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Abstract

This paper studies optimal auction design in a private value setting with endogenous
information gathering. We develop a general framework for modeling information
acquisition when a seller wants to sell an object to one of several potential buyers,
who can each gather information about their valuations prior to participation in the
auction. We first demonstrate that the optimal monopoly price is always lower than
the standard monopoly price. We then show that standard auctions with a reserve
price remain optimal among symmetric mechanisms, but the optimal reserve price
lies between the ex ante mean valuation of bidders and the standard reserve price in
Myerson (1981). Finally, we show that the optimal asymmetric mechanism softens the
price discrimination against “strong” bidders.
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1 Introduction

A typical assumption in the mechanism design literature is that the information held by mar-

ket participants is exogenous; yet in many real world situations, agents’ information about

the goods and services being traded is acquired rather than endowed.1 When information

acquisition is endogenous, the selling mechanism proposed by the seller affects not only buy-

ers’ incentives to reveal the information they gathered ex post, but also their incentives to

acquire information ex ante. Not surprisingly, if the information structure is endogenous,

the ex post optimal selling mechanism characterized in Myerson (1981) may not be optimal

ex ante.

The purpose of this paper is to study how a seller should design the selling mechanism in

an independent private value setting when information acquisition is endogenous and costly

for buyers. We first develop a convenient but reasonably general framework for modeling

information acquisition in such a setting, where a seller wants to sell an object to one of

several potential buyers and where the buyers can each covertly acquire information about

their valuations prior to participation.

In the model, the seller can affect the buyers’ incentive to gather information through

mechanism choice, but she faces the following trade-off: an increase in information raises

the potential social surplus – the difference between the highest expected valuation among

buyers and her reservation value, but it also raises buyers’ private information and thus

their information rents. A buyer acquires information by increasing the precision of the

signal he receives. After receiving his signal, each buyer forms a posterior estimate of his

valuation, which depends on the realization as well as the informativeness of his signal. As

more information is acquired, buyers’ valuation estimates move apart,2 i.e., the distribution

of posterior estimates conditional on a more informative signal is more spread out. The

resulting family of distributions of the posterior estimates with different signals is rotation-

ordered.3 We rank the informativeness of signals using this information order, which has the

merit of being analytically tractable in addition to generalizing two important information

1For example, consumers collect information about the characteristics of products and match this in-
formation with their private preferences to determine their valuations before their purchase decision. In a
take-over bidding, buyers gather costly information about potential synergies between their own assets and
assets of the target firm to determine how much they should bid.

2This is an important feature of the independent private value setting. For example, suppose a consumer
tries a newly opened restaurant and finds the food spicy. He likes the restaurant more if he loves spicy food,
and he likes it less if he dislikes spicy food.

3If two signals are rotation-ordered, then the two distributions of posterior estimates generated by these
signals cross each other only once. The rotation order was recently introduced by Johnson and Myatt (2006)
who show that advertising, marketing and product design lead to a rotation (rather than a shift) of the
market demand curve.
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technologies widely used in the literature.

We apply this framework to analyze optimal auctions with information acquisition. We

start by considering optimal auctions with a single buyer in order to convey the main intu-

ition. In this case, the optimal selling mechanism is to post a (reserve) price, so the seller’s

problem can also be reinterpreted as a monopoly pricing problem with endogenous infor-

mation. The seller first chooses the reserve price, knowing that the price affects both the

buyer’s subsequent information decision and purchase decision. Upon observing the price,

the buyer decides how much information to acquire, and whether to buy after the acquired

information is revealed. In order to identify the impact of endogenous information on the

seller’s pricing decision, we compare the optimal reserve price with the standard reserve price

– a reserve price that the seller would have chosen if the information acquired by the buyer

in equilibrium were exogenously endowed.

Since the buyer always prefers a low reserve price, it may seem at first glance that a lower

reserve price always gives the buyer a higher incentive to gather information. Yet the buyer’s

incentives to acquire information depend on his relative gain from information acquisition

rather than on his absolute payoff; indeed, when the reserve price is lower (higher, respec-

tively) than the ex ante mean valuation of the buyer, the marginal value of information to

the buyer is increasing (decreasing, respectively) in the reserve price, and thus the buyer will

acquire more information as the reserve price moves toward the mean, either from above or

from below. On the other hand, for a given price, the seller’s revenue is decreasing (increas-

ing, respectively) in the amount of information if the price is below (above, respectively) the

mean. Therefore, compared to the standard reserve price, the optimal reserve price in this

setting is always adjusted downward in order to provide the buyer with incentives to acquire

the right amount of information.

