ; (1)

where C is a constant, � represents the underlying state, r and � are constants between 0 and 1;

and a�i is the average action of i�s opponents: a�i = 1
n�1

P
j 6=i aj .

The payo¤ function has three terms. The �rst one is a constant C and is the highest payo¤ the

individual can possibly receive. The second term re�ects the loss from mismatching the underlying

state � and is simply the square of the distance between � and ai. The third term is the �beauty

contest�term. It measures the loss from mismatching the average action of opponents a�i multiplied

by �. The parameter r measures the relative importance of coordinating with opponents�actions

versus matching the underlying state. When � = 1 and C = 0 the game becomes the coordination

game speci�ed in MS. When r = 1 and � < 1 the game becomes similar to the beauty contest in

the sense that subjects only need to match � times the average of other players�actions. Unlike

the beauty contest, however, everyone, not just the player whose guess is the closest to the target,

receives a non-negative payo¤.

Our payo¤ function di¤ers from the MS one in three ways. First, we consider a setting with

a �nite number of players while in MS there is a continuum of players. Second, we introduce the

term � inside the payo¤ function to match the classical p-beauty contest. Third, the payo¤ function

in MS is always negative, which is di¢ cult to implement in the laboratory. By adding a positive

constant C to the original payo¤ function we allow participants� payo¤s to be positive without

altering equilibrium predictions.

As in MS, before taking actions, agent i will receive two signals about � and we assume that

both signals have the same precision �. The �rst signal y is always public and is given by

y = � + �; � � N (0; 1=�) : (2)

As for the second signal, xi, it can be either public or private. If it is private, then

xi = � + "i; "i � N (0; 1=�) ; (3)
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and � and "i are independent. If it is public, then it is the same across agents and is given by

xi = � + "; " � N (0; 1=�) :

Again � and " are independent. After receiving xi and y; agent i chooses action ai. Morris and

Shin assume that � is distributed with the improper uniform distribution over the real line in which

case the expected value of � given xi and y is

Ei(�jxi; y) =
y + xi
2

: (4)

Following the same procedure as in MS we can show that when xi is private the unique equi-

librium is linear and is given by

ai (y; xi) =
1� r
2� �rxi +

1� r
(2� �r)(1� �r)y: (5)

When signal xi is public, the unique Nash equilibrium is

ai (y; xi) =
1� r
2� 2�rxi +

1� r
2� 2�ry: (6)

Notice, in particular, that when � < 1 and r = 1 the NE is 0, as in the beauty contest.

A major di¢ culty of implementing the MS setup in the lab is to generate � according to the

improper uniform distribution. To deal with this problem we adopted the following strategy. We

generated � using the uniform distribution on interval [a; b] and then given � we generated the

signals y and xi according to (2) and (3). After that we normalized state � and signals (xi; y) by

subtracting y from each of them, so that �n = � � y, xi;n = xi � y and yn = 0.
Since the prior of � has a bounded support, the formula (4) to obtain E(�jxi; y) may not be

valid, and thus the NE would no longer be given by (5) and (6). However, normalized signals are

immune to this problem. By the de�nition of y, we have �n = �� and xi;n = "i � �. Since both
�� and "� � are normally distributed, by the standard formula for the conditional distribution of
normally distributed random variables we have

E(�njxn;i) = E(��j"i � �) =
1

2
("i � �) =

xi;n
2
:

Given that yn = 0 this is the same as (4). Therefore, when agents observe normalized signals

the MS logic and the equilibrium derivations remain valid. In the experimental design section we

provide more details on how the normalization was implemented.

3.2 Calculating Levels of Reasoning

Within the setting introduced in the previous section we derive actions that correspond to di¤erent

levels of reasoning. From now on we assume that signals and the state are normalized and with

slight abuse of notations we will use �; xi and y(= 0) to denote the normalized signals. It is

convenient to introduce variable � = 1=2 so that player i�s updated estimate of the state can be

written as Ei[�] = �xi.
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Player i chooses ai to maximize (1) and from the �rst-order condition the best response is

a�i = (1� r)Ei [�] + r�Ei [�a�i] :

Except for the non-strategic L0 type, agents with di¤erent levels of reasoning will form di¤erent

beliefs about Ei [�a�i] and will choose an action accordingly.
The �rst step in calculating Lk actions is to de�ne the behavior of L0. In the literature type

L0 is usually viewed as the starting point of a player�s analysis of others�actions, so it should be

unsophisticated and non-strategic (see e.g. Crawford and Iriberri, 2007). In our paper we assume

that L0�s actions are uniformly distributed between the two signals. Under this assumption L0�s

behavior is indeed unsophisticated and serves as a natural focal point for higher level players to

start their reasoning (see discussion in Crawford, 2008). Furthermore, our speci�cation is directly

related to the L0-speci�cation in the standard beauty contest. In particular, when r = 1 and signals

are public, our game is reduced to a beauty contest game and the two L0 de�nitions coincide. Given

that L0 is non-strategic its behavior should not change as one signal becomes private or as we vary

r. An alternative way to model L0, which is related to truthful L0 in Crawford and Iriberri (2007),

is to assume that the L0 type ignores all strategic aspects of the game (guessing other players�

actions) and focuses solely on the nonstrategic aspect of the game (guessing the state). In our

setting these two approaches yield the same prediction for higher types�behavior.2

According to the standard level-k model, an L1 agent expects that other players are L0 players.

It means that L1 player believes that the average action of other players will be equal to their own

estimated state: �a�i = E�i [�] = �x�i. In the setting when xi is private Ei [x�i] = Ei [�] from which
it follows that

Ei [�a�i] = Ei [�x�i] = � (�xi) = �2xi:

Therefore, L1 player in the setting with private signals will play

aL1 = (1� r)�xi + r��2xi:

We use induction to derive the action choice of a level-n agent. Let aLn denote the action taken

by an Ln player with private signal xi. Then it takes the following linear form aLn = �nxi; where

�n is a coe¢ cient depending on r; � and �. In particular

�0 = � and �1 = (1� r)�+ r��2: (7)

Now consider an L (n+ 1) player with private signal xi. Then she expects that other players

are Ln players and

Ei [�a�i] = Ei [�nx�i] = �n�xi:

Therefore,

aLn+1 = (1� r)Ei [�] + r�Ei [�a�i] = (1� r)�xi + r���nxi:
2When L0�s actions are uniformly distributed between the two signals the average L0�s action will be Ei [�] = 1

2
xi,

the exact same number that a (truthful) L0 type would choose.

7



It follows that

�n+1 = (1� r)�+ r���n;

which implies the following di¤erence equation:�
�n+1 � �n

�
= r��

�
�n � �n�1

�
:

Using the initial condition (7), we can solve

�n =
(1� r)�
1� r�� +

(1� ��) r� (r��)n

1� r�� : (8)

When signal xi is public, by following a similar procedure we can show that an Ln agent with

signal (xi; 0) will choose action e�nxi, where e�n is given by
e�n = (1� r)�

1� r� + (1� �) r� (r�)
n

1� r�: (9)

Above we derived level-k predictions under the assumption that subjects are capable of correctly

estimating signals received by others. For the setting with private signals we also consider an alter-

native level-k model where players can not perform appropriate Bayesian updating in estimating

x�i. We call it a naive level-k model and we assume that subjects are naive in the sense that they

simply think that the other players�private signal is exactly the same as their own. While it is

clearly irrational to use naive update we introduce it because in many instances subjects�behavior

was better matched by naive levels of reasoning rather than correct ones. Mathematically, naive

update is equivalent to the case when subjects receive two public signals. Thus, the level-k predic-

tion for our naive subjects is also given by (9). Notice that in this case if � = 1 then all level-k

players will play action �xi regardless of k.