The same observation about the buyer’s incentives can be extended to a general setting

with many buyers. But the characterization of the optimal mechanism is subtler and more

complicated, primarily because our model involves a mixture of moral hazard and adverse

selection with multiple agents. A feasible mechanism has to provide buyers with the right

incentives to collect information in the information acquisition stage (moral hazard) and

be incentive compatible in the information revelation stage (adverse selection). We use the

standard first-order approach to tackle the moral hazard problem, replacing the information

acquisition constraints by the first-order conditions of the buyers’ maximization problems

(Mirrlees (1999), and Rogerson (1985)).4 While in the standard moral hazard problem the

principal always benefits from higher effort (without accounting for the incentive cost of

inducing higher effort), here more information may hurt or benefit the seller, making the

4Appendix B provides a set of sufficient conditions under which the first-order approach is valid in our
setting.
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tradeoff between efficiency and information rent trickier.

For the general setting, this paper focuses first on the symmetric equilibrium in which all

buyers acquire the same level of information. Yet we will discuss asymmetric mechanisms

in Section 6, where we are able to characterize the optimal (asymmetric) mechanism for a

special class of problems. The symmetry restriction is quite natural for many applications

because buyers are ex ante symmetric and symmetric mechanisms are easier to implement

and less likely to cause legal disputes.5 We provide sufficient conditions under which more

information strictly benefits the seller. Moreover, we show that standard auctions6 with a

reserve price are optimal, but the reserve price has to be adjusted toward the mean valuation

to induce buyers to acquire more information. Further, the buyers’ incentives to collect

information are socially excessive in standard auctions if the reserve price is lower than the

mean valuation.

In terms of its broader significance, the analysis illustrates how the optimal mechanism

should respond to endogenous information acquisition and strategic interactions among bid-

ders. It also provides useful guidance for designing optimal selling mechanisms when en-

dogenous information is a concern. In addition, our results have important implications for

empirical analysis by suggesting an alternative benchmark – the optimal reserve price – for

evaluating reserve price policy as compared with the standard reserve price. This may be

preferable in situations where information acquisition is important.

The general framework we develop for modeling information acquisition in a private value

setting can be applied to mechanism design problems when agents are able to make invest-

ments prior to an auction. For instance, Lichtenberg (1988) finds strong evidence of private

R&D investment prior to government procurement auctions. In this vein, our framework

can be used to investigate how the government should design procurement auctions in order

to promote private R&D investment.

The remainder of the paper is organized as follows: Section 2 discusses the related liter-

ature, Section 3 introduces the model, and Section 4 studies optimal auctions with a single

bidder. Section 5 then presents the analysis of optimal auctions with many bidders, and

Section 6 studies asymmetric mechanisms. Section 7 provides some concluding remarks.

All omitted proofs are relegated to Appendix A, and a set of sufficient conditions for the

first-order approach is presented in Appendix B.

5Nevertheless, this is an important restriction. In principle, the seller may become better off by imple-
menting an asymmetric equilibrium rather than a symmetric one.

6In this paper, we use standard auctions to refer to the four commonly used auction formats: first-price
sealed-bid auctions, Vickery auctions, English auctions, and Dutch auctions.
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2 Related Literature

This paper is related to the growing literature on information and mechanism design.7 Cre-

mer and Khalil (1992) and Cremer, Khalil, and Rochet (1998a) (1998b) introduce endogenous

information acquisition into the Baron and Myerson (1982) regulation model with a single

agent, and illustrate how the optimal contract has to be modified in order to give the agent

incentives to acquire information. Szalay (2009) extends their framework to a setting with

continuous information acquisition, and demonstrates that their findings are robust.8 Al-

though our model shares with theirs a focus on the interim participation constraint, it differs

from theirs in two important dimensions: we use rotation-ordered information structures to

model information acquisition and we allow for strategic interactions among multiple agents.