It is clear from (8) and (9) that both �n and e�n are decreasing in n and converges to our NE
predictions given by (5) and (6) as n!1. Therefore, we have proved the following result:

Proposition 1 All level-k players choose higher actions than the NE prediction.

When � = 1 the weights put on public and private signals sum up to 1. Therefore, it follows from

Proposition 1 that when � = 1 level-k agents will overweight the private signal and underweight

the public signal as compared to the theoretical prediction. This has an important implication with

regards to the MS model. One of the main results of Morris and Shin (2002) is that the coordination

motive forces players to place too much weight on the public signal relative to the weight that would

be used by the social planner. As a result, information is not aggregated e¢ ciently and public

disclosure of more information could be detrimental to the social welfare. However, Proposition 1

shows that the detrimental e¤ect of public disclosure may be less than predicted by theory if agents

are not fully rational. Speci�cally, level-k players, whether naive or not, put a higher weight on the

private signal � and consequently a lower weight on the public signal � than NE predicts.
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4 Experimental Design

The design of all treatments in our study is based on the modi�ed MS framework as described

above. In this section we explain our experimental implementation of the MS framework as well as

similarities and di¤erences across treatments.

4.1 Payo¤ Function and Signals

In all treatments the payo¤ function of subject i is given by

ui(ai; a�i) = maxf2000� (1� r)(ai � �)2 � r(ai � �a�i)2; 0g; (10)

where ai is the action of subject i, � is the true state of the world, a�i is the average of all other

subjects�actions, � 2 [0; 1] is the weight put on a�i, and r 2 [0; 1] is the relative importance of
matching the weighted average of other investors�actions.

Since the payo¤ function given by (10) is more complicated than those in typical laboratory

experiments, every e¤ort was made to ensure that subjects understood the payo¤ structure. First,

expression (10) was presented in a simpler way

ui(ai; a�i) = 2000� (1� r)(ai � �)2 � r(ai � �a�i)2: (11)

The fact that payo¤s could not be negative was explained verbally in the instructions. Second, we

took advantage of the fact that each term had a very simple and intuitive interpretation. We started

by verbally explaining that there are three factors that will determine the payo¤: mismatching the

underlying state, mismatching �a�i, and their relative importance r. After this was understood,

we presented the actual mathematical form, explained the meaning of each term, and went through

several numerical examples. Finally, during the actual experiment at the end of each period the

second and third terms in (11) were calculated and displayed together with ai, �, and �a�i. This

proved to be very helpful for participants since it highlighted how each term in (11) a¤ects the

payo¤.

Notice that we bound the period pro�t away from 0. Otherwise, subjects may incur a large loss

in a single period of the experiment that would be impossible to recover even if subjects receive

the maximum of 2000 each period afterwards.3

All treatments had a similar structure and di¤ered only in two aspects: parameter values and

whether signal xi was public or private. State � and signals, whether public or private, were

generated prior to the experiment. For each round t, state � is generated randomly according to

a uniform distribution on [400; 700]. Given �, the signals are independently drawn from a normal

distribution N (�; 3600). Signal y is public and is the same for all subjects. Signal xi can be public

or private. In treatments when it is private di¤erent subjects in a group observe di¤erent signals.

3This can potentially a¤ect the equilibrium prediction. When the maximum of (11) is negative the agent would

be indi¤erent between all actions. One can show that this happens only when the two signals are very far apart. In

our experiment this happened exactly 4 times which is approximately 0.1% of all observations.
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When it is public all subjects observe the same signal. Signals and the state were generated in such

a way so that each period all groups of subjects received the same signals and the underlying state

was the same. If, say, members of group 1 received private signals 105, 72, 41 and 36 then in all

other groups there would be a member who received signal 105, a (di¤erent) member with signal

72 and so on.

Subjects were not informed about the distributions used for state and signal generation. Instead,

we verbally explained how to interpret each signal and how to use them to infer the value of the

state (see instructions in the Appendix for the exact wording). The decision to exclude information

about underlying distributions from the instructions has its costs and bene�ts. The major concern

is that such exclusion can potentially prevent subjects from forming beliefs about the underlying

state and opponents�actions which in turn can prevent them from deriving Lk and equilibrium

strategies. However, as one can see from Section 3.2, this is not the case. In order to derive any

particular level of reasoning or an equilibrium action it is su¢ cient to know how to estimate the

state given the two signals and it was clearly explained to subjects. In pilot sessions subjects

knew the normal distributions from which the state and signals were generated. We removed the

distribution information from the instructions after conducting pilot sessions because many subjects

found the distribution information to be confusing

After the state and signals are generated, we normalize them by subtracting y from each of

them so the triple (�; xi; y) becomes (� � y; xi � y; 0) and the normalized signal y, therefore, is
always 0. Both normalized signals are then displayed on the computer screens and the payo¤s

are calculated using the normalized state value, � � y. Note that normalized x-signals and the
normalized state could be negative. While the main reason for using the normalization is theoretical

and was explained in Section 3 there are also additional bene�ts. First, it substantially simpli�es

the environment. It is easier to make a decision with signals 0 and 43 than with signals 529 and

572. Second, this guarantees that subjects know that y was indeed a public signal. Third, it makes

our setting similar to the standard beauty contest setting.

4.2 Treatment and Session Description

Four treatments were designed for this study. In the �rst treatment signal xi was private and � = 1.

We label this treatment Pr-A as the non-zero signal was private and the participants must match

the average action of other investors. In the second treatment we set � = 1=2 so that subjects

need to match � and one-half of the average action of their opponents. The latter consideration

makes the game related to the p-beauty contest with p = 1=2. In this treatment each participant

still receives a private signal. We label the treatment Pr-H where the H represents that individuals

must now match one-half of the average action. In our third treatment � = 1=2 as in Pr-H but both

signals are public. As such only two signals are drawn every period, and it is common knowledge

that both signals are public. We label this treatment Pu-H as the non-zero signal is now a public

signal and subjects need to match one-half of the average action. Our �nal treatment is identical

to the Pu-H treatment except that participants are required to choose an action between the two
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signals. This treatment is labeled PuR-H as it is identical to Pu-H except that the domain of

actions is restricted.

Among the treatments we conduct PuR-H is the closest to the beauty contest setting. First,

subjects�choices are restricted to [0; xt] which makes the game dominance solvable.4 Second, all

information is common knowledge and, �nally, when r gets closer to 1 the subjects�goal becomes

to match 1
2a�i. One notable di¤erence from the BC model is that here all subjects, not just the

player who is closest to one-half of the average, are paid. However, the tournament aspect of the

BC is still retained in that subjects with actions closer to �a�i in PuR-H receive higher payo¤s

than those farther away. Table 1 provides a summary of the treatments, their mnemonic names,

and the number of subjects in each treatment.

Treatment y xi � Restricted Domain? # of subjects

Pr-A 0 private 1 No 19

Pr-H 0 private 1
2 No 13

Pu-H 0 public 1
2 No 17

PuR-H 0 public 1
2 Yes 11

Table 1: Description of experimental sessions.

Sessions are based on one of the four treatments described above, and each consists of 6 phases

with 10 rounds in each phase, for a total of 60 rounds. Within each phase the value of r is �xed

but r is di¤erent across phases. We use six values of r: 0:15, 0:3, 0:5, 0:65, 0:8 and 0:95: For each

session we use the following order of r across phases: 0:15, 0:5, 0:8, 0:95, 0:3, and �nally 0:65.

Thus, in the �rst phase (�rst 10 rounds) subjects make decisions with r = 0:15, while in the second

phase (rounds 11-20) subjects make decisions with r = 0:5 and so on. Note that we start with a

low value of r, gradually increase r until phase four, decrease r between the fourth and �fth phases,

and then increase it again. The choice of a non-monotone sequence of r�s can help us separate the

e¤ect of r from the e¤ect of learning. For example, if subjects�behavior is similar in phases with

r = 0:15 (the �rst 10 rounds) and r = 0:3 (the �fth ten rounds) then it suggests that this behavior

is caused by low r and not by lack of subject�s experience with the environment.

Overall, our design enables us to vary the standard beauty contest setting in the following

two directions. First, by changing r we vary the strength of the coordination motive. This is

interesting because games in which the importance of coordination varies can capture a wide range

of economic applications such as monetary policy (Morris and Shin, 2002), asset pricing (Allen,

Morris and Shin, 2003, Bacchetta and Wincoop, 2005), venture capital (Angeletos, Lorenzoni and

Pavan, 2007) and political campaigns (Dewan and Myatt, 2007, 2008). While levels of reasoning

are well-de�ned for any value of r, one would expect that subjects will focus less on the actions of
4To see this, recall that the best response is given by ai = (1� r)xi + r�a�i. Without loss of generality we can

assume xi > 0. Because subjects are restricted to choose actions between [0; xi], we can �rst eliminate actions outside

of the interval [(1� r)xi=2; (1� r)xi=2 + r�xi]. Once we do that, we can further eliminate actions outside of the
interval

�
(1 + r�) (1� r)xi=2; (1 + r�) (1� r)xi=2 + r2�2xi

�
and so on. By repeating this procedure we will get a

sequence of intervals with length rk�kxi, and this sequence will shrink to a point, which is NE.
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others as the coordination motive becomes weaker. If this is correct it would suggest that in games

where coordination is less important or its e¤ect is less obvious subjects will be less likely to follow

level-k reasoning.

Second, we introduce private information into the game by making the second signal xi private.

Private information is prevalent in many economic applications and therefore it is important to

understand how well level-k models can explain the data in settings with private information.

Indeed, level-k reasonings have been applied to classical settings with private information, such

as the winner�s curse in common value auctions and overbidding in private value auctions (see

Crawford and Iriberri, 2007a). However, the comparison of level-k model performance between

the complete and private information settings, both in absolute and relative terms, has not been

studied yet.

4.3 Procedures

Sessions were conducted at UNC Charlotte between March 2008-March 2009. Subjects were

typically undergraduate students, primarily recruited from the business school but not exclusively.

Subjects were seated at visually isolated carrels and were forbidden to communicate with other

subjects throughout the duration of the experiment. Instructions were read aloud to subjects,

and a few minutes was spent discussing how di¤erent values of r could impact the subjects�loss

from mismatching the state � (i.e. the term �(1� r)(ai � �)2) and the loss from mismatching the

decisions of other investors (i.e. the term �r(ai��a�i)2). To reinforce this distinction in the actual
experiment after each round a payo¤ screen displayed the loss from mismatching each of these two

terms as well as the total payo¤.

All subjects were divided into four-person groups which were re-assigned in the beginning of

each period. In some sessions we had a number of subjects that was not divisible by 4. In those

instances we used the following procedure. First, the computer would form as many groups as

possible. The remaining subjects would form an incomplete group that was completed by the

decisions of a subject(s) from fully completed groups. When relevant the subject(s) chosen from

the fully formed group was the one who observed the private signal di¤erent from those observed

by members of incomplete group. For instance, if the private signals in a fully completed Pr-H were

105, 72, 41, and 36, and the private signals of an incomplete group were 105, 72, and 41, then a

decision from a subject who saw a private signal of 36 would be used to complete the incomplete

group. Even though the decision of this randomly chosen subject is used for two groups, that

subject will only receive the payo¤ based on the outcome within her fully formed group.

At the beginning of each round, subjects were shown signals and were asked to submit a decision

for ai. Depending on the treatment, subjects were informed that either both signals were public

signals or one was a public signal and the other was a private signal only observable to that speci�c

subject. When all decisions were submitted, a�i and pro�t were calculated for each agent. At the

end of each round subjects were shown a screen containing their own action choice, ai, the true

state, �, the average opponent action, a�i and their payo¤ for the current round.

12



Subjects�cash payment is determined as follows. At the end of the experiment one of the six

phases is randomly chosen. A subject�s total payo¤ during the chosen phase is calculated and

converted it into USD by multiplying it by .001. Thus, if a subject earned 10500 during the chosen

phase it will become 10.50$. This is in addition to the 5$ show-up fee that all subjects received.

The average payment to subjects, including the show-up fee, was 15$ for a 75-90 minute session.

5 Results

In this section we analyze subjects�behavior and study how well it matches NE and level-k (Lk)

predictions. Given that NE and Lk actions are linear combinations of a random non-zero signal x

and zero signal y, they will vary each period even when the treatment and the value of r, that is the

session phase, are �xed. To make results comparable across periods and treatments we normalize the

non-zero signal to be 100 and adjust subjects�actions as well as NE and Lk predictions accordingly.

For example, given action a and non-zero signal x, the normalized action is an = 100 � a=x so that
action a = x=2 is normalized to 50 and action a = x is normalized to 100. The interpretation of

normalized values is that they represent the percentage weight a particular action or a prediction

puts on a non-zero signal.

5.1 NE and Subjects�Behavior

First, we compare subjects� behavior with NE predictions. For each treatment and each r we

calculate the average normalized action an and plot it on Figure 1 together with the normalized

NE prediction. One caveat with normalization is that when x is close to zero it becomes too

sensitive to small changes in behavior. For example, if x = 4 then two close actions 1 and 2 will

be normalized as 25 and 50. To address this problem we calculate and plot an additional variable

a15n which is the average of all normalized actions that were taken by subjects observing jxj � 15.
As we see from Figure 1, in all four treatments subjects�actions tend to be higher than NE

predicts. In other words, subjects tend to overweight the non-zero signal which is private in Pr-A

and Pr-H and public in Pu-H and PuR-H. In a setting similar to our Pr-A treatment Cornand and

Heinemann (2009) also observed the overweighing of private signals by subjects.
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Figure 1: Subjects�behavior and NE in all four treatments. On the y-axis is the average weight that subjects put on

the zero signal. Solid line is NE; dotted line, an, is the average weight over all actions; dash-dotted line, a15n, is the

average over actions that where taken when the distance between the signals is at least 15.

Another interesting observations is that for intermediate values of r NE is matched very closely.

It happens in all treatments when r = 0:65 and in treatments with private signals when r =

0:5. Using the t-test to compare the di¤erence in means between a15n and NE con�rms these

observations. In all treatments the di¤erence is insigni�cant when r = 0:65; in treatments with

private signals it is insigni�cant when r = 0:5 and in Pr-H it is also insigni�cant when r = 0:15

and r = 0:3. In all other cases the di¤erence is signi�cant at 5%-level.

r 0.15 0.30 0.50 0.65 0.80 0.95

Pr-A 41.21 31.77 40.02 27.05 32.66 39.13

Pr-H 49.12 35.74 45.12 21.68 38.00 34.02

Pu-H 23.03 22.68 25.91 9.45 14.99 12.86

PuR-H 21.54 14.54 20.80 8.96 17.14 17.02

Table 2: Average absolute deviation of observed behavior from NE across di¤erent treatments and phases. The

deviation is calculated based on normalized data with non-zero signal normalized to 100. Higher r means stronger

coordination motive.
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To test whether this was a result of aggregation or if subjects did play NE in those phases we

calculated the average absolute deviation of each action from NE (in normalized units). The results

are displayed in Table 2.5 It can be immediately seen that in each treatment the phase r = 0:5

had the second-largest or largest average deviation from NE. In contrast, the r = 0:65 phase has

consistently the best performance as compared with other phases within the same treatment. Given

that r = 0:65 was the last phase this might indicate that with experience subjects begin to play

closer to the NE prediction.