Our analysis is also related to research on information acquisition in given auctions.

Matthews (1984) studies information acquisition in a common value auction and investigates

whether the equilibrium price fully reveals bidders’ information. Stegeman (1996) shows that

first and second price auctions with independent private values result in the same incentives

for information acquisition, while Persico (2000) demonstrates that the incentive to acquire

information is stronger in the first-price auction than in the second-price auction if bidders’

valuations are affiliated.9 In contrast, the current paper examines the optimal mechanism

that maximizes the seller’s revenue, rather than studying information acquisition under given

auction formats.10

A third strand of related literature studies optimal auctions when the seller controls either

access to information sources or the timing of information acquisition. The information order

used in the current paper, the rotation order, was first introduced by Johnson and Myatt

(2006), who use it to show that the firm’s profits are a U-shaped function of the dispersion of

consumers’ valuations; thus a monopolist will pursue extreme positions, providing either a

minimal or maximal amount of information. Eso and Szentes (2007) study optimal auctions

in a setting where the seller controls access to information sources, showing that the seller will

fully reveal her information and can extract all of the benefit from the released information.11

7For a broad survey of the literature on information and mechanism design, see Bergemann and Välimäki
(2006).

8In particular, Szalay (2009) provides a justification for using the first-order approach to analyze the
contracting problem with endogenous information. Although we also provide sufficient conditions for the
first-order approach in the Appendix, justifying the first-order approach is not the focus of this paper.
Moreover, the information order used in this paper is different from the one used in Szalay (2009) and thus
his result may not directly apply to our setting.

9See Ye (2007) and Compte and Jehiel (2007) for an analysis of information acquisition in dynamic
auctions, and Obara (2008) for an analysis of optimal auctions with hidden actions and correlated signals.

10Bergemann and Välimäki (2002) also study information acquisition and mechanism design, but their
focus is efficient mechanisms.

11Bergemann and Pesendorfer (2007) characterize the optimal information structure in optimal auctions,
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In these models, the seller makes the information decision, rather than the buyers.

Several papers study the optimal selling mechanism in a setting where buyers make the

information decision, but the seller controls the timing of information acquisition. These

models (hereafter referred to as “entry models”) impose an ex ante participation constraint,

so the buyers’ information decision is essentially an entry decision. The optimal selling

mechanism typically consists of a participation fee followed by a second price auction with

no reserve price, with the participation fee being equal to the bidders’ expected rent from

attending the auction (see for example, Levin and Smith (1994) and Ye (2004)).12

In contrast to these papers, where information acquisition is centralized, in the sense

that the seller can control either access to information sources or the timing of information

acquisition, information acquisition in the current paper is decentralized : buyers make the

information decision, and can acquire information prior to participation. Thus, we impose

an interim rather than an ex ante participation constraint.13 The relationship between our

model and the existing literature can be partially summarized in the following table.

given auction formats mechanism design approach

centralized information acquisition optimal disclosure in auctions entry models

decentralized information acquisition information acquisition in auctions our model

Table 1. Our model and related literature

3 The Model

A seller wants to sell a single object to n ex ante symmetric buyers (or bidders), indexed by

i ∈ {1, 2, ..., n}.14 Both the seller and buyers are risk-neutral. The buyers’ true valuations

{ωi : i = 1, ..., n} , unknown ex ante, are independently drawn from a common distribution

F . They have a common support which could be a closed interval [ω, ω] or the real line. To

ease exposition, in what follows we write the common support as [ω, ω]. F has a strictly

positive and differentiable density f and mean µ. A buyer with valuation ωi gets utility ui if

while Ganuza and Penalva (2010) study the seller’s optimal disclosure policy when the information is costly.
12Similarly, with an ex-ante participation constraint, Cremer, Spiegel, and Zheng (2003) construct a se-

quential selling mechanism in which the seller charges a positive entry fee and extracts the full surplus from
buyers. See Gershkov and Szentes (2009) for an analysis of optimal sequential mechanism in voting with
costly information acquisition.

13Cremer, Spiegel, and Zheng (2007) also analyze optimal auctions where buyers can acquire information
prior to participation, but the seller, rather than the buyer, pays the information cost.

14The analysis can be extended to a multi-unit setting where each buyer has a unit demand.
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he wins the object and pays ti: ui = ωi−ti. The seller’s valuation for the object is normalized

to be zero.

3.1 Information Structure

Buyer i can acquire a costly signal si about ωi, with si ∈ [s, s]. Signals received by different

buyers are independent. Buyer i acquires information by choosing a joint distribution of

(si, ωi) from a family of joint distributions G (si, ωi;αi) : [s, s] × [ω, ω] → [0, 1] , indexed by

αi ∈ [α, α] . Each fixed αi corresponds to a statistical experiment, and a signal with higher αi

is more informative, in a sense to be defined shortly. The cost of performing an experiment

αi is C (αi) , which is increasing in αi. A buyer can conduct the experiment α at no cost,

so α can be interpreted as the endowed signal. As is standard in the literature, we assume

that information acquisition is a once-and-for-all decision.

Let G (·|ωi, αi) denote the prior distribution of signal si conditional on ωi and αi. A

buyer who observes a signal si from experiment αi will update his belief about ωi according to

Bayes’ rule. Let vi (si, αi) denote buyer i’s revised estimate of ωi after performing experiment

αi and observing si: vi (si, αi) ≡ E [ωi|si, αi]. Throughout the paper we assume that the

distributions {G (·|ωi, αi)} have the monotone likelihood ratio property (MLRP), so that

vi (si, αi) is increasing in si, i.e., a higher si leads to a higher posterior estimate, given the

information choice αi (Milgrom (1981)).

To simplify notation, we use vi to denote vi (si, αi) , and use v to denote the n-vector

(v1, ..., vn) . Occasionally, we also write v as (vi, v−i) , where v−i = (v1, ...vi−1, vi+1, ..., vn) .

Let H (·, αi) denote the distribution of vi with corresponding density h (·, αi) , and Hαi (·, αi)
denotes the partial derivative with respect to αi. The family of distributions {H (·, αi)} have

the same mean because Esi [vi (si, αi)] = E [ωi] = µ.

3.2 Timing

The timing of the game is as follows: the seller first proposes a selling mechanism. After

observing the mechanism, each buyer decides how much information to acquire. Once the

signals are realized, each buyer decides whether to participate; each participating buyer

then submits a report about his private information. Finally, an outcome, consisting of an

allocation and payments, is realized. Figure 1 summarizes the timing of the game:

−−−| − −−−
seller announces

mechanism

−−−| − −−
buyer i

chooses αi

−−−−−−−| − −−−−−
buyer i observes si and

decides whether to participate

−−−−−| − −−−
buyers report

private information

−−−| − −
outcome is

realized

−→

Figure 1. The timing of the game
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The payoff structure, the timing of the game, the information structureG and distribution

F are assumed to be common knowledge. As is standard in the mechanism design literature,

the solution concept is Bayesian Nash equilibrium.

3.3 Mechanisms

In our setting, the buyer’s private information is two-dimensional, consisting of the infor-

mation choice αi and the realized signal si. This suggests that the design problem here

is multi-dimensional and could potentially be very complicated. However, similar to Biais,

Martimort, and Rochet (2002) and Szalay (2009), one single variable, the posterior estimate

vi (si, αi) , completely captures the dependence of buyer i’s valuation on the two-dimensional

information because the buyers’ payoff is linear in vi. Furthermore, the seller cannot screen

the two pieces of information separately.15

We can thus invoke the Revelation Principle to focus on the direct revelation mechanisms

{qi(v), ti(v)}ni=1, where qi (v) denotes the probability of winning the object for bidder i when

the vector of reports is v, and ti (v) denotes bidder i’s corresponding payment. Let Qi (vi)

and Ti (vi) be the expected probability of winning and the expected payment conditional on

vi, respectively:

Qi (vi) = Ev−i|α−i [qi (v)] and Ti (vi) = Ev−i|α−i [ti (v)] .

The subscript v−i|α−i in the expectation operator is to emphasize that the expectation

depends on the information choice α−i of bidder i’s opponents. The interim utility of bidder

i who has a posterior estimate vi and reports v′i is

Ui (vi, v
′
i) = viQi (v

′
i)− Ti (v′i) .