Result 1: In aggregate, subjects put a higher weight on the non-zero signal than NE predicts.
Overall, NE performs the best in the last phase of the study with r = 0:65.

5.2 Level-k Models and Subjects�Behavior

As we showed in Section 3 level-k players will overweight non-zero signal regardless of k. Therefore,

in aggregate subjects behavior is consistent with level-k predictions. In this section we study how

well level-k reasoning performs on individual level.

A few things need to be taken into account. First, level-k behavior is often considered as a way

to describe subjects�initial responses in which case it should be more pronounced in the beginning

of the phase. Second, subjects�behavior can change as the experiment proceeds. They can switch

from one level to another one, presumably a more sophisticated one, or they could experiment in

the beginning of the phase and then converge to a particular level. Finally, even those subjects

who did go through some levels of reasoning are likely to be biased towards integers, particularly

those ending with 0 and 5. All this suggests that a simple search for subjects whose actions are

equal to Lk predictions every period is likely to overlook many instances of level-k behavior.

To address these concerns we used the following approach to elicit level-k behavior. We divided

the ten periods of each phase into two halves: the �rst �ve periods and second �ve periods. Within

each group of �ve periods for each subject we calculated average absolute deviations of subjects�

normalized actions from normalized level-k and NE predictions. We say that a subject�s behavior

closely followed one of the levels of reasoning during a given half of the phase if two conditions

hold. First, the average deviation of subjects�choices from this level was the smallest as compared

to other levels. Second, the average deviation was less than 10 (in normalized units). The main

advantage of this approach over other alternatives6 is that it allows us to study separately subjects�

5As before we calculated the average absolute deviations for the entire sample and the average deviations excluding

observations with jxj < 15, but only the latter is reported in the paper. Results are qualitatively similar. The only

major di¤erence is an outlier in treatment Pr-H with r = 0:3, where the average deviation for the entire sample was

125.22. The presence of the outlier can be also seen on Figure 1.
6 In addition to the criterion used in calculating Table 3 we tried the following alternatives. We performed the

calculations using only the �rst �ve periods of each phase (as in Crawford and Iriberri, 2007a) as well as pooling the

data from all all ten periods of each phase. In addition to having the threshold of 10 normalized units we considered

thresholds of 5 and 15 normalized units. We also used actual values instead of normalized ones and tried thresholds of

5, 10 and 15. In all these cases, the qualitative picture does not change. Level-k models perform better in treatments

with public signals and in phases with high r. Quantitatively, numbers change as compared to Table 3 depending on

whether the criterion is more or less favorable to level-k reasoning. If it is more favorable, say because of a higher
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behavior in the beginning and in the end of each phase. In particular, it enables us to evaluate

how well level-k models capture subjects�initial responses and how subjects�behavior evolves with

time.

r 0.15 0.30 0.50 0.65 0.80 0.95

Pr-A 5.26 2.63 13.16 21.05 7.89 21.05

Pr-H 7.69 0.00 11.54 34.62 11.54 19.23

Pu-H 5.88 17.65 17.65 52.94 64.71 91.18

PuR-H 4.55 36.36 18.18 63.64 63.64 86.36

Table 3: Percentage of subjects who closely followed one of the levels of reasoning. We say that a subject�s behavior

closely followed one of the levels of reasoning during a given half of the phase if two conditions hold. First, the average

deviation of subjects�choices from this level was the smallest when compared to other levels. Second, the average

deviation was less than 10 (in normalized units).

Table 3 shows the percentage of subjects who closely followed one of the levels of reasoning

during either half of a particular phase. Several things can be noticed. First, for any given r in

treatments with two public signals the success rate of level-k models is higher. The only exception

is r = 0:15 but in either case the success rate for r = 0:15 is extremely low in all four treatments.

Second, the highest success rate occurs in treatments with two public signals and r = 0:95 where

more than 85% of subjects followed some level of reasoning. This suggests that level-k models

perform best when there is no private information and the coordination motive is the strongest.

The third result, while in some sense being a corollary of the previous two, is worth mentioning

separately. In treatments with private signals even when r = 0:95 the success rate of level-k models

is relatively low and, in particular, is much lower than in treatments with public signals.

To visualize the di¤erence in subject behavior between treatments with private and public

signals, we take phase r = 0:95 of all four treatments and plot individual choices of the �rst 10

subjects together with level-k predictions. Figure 2 plots decisions of the �rst 10 subjects from the

two treatments with private signals and Figure 3 shows decisions of the �rst 10 subjects from the

two treatments with public signals.

threshold, then all frequencies are higher. If it is less favorable, say, because of a lower threshold or because we

consider all 10 periods of the phase instead of two �ve-period intervals, then all frequencies are lower.
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Figure 2: Individual behavior of �rst 10 subjects in treatment Pr-A (the �rst two rows) and in treatment Pr-H (the

last two rows). The value of r is 0.95. The ten phase periods are on the x-axis. Actions as well as level-k predictions

are on the y-axis. Dots are actions; the lowest (dotted) line is NE; solid line is L1n; dashed line on the top is L1;

dashed-dotted line in the middle is L2. To increase the scale of images we use absolute values so that all levels and

actions are positive.

Looking at subjects� choices in treatments with private signals we see that the majority of

subjects do not consistently follow a particular level of reasoning. For example, in treatment Pr-H

subjects 1 and 2 were typically playing higher than any level of reasoning, subjects 3, 4, 5, 6, 7 and 8

were not playing as high, however, their choices did not follow any particular level. Only subject 10

more or less consistently played L1n, which is L1 with naive update, throughout the entire phase.

In contrast, in treatments with public signals many subjects closely and consistently followed some

level. For example, in treatment Pu-H subject 2 followed L3, subjects 3, 6, 8, 9 and 10 followed L2.

In treatment PuR-H subjects 3 and 4 followed L1, subject 6 uses L2 in the beginning but switches

to L3 in the end, subjects 8 and 9 follow L2. Overall, these two �gures visualize what we already

observed in Table 3, i.e. in treatments with public signals the performance of level-k reasoning is

much better than in treatments with private signals.
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Figure 3: Individual behavior of �rst 10 subjects in treatment Pu-H (the �rst two rows) and in treatment PuR-H (the

last two rows). The value of r is 0.95. The ten phase periods are on the x-axis. Actions as well as level-k predictions

are on the y-axis. Dots are actions. Lines for level-k predictions are ordered from top to bottom. The solid line

on the top is L1 . The dash-dotted line below it is L2, the dashed line below it is L3 and the dashed line on the

bottom is NE. To increase the scale of images we use absolute values so that all levels and actions are positive.

Result 2: In treatments with private signals and in phases with low r only a few subjects

followed levels of reasoning. In treatments with public signals and high values of r level-k models

did the best with the majority of subjects following some level of reasoning.

The next question is how subjects�behavior evolves over time. First, we study how the predictive

power of the level-k model changes within the phase. Given that level-k reasoning is usually viewed

as the way to describe subjects� initial responses we measure the performance of level-k models

separately in the beginning and in the end of each phase. In Table 4 we calculate percentages of

level-k subjects in the �rst �ve periods of each phase as well as percentages of level-k subjects in

the last �ve periods of each phase. The criterion for attributing subjects�behavior to a particular
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level is the same as before. The average absolute deviation from this level prediction should be the

smallest compared to other levels and should not be more than 10 normalized units.

First 5 rounds Second 5 rounds
r 0.15 0.30 0.50 0.65 0.80 0.95 0.15 0.30 0.50 0.65 0.80 0.95
Pr-A 5.26 5.26 10.53 31.58 0.00 26.32 5.26 0.00 15.79 10.53 15.79 15.79

Pr-H 0.00 0.00 7.69 46.15 15.38 7.69 15.38 0.00 15.38 23.08 7.69 30.77

Pu-H 11.76 17.65 11.76 58.82 41.18 94.12 0.00 17.65 23.53 47.06 88.24 88.24

PuR-H 9.09 45.45 9.09 63.64 54.55 72.73 0.00 27.27 27.27 63.64 72.73 100.00

Table 4: Percentage of subjects who followed closely one of the levels of reasoning in the beginning of the phase

(the left table) and in the end of the phase (the right table). Frequencies are computed similarly to Table 3.

Comparing the left and right parts of Table 4 we see that there is no clear pattern with regards

to whether subjects are likely to exhibit level-k behavior in the beginning or in the end of the

phase. In 10 phases out of 24 level-k behavior was more common in the beginning, in 4 phases

frequencies were equal and in the remaining 10 phases it was more common in the end. Keeping

the information structure �xed does not reveal any clear pattern either. In treatments with public

information as well as in treatments with private information level-k behavior was as common in

the beginning as it was in the end.

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r=0.8
1st half L1 L2 L1 L1 L3 L1 L1

2nd half L2 L2 L1 NE L1 L1 L2 L1 L2 L3 L1 L1 NE L1 L3

r=0.95
1st half L2 L3 L2 L2 L2 L2 L2 L2 L2 L1 L3 L1 L1 L3 L1 L3

2nd half NE L3 L2 L3 L2 L1 L2 L2 L1 NE L2 L1 L3 L1 L3

Table 5: Subjects�behavior in Pu-H treatment in phases with r = 0:8 and r = 0:95.

Next, we turn our attention to the r = 0:8 and r = 0:95 phases of the two treatments with

public signals which is where level-k behavior was the most prominent. From Table 4 we see that in

these phases level-k reasoning was more pronounced during the second half rather than during the

initial �ve periods. Looking at the evolution of subjects�choices over time we have the following

results. Among those subjects who followed some level of reasoning in both halves of a phase there

were 22 cases (out of 34) when subjects stayed with the same level in both halves, 11 cases when

subjects switched to a higher level, and 1 case when a subject switched to lower level (subject 7,

phase r = 0:95, treatment Pu-H). This is consistent with Nagel (1995) who also found that subjects

tend to adhere to the same level of reasoning throughout the entire study.7 For those subjects who

followed some level in one half of a phase, only 3 subjects did so in the �rst half while 15 subjects
7Nagel (1995) �nds that subjects� choices decreased over time which one may interpret as the evidence that

subjects learn to play with higher levels of reasoning. Nagel argues that this interpretation is false. The declining

pattern of choices is not because subjects learned to play with higher levels of reasoning but because subjects adjusted

downwards their beliefs about the average action given the outcome of the previous play. Our experiment is di¤erent
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did so in the second half. In other words, it was more likely for subjects to switch to level-k

behavior rather than to abandon it. Similarly, looking at subjects�behavior between phases we see

that those subjects who followed some level in the r = 0:8 phase would typically continue doing

so, though perhaps using a di¤erent level, in the next (r = 0:95) phase. Table 5 summarizes the

behavior of subjects in Pu-H treatment. For brevity sake we omit the similar table for the PuR-H

treatment.

Pr-A Pr-H
Subject # 2 6 8 12 14 17 18 24 28 29 30 32

r=0.8
1st half L2n L1

2nd half NE NE Ln L2n

r=0.95
1st half L2 L1 L1 Ln Ln L2

2nd half Ln Ln Ln L3n L1n L1n L3n

Table 6: Subjects� behavior in treatments with private signals. Only those subjects whose behavior could be

attributed to any level are shown.

In treatments with private signals, the picture is considerably less clear. Table 6 shows all

participants in treatments with private signals whose actions could be attributed to a particular

level in at least one half-phase. The di¤erence between Tables 5 and 6 is immediate. First, as

we should expect given our previous results, only a few subjects followed some level of reasoning.

Second, among those who did only three subjects followed some level during the entire phase.

For the remaining subjects, their actions can often be attributed to some level in the second half

(7 instances) rather than in the �rst half (3 instances). Third, there is much less consistency in

the level-k behavior between phases. In particular, only 2 subjects (14 and 32) followed level-k

reasoning in both phases.

Result 3: We do not observe that subjects are more likely to follow level-k reasoning in the
beginning of the phase as compared to the end, or vice versa. However, in phases where level-k

behavior was most prominent, level-k reasoning was more common in the end.

Result 4: In treatments with public signals and high r subjects were more likely to switch to
Lk-behavior and within Lk behavior they were more likely to switch to higher levels. In treatments

with private signals such a consistent pattern is either not observed or is considerably weaker.

The last question we want to address in this section is how frequently di¤erent levels of reasoning

were followed by subjects. This information is given in Table 7 where we count how many times

subjects followed a particular level of reasoning during a half of the corresponding phase.

in that every period new signal � or the support of the beauty contest game � are randomly drawn. Therefore,

subjects cannot directly use the information of the average action of the previous play to guess the average action

of the current play. This makes learning much slower and more di¢ cult in our setting. As a result we can observe

many subjects staying with the same level of reasoning without adjusting subjects�beliefs as in Nagel (1995).
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Pr-A Pr-H Pu-H and PuR-H
L1 L2 Ln NE L1(n) L2(n) L3n NE L1 L2 L3 NE

0.15 - - 2 - -(1) -(-) - 1 2 - - 1

0.30 - - 1 - -(-) -(-) - - 11 - - 3

0.50 1 - 4 - -(1) -(-) 1 1 4 2 - 4

0.65 2 - 4 2 5(-) -(-) - 4 7 6 - 19

0.80 - - 1 2 1(-) -(2) - - 18 11 3 4

0.95 2 1 5 - -(2) 1(-) 2 - 15 23 10 2

Total: 5 1 17 4 6(4) 1(2) 3 6 57 42 13 33

Total %: 2.2% 0.4% 7.5% 1.8% 3.8(2.6)% 0.6(1.3)% 1.9% 3.8% 17% 12.5% 3.9% 9.8%

Table 7: Each entry shows how many times subjects followed a given level within one half of a corresponding phase.

Data from treatments Pu-H and PuR-H are combined. In treatment Pr-H columns L1(n) and L2(n) show both

sophisticated and naive levels. Numbers for naive levels are in parenthesis. Numbers in the last row are calculated

as a percentage of all phase-halves played by all subjects within a given treatment.

Several things can be noticed upon inspecting Table 7. First, in treatments with private signals

naive levels were used more often than the �sophisticated�ones: 17 versus 6 in Pr-A and 9 versus

7 in Pr-H. Second, in the treatments with public signals as well as in the Pr-H treatment, L1,

regardless of naivety, was followed most frequently. In Pr-A we cannot separate L1n from higher

naive levels but we still observe that L1 was followed more often than L2. Third, in the r = 0:8

and r = 0:95 phases of Pu-H and PuR-H treatments higher levels of reasoning were used more

often than in phases with lower r. In particular, in the r = 0:95 phase level L2 was followed more

frequently than L1. Finally, we see the e¤ect of learning. In the last phase of each treatment, the

one with r = 0:65, NE was followed most often.

Result 5: In all four treatments subjects were more likely to follow the �rst level of reasoning
independent of naivety. One notable exception is the r = 0:95 phase in treatments with public

signals where L2 was most common. In treatments with private signals naive levels of reasoning

were considerably more common.

5.3 Maximum Likelihood Estimation of Level-k and CH Models

In the analysis above, we have shown that the predictive power of level-k reasoning is weaker as

we introduce asymmetric information or reduce the weight of coordination component. In this

subsection, we compare the results of maximum likelihood estimation across di¤erent treatments

to further substantiate this �nding. We will perform the ML estimations of the following two

models: the standard level-k model where Lk type plays best response to the population that

consists entirely of Lk � 1 type, and the cognitive hierarchy model (CH) where Lk plays the best
response to the population that consists of the mixture of lower types L0; : : : ; Lk � 1.

Results of ML estimation of the standard level-k model are given in Table 8. In the estimation

we assume that L0 players choose their actions using the uniform distribution and Lk players play
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Pr-A (1140 obs.) 0.15 0.30 0.50 0.65 0.80 0.95
L1 0.013 0.008 0.040 0.138 0.061 0.038

L2 0.000 0.000 0.040 0.020 0.000 0.027

Ln 0.113 0.109 0.155 0.175 0.097 0.111
NE 0.000 0.000 0.000 0.000 0.025 0.043
LL -862.412 -867.572 -864.334 -844.267 -853.605 -865.363

Pr-H (780 obs.)

L1 0.003 0.020 0.010 0.043 0.039 0.031

L2 0.000 0.000 0.018 0.070 0.012 0.030

L1n 0.054 0.000 0.019 0.000 0.011 0.112

L2n 0.048 0.004 0.000 0.035 0.003 0.000

NE 0.000 0.000 0.018 0.081 0.000 0.067

LL -593.383 -598.368 -599.411 -581.163 -584.006 -591.093

Pu-H (1020 obs.)

L1 0.020 0.076 0.048 0.096 0.265 0.226
L2 0.010 0.000 0.000 0.000 0.209 0.403
NE 0.010 0.041 0.027 0.204 0.071 0.220
LL -781.777 -774.376 -779.115 -738.627 -711.186 -645.063

PuR-H (660 obs.)

L1 0.000 0.010 0.031 0.112 0.180 0.288
L2 0.017 0.000 0.030 0.000 0.223 0.425
NE 0.017 0.125 0.060 0.320 0.021 0.079
LL -506.461 -499.027 -501.407 -468.224 -474.126 -420.138

Table 8: Results of the ML estimation of level-k models are shown. Estimates are in bold when they are signi�cantly

di¤erent from 0 at the 5% level.

the best response to the Lk�1 strategy plus an error that is uniformly distributed around the best
response. The estimation is performed using normalized values and so the support of the error is set

equal to 10 normalized units, or in other words to 10% of the distance between two signals. In the

literature the error is usually modeled as having a logistic distribution. We opted for the uniform

distribution because subjects are often biased towards �nice�numbers such as integer numbers or

those ending with 0 and 5 � something that we also observe in our data. The uniform distribution

seems to be a more natural way to capture the error generated by such a bias. In all treatments

we directly estimate the shares of L1, L2 and NE types.8 In addition to that, in treatments with

private signals we estimate shares of naive types. The share of type L0 is then calculated as one

minus the sum of the shares of other types.

Comparing the estimates within treatments we see that the log-likelihood roughly increases as r

increases from 0.15 to 0.95. In other words, the predictive power of the level-k model increases with

higher r, which is consistent with our discussion in previous sections. This feature is prominent for

treatments Pu-H and PuR-H, while less so for treatments with private signals. In the latter the

phase with r = 0:65 tends to perform better than the phase with r = 0:8 which could be due to

8Adding type L3 does not signi�cantly change the results. It changes estimates slightly for the phase with r = 0:95

only.
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aforementioned learning e¤ect. Another result that follows from Table 8 is that larger values of r

generate larger and, most importantly, signi�cantly positive estimates of shares of di¤erent types.

For example, in treatments with public signals the shares of both L1 and L2 are signi�cantly

positive when r � 0:8. Furthermore, when r = 0:95 types L1 and L2 are estimated to cover more
than 70% of the sample in PuR-H and more than 60% in Pu-H. Again as before this e¤ect is less

pronounced for treatments with private signals, however, in Pr-A we still observe more signi�cance

as r gets larger.

To compare the performance of the level-k model across treatments we use two criteria: log-

likelihood and the share of L0. Given that any choice that cannot be attributed to strategic levels

of reasoning is automatically labeled as L0, the size of the share of L0 is a good indicator of the

predictive power of the level-k models. In particular, one can interpret the estimate of the share of

L0 as the frequency of choices that cannot be explained by level-k models.

LL 0.15 0.30 0.50 0.65 0.80 0.95
Pr-A -0.757 -0.761 -0.758 -0.741 -0.749 -0.759

Pr-H -0.761 -0.767 -0.768 -0.745 -0.749 -0.758

Pu-H -0.766 -0.759 -0.764 -0.724 -0.697 -0.632

PuR-H -0.767 -0.756 -0.760 -0.709 -0.718 -0.637

L0 0.15 0.30 0.50 0.65 0.80 0.95
Pr-A 0.87 0.88 0.76 0.67 0.82 0.78

Pr-H 0.89 0.98 0.93 0.77 0.94 0.76

Pu-H 0.96 0.88 0.92 0.70 0.46 0.15

PuR-H 0.97 0.87 0.88 0.57 0.58 0.21

Table 9: The top part of the table shows log-likelihood across treatments divided by the number of observations

and the bottom part shows shares of L0.

Table 9 displays both the log-likelihood and shares of L0 in di¤erent treatments. To make results

comparable across di¤erent treatments we normalized log-likelihoods by the number of observations

in a given treatment. Across all four treatments, the log-likelihood is highest when r = 0:95 and the

non-zero signal is public (treatments Pu-H and PuR-H). Within treatments with private signals the

highest log-likelihood is achieved in the last phase with r = 0:65. As for the share of L0, it never

goes below 75% in treatments with private signals, with the only exception being the phase r = 0:65

in Pr-A. Although the performances across all four treatment are comparable for low values of r,

the share of L0 drops considerably in treatment Pu-H and PuR-H for high values of r. In the phase

with r = 0:95 the share of L0 is 21% in PuR-H and 15% in Pu-H. These results provide statistical

support to the earlier �nding that the standard level-k model performs very well when there is no

private information and the coordination motive is strong. In other cases its performance is quite

poor: it fails to explain more than three-quarters of observed choices.

Next, we estimate the cognitive hierarchy model (CH) that was introduced in Camerer at al.

(2004). The idea behind the CH model is that higher types believe that opponents�population is a

mixture of lower types. For example, type L2 believes that some opponents are L1 and others are

L0 and plays accordingly. Camerer et al. assume that there is a correct distribution of di¤erent
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types given by the Poisson distribution with parameter � so that Pr(Lk) = f(k) = exp(��)�k=k!.
Each type does not realize that there are players of the same or higher types but it correctly

estimates relative proportions of lower types. For example, type L2 will believe that the share of

L0 is f(0)=(f(0) + f(1)) and the share of L1 is f(1)=(f(0) + f(1)).

The estimation of treatments with public signals is straightforward. As before we assume

that each type plays the best response plus the error that is uniformly distributed around the

best response. The support of the error is 10 normalized units. In estimation we assumed that

the highest type in the population is L3. For treatments with private signals, we adjust the CH

estimation to account for naive types. First, we assume that both naive and sophisticated types

are unaware of higher types. Second, naive types are unaware of the sophisticated types. For

sophisticated types we considered two alternatives: one when sophisticated types are unaware of

naive types and another one when they are aware. We report only the former but the results for the

latter were very similar. Finally, we assume that the entire population is divided into two groups:

naive players and sophisticated players. The size of each group is an estimation parameter. Within

each group types are distributed according to Poisson distribution with parameter � .

Pr-A (1140 obs.) 0.15 0.30 0.50 0.65 0.80 0.95
� 0.052 0.084 0.118 0.338 0.148 0.238

Share of Naive 0.229 0.216 0.272 0.310 0.182 0.249

LL -774.983 -780.276 -751.247 -663.875 -759.356 -765.729

Pr-H (780 obs.)

� 0.217 0.151 0.150 0.344 0.252 0.644

Share of Naive 0.969 0.406 0.420 0.128 0.386 0.627

LL -542.811 -568.764 -570.062 -520.169 -544.556 -496.538

Pu-H (1020 obs.)

� 0.135 0.223 0.177 0.241 0.971 4.960

LL -742.858 -705.694 -727.776 -699.512 -534.554 -371.490

PuR-H (660 obs.)

� 0.105 0.213 0.205 0.583 0.899 5.268

LL -488.229 -459.415 -464.687 -426.619 -395.477 -236.843

Table 10: The ML estimation of the CH model.

Table 10 shows the results of estimation. A higher � implies that there are larger fractions of

subjects who can do higher levels of reasoning. As we can see, the estimates of � increase as r

increases, especially when r = 0:95. In general, estimates of � are higher for treatments with public

signals and, as before, the log likelihood increases as r increases. Thus, just as the standard level-k

model, the CH model predicts subjects behavior better when r is higher and the information is

public. Another interesting observation that follows from Table 10 is that the CH model explains

behavior much better than the standard level-k model. In particular, log-likelihood is higher for the

CH model despite the fact that the CH model has less parameters (one in Pu-H, PuR-H and two in

Pr-A and Pr-H). The reason is that despite having less parameters the CH model is more �exible

in that it allows level-k players to best respond to a mixture of lower types in the population.
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Result 6: ML estimates con�rm that level-k models perform the best when the coordination

motive is the strongest and information is public. In the remaining cases level-k models perform

poorly and put most of the weight on the non-strategic L0 type.

Result 7: In all treatments the CH model �ts subjects�behavior better than the standard level-k
model, despite the fact that the CH model has fewer parameters than the standard level-k model.

We conclude the section by comparing the e¤ectiveness of estimated level-k models in predict-

ing the aggregated subject behavior relative to the NE prediction. In Table 11 we calculate the

di¤erence (in normalized units) between observed and predicted behavior for NE and CH models

which we call prediction errors. In Table 12 we compare the performance of the three models by

calculating the ratios of their prediction errors. The left part compares prediction errors of the

standard level-k model versus NE and the right part compares CH versus NE. A number higher

than 1 means that NE outperforms the level-k alternative in predicting the average action of the

subjects, and a number lower than 1 means that the level-k alternative outperforms NE.

NE CH
0.15 0.30 0.50 0.65 0.80 0.95 0.15 0.30 0.50 0.65 0.80 0.95

Pr-A 25.06 32.50 2.13 2.05 14.52 26.11 21.16 24.18 17.71 18.42 16.47 15.07

Pr-H 15.63 63.08 1.31 4.69 32.72 18.12 10.54 52.29 20.49 17.57 1.07 14.71

Pu-H 24.90 12.33 20.78 2.30 18.93 12.51 21.32 5.01 6.16 22.87 1.08 0.91

PuR-H 12.69 7.12 18.62 1.19 16.82 16.65 9.01 0.26 4.28 17.89 3.87 5.48

Table 11: Average deviation (in normalized units) of the observed behavior from the predicted behavior in NE and

the CH model.

We see from both tables that in treatments with public signals both level-k models considerably

outperform NE with the usual exception of the r = 0:65 phase. In treatments with private signals

level-k models perform somewhat worse. NE does considerably better in two phases (r = 0:65 and

r = 0:5) and slightly better in the r = 0:8 phase of Pr-A treatment. In phases with r � 0:8 level-k
models tend to outperform NE and more so in treatments with public signals where the prediction

errors can di¤er by a factor of 20. Looking at absolute numbers we also see that in treatments with

high r and public signals the average prediction error of NE was between 12.5 and 18.9 whereas

the CH prediction error was much lower and varied between 0.9 and 5.5.

Level-k/NE CH/NE
0.15 0.30 0.50 0.65 0.80 0.95 0.15 0.30 0.50 0.65 0.80 0.95

Pr-A 0.84 0.73 8.29 9.44 1.15 0.59 0.84 0.74 8.31 8.99 1.13 0.58

Pr-H 0.65 0.81 16.07 3.54 0.09 1.11 0.67 0.83 15.65 3.75 0.03 0.81

Pu-H 0.84 0.36 0.25 8.66 0.05 0.26 0.86 0.41 0.30 9.94 0.06 0.07

PuR-H 0.69 0.07 0.20 13.22 0.35 0.20 0.71 0.04 0.23 15.02 0.23 0.33

Table 12: The left part of the table shows the ratio of average deviations of level-k and NE predictions. The right

part shows the ratio of average deviations of CH and NE predictions. Numbers greater than 1 mean that NE performs

better and numbers less than 1 mean that the level-k (CH) model performs better.
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Finally, we can use Table 12 to compare the relative performance of CH and standard level-k

models. In general, the two models have similar performance and depending on the phase and the

treatment either model may perform better than the other. There are few instances when the CH

model considerably � i.e. by a factor of at least 2 � outperforms the standard level-k model such

as the r = 0:8 phase of Pr-H or the r = 0:95 phase of Pu-H treatment. However, in these instances

both models predict the aggregated behavior reasonably closely which is the main reason for having

such large ratios. In both cases the prediction error of both models was less than four normalized

units. Overall, based on models�ability to predict subjects�aggregated behavior we cannot say that

one level-k model is unambiguously better than another. However, it still should be remembered

that the CH model has a smaller number of parameters and leads to a higher log-likelihood.

Keeping in mind the usual exception of the r = 0:65 phase we conclude with the following

result:

Result 8: In general, both level-k models predict the aggregated behavior better than NE. Their
advantage is particularly pronounced in treatments with public signals and strong coordination mo-

tives.

6 Concluding Remarks

The goal of this paper is to determine the setting in which level-k thinking most appropriately

describes subjects�behavior. To do that we generalize the classical beauty contest setting by using

a modi�ed Morris and Shin (2002) framework that allows us to introduce private information and

vary the strength of the coordination motive. Having the experimental design based on the MS

model generates an environment that is more complex than the one typically used in the level-k

literature. Despite this complexity we con�rm the �nding in the existing beauty contest literature

that level-k models are indeed successful in predicting subject behavior when the game setting is

close to the classical beauty contest, that is, when information is symmetric and the coordination

motive is strong. Moreover, most subjects choose their levels of reasoning consistently in the sense

that they either adhere to one particular level or switch to higher levels. However, as we move away

from the classical setting, subjects are less likely to follow level-k reasoning. In particular, only a

handful of subjects play according to level-k reasoning and those who do tend to use it in a rather

inconsistent manner.

We conjecture that the reason for these results is as follows. When the coordination motive

weakens, the behavior of other players becomes less important; as such, subjects are less likely

to try to predict it. This is true regardless of whether information is symmetric or not. The

introduction of private information into the model weakens level-k behavior even further since the

task of predicting the beliefs and actions of opponents becomes considerably more complex. For

example, in the p-beauty contest with p = 1=2, L1 logic can be summarized in the following simple

phrase: people will just pick actions randomly between 0 and 100 so the average action will be

50 and so I should play 25. In contrast, in the setting with private information the same L1 logic

becomes more complicated since subjects do not know the range from which others are choosing
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and have to estimate it. Given the increased complexity of level-k reasoning, participants may rely

on a di¤erent rule of thumb in settings with private information. Our results suggest that some

subjects substituted naive level-k thinking for standard level-k thinking in settings with private

information. The identi�cation of the exact rule of thumb subjects used in the experiment is an

important research question, and we leave it for future research.
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7 Appendix. Instructions for Treatment Pr-H

Welcome to a decision-making study!
Introduction

Thank you for participating in today�s study in economic decision-making. These instructions

describe the procedures of the study, so please read them carefully. If you have any questions while

reading these instructions or at any time during the study, please raise your hand. At this time I

ask that you refrain from talking to any of the other participants.

General Description

This study consists of 60 rounds, time permitting. In each round all participants (including

you) have the role of investors. All participants are divided into groups with 4 investors in each

group. The division is random and will be re-done in the beginning of each round. You and the

3 other investors in your group can invest some amount of experimental currency in a particular

project. Your task is to decide how much you would like to invest into this project. Returns on

your investment will be determined by the amount that you invest (ayou) and by the following two

factors:

� the project�s quality q;

� one-half of the average investments made by others: 1
2
� aaverage =

1

2
� a1 + a2 + a3

3
;

Example: Assume that the other three investors in your group invested 150, 200 and 250.
The average amount invested by the others is aaverage = 200. One-half of the average then is
1
2 � 200 = 100.

At the time when you make decisions you will NOT know either of these two factors. You will
not know one half of the average amount invested by others, 12 �aaverage, because other participants
are making their decisions at the same time as you. You will not know q because you must make

your investment decision before q is revealed. Therefore, you will need to decide how much to invest

based on the information that will be made available to you.

Information. Signals.

In the beginning of each round you and all other investors in your group will receive two signals

that will provide you with information about the project�s quality. Both signals are randomly drawn

given the project�s quality q. Because signals are randomly drawn it is impossible to precisely predict

q given the signals. However, they will give you an idea of a range where q might be. The Table

below shows to you how signals should be interpreted.
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First, to make calculations easier for you one signal is always set equal to 0. Second, given

the two signals that you will see the best guess of q will be simply the average of the two signals.

Because of the randomness it is unlikely that q will ever be precisely equal to the average of the

two signals. The last two columns in the table give you an idea of how precise your guess is. You

see that in two cases out of three, i.e. with probability 2/3, the quality, q, will be at most 40 away

from the average and with probability 95% the quality will be at most 80 away from the average.

Signal 1 Signal 2 The best With prob. 2/3 With prob. 95%
guess of q q will be in q will be in

0 s (0+s)/2 (0+s)/2�40 (0 + s)=2� 80

Example 1: Assume that you received two signals 0 and 100. Then the best guess of the
project quality would be (0 + 100)=2 = 50: With probability of 2/3 you can conclude that the

project quality will be between 10(= 50 � 40) and 90(= 50 + 40) and with probability 95% the

project quality will be between -30 and 130. In the remaining 5% of the cases the quality will be

outside of the [�30; 130] interval.

Guessing one-half of the average

In the previous section we explained how to guess q given the information that you will receive

(the two signals). However, your pro�t will also depend on how well you can guess one-half of the

average amount invested by other investors in your group. The decisions of other investors are

decisions made by humans and therefore there is no precise theory that will tell you where one-half

of the average will be.

Therefore, your best option would be to try to predict how much the other investors are going

to invest given their information. Here is what you know and what you don�t know about the

information available to other investors in your group:

� They receive two signals, just like you do;

� You know the �rst signal that everyone receives. It is 0. All investors in your group will have
0 as the �rst signal.

� You do NOT the second signal that they receive. The second signal is a private signal. It
means that you cannot see private signals received by other investors. It also means that they

cannot see the private signal that you receive.

� You DO know that private signals of other investors are generated in the same way as your

private signal. Most importantly that they are also centered around the project�s quality q.

Use your knowledge about the information that other investors have to predict how much they

will invest. Based on that you can form your guess of one-half of the average investment.
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Your Pro�t and Cash Payments

Your pro�t will be calculated as follows. In the beginning of each round you will be given 2000

experimental points. From this amount we will deduct points when your action does not match

the project�s quality. We will also deduct points when your action does not match one-half of the
average investments made by others. Your �nal pro�t will be calculated by the following formula:

Payoff = 2000� (1� r)(ayou � q)2 � r
�
ayou �

1

2
aaverage

�2
:

The �rst term says that your investment will bring you at most 2000. The second term determines

your loss from mismatching the project�s quality q. The third term determines your loss from

mismatching one-half of the average investments made by others.
It is possible that the project quality and one-half of the average investment will be two di¤erent

numbers. In this case parameter r measures the relative importance of matching the investments
of others versus matching the quality. A lower r means matching the quality is more important.

Relative importance will be changed every 10 rounds.

The following two examples are used to illustrate how r impacts your payo¤. While you will

submit decisions for these two examples they are for illustrative purposes and will not impact your

payment.

Example: Let r = 0:15 so that is it is more important to match the quality. Let quality, q, be
10, and aaverage be 120. At your computer terminal, please submit an action of 30 now. If your

action, ayou, is 30 then your loss from mismatching the quality is (1�0:15) � (30�10)2 = 340. Your
loss from mismatching one-half of the average investments is 0:15 � (30� 60)2 = 135. You see that
your mismatch of the average investment is larger than the mismatch of quality, but your losses

from mismatching the quality are higher. Your total pro�t is 2000� 340� 135 = 1525.

Example: Now assume that r = 0:8 so that is it is more important to match the investments
of others. As before assume that q = 10 and aaverage = 120. Thus everything is the same as in the

example above except for r. Again, please submit an action of 30 now. Your loss from mismatching

the quality is (1� 0:8) � (30� 10)2 = 80 and your loss from mismatching the average investment is

much higher and is equal to 0:8 � (30� 60)2 = 720. Your total pro�t is 2000� 80� 720 = 1200.

The pro�t that you made in each round will be converted into cash by the following procedure.

The study lasts for 60 rounds. In the end of the study we will openly and randomly choose a

sequence of 10 rounds: either from round 1 to round 10, or from round 11 to round 20 and so on.

Your cash earnings will be equal to the total pro�t that you earned during these 10 rounds times

0.001. This is in addition to the $5 that you receive as a show-up fee. For example, if round 21 to 30

is chosen and you earned 10000 during these rounds your cash payo¤will be: 10000�0:001+5 = $15.
If in a particular round you make a negative pro�t it will count as 0.
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Summary

The study consists of 60 rounds, time permitting. In the beginning of each round, the computer

will generate the project quality q and randomly determine 3 other investors who will be in your

group. Computer will also generate two signals for each participant. The �rst signal � zero � will

be the same among all participants. The second signal will be private. It means that you cannot

see the signals received by other investors, and they cannot see the second signal received by you.

Your task is to submit an amount that you would like to invest. After you and all other

members of your group enter their decisions, the computer will calculate and display your pro�t in

that particular round. Your pro�t will be determined based on how well you guessed the project�s

quality and how well you guessed one-half of the average investment made by others. In the end

of the study we will take the pro�t you made in a randomly chosen sequence of 10 rounds and will

convert it into cash payment.
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