Define ui (vi) = Ui (vi, vi) to be the payoff of bidder i who has a posterior estimate vi and

reports truthfully.

A feasible mechanism has to satisfy the individual rationality constraint (IR):

ui (vi) = Ui (vi, vi) ≥ 0, ∀vi ∈ [ω, ω] ,

and the incentive compatibility constraint (IC):

Ui (vi, vi) ≥ Ui (vi, v
′
i) , ∀vi, v′i ∈ [ω, ω] . (IC)

15To see this, suppose there are two buyers, i and j, with the same posterior estimate (vi = vj) , but
αi 6= αj . If the seller wants to favor the buyer with αi, then buyer j can always report to have αi. Therefore,
the posterior estimate vi is the only variable that the seller can use to screen different buyers.
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It is well-known (Myerson (1981)) that the incentive compatibility constraint (IC) is equiv-

alent to the following envelope condition

ui (vi) = ui (ω) +

∫ vi

ω

Qi (x) dx, (1)

and the monotonicity condition

Qi (vi) is weakly increasing in vi. (2)

Using equation (1), we can simplify the (IR) constraint as

ui (ω) ≥ 0. (IR)

With endogenous information acquisition, a feasible mechanism also has to satisfy the

information acquisition constraint (IA): no bidder has an incentive to deviate from the

equilibrium choice α∗i :

α∗i ∈ arg max
αi

{
Ev|α−i=α∗−i [ui (vi (si, αi))]− C (αi)

}
. (IA)

Here Ev|α−i=α∗−i [ui (vi (si, αi))] is bidder i’s expected payoff by choosing αi conditional on

other bidders choosing α∗j , j 6= i.

The seller chooses mechanism {qi(v), ti(v)}ni=1 and a vector of recommendations of infor-

mation choices (α∗1, ..., α
∗
n) to maximize her expected sum of payment from all bidders,

πs = Ev|αj=α∗j ,∀j

n∑
i=1

ti (v) ,

subject to (1), (2), (IR) and (IA), where the expectation is taken conditional on αj = α∗j for

all j.

3.4 Information Order

In order to analyze a model with general information structures, we need an information

order to rank the informativeness of different signals. Since the distribution of vi, H (·, αi),
is uniquely determined by αi, we would like to have an information order that directly ranks

H (·, αi). The rotation order, recently introduced by Johnson and Myatt (2006), meets this

requirement.

Definition 1 (Rotation Order)

The family of distributions {H (·, αi)} is rotation-ordered if there exists a rotation point v+

such that

Hαi (vi, αi) ≥ 0 if vi < v+, and Hαi (vi, αi) ≤ 0 if vi > v+, (3)

for all αi.
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Consider two information choices α′i and α′′i with α′i > α′′i . Then distribution H (vi, α
′
i)

dominates distribution H (vi, α
′
i) in rotation order if

H (vi, α
′
i) ≥ H (vi, α

′′
i ) if vi < v+, and H (vi, α

′
i) ≤ H (vi, α

′′
i ) if vi > v+.

Graphically, the rotation order requires that two rotation-ordered cumulative distributions

cross each other only once, as illustrated in Figure 2. In particular, the distribution H (vi, α
′′
i )

crosses the distribution H (vi, α
′
i) from below, and the density h (vi, α

′
i) is more spread out.

posterior estimate

More
informative

Less
informative

+v

( )iivH α,

iv

Less
informative

More
informative

posterior estimate iv+v

( )iivh α,

Figure 2. CDFs and PDFs of two rotation-ordered distributions of posterior estimate

The rotation order implies second-order stochastic dominance (see Theorem 3.A.44 in

Shaked and Shanthikumar (2007)).16 Note that bidder i’s interim payoff u (vi) is convex in

vi under any incentive compatible mechanism {qi (v) , ti (v)} (see equation (1)). Therefore, if

{H (·, αi)} is rotation-ordered and α′i > α′′i , then a signal with α′i is more informative than a

signal with α′′i in the sense that α′i corresponds to a weakly higher expected payoff for bidder

i.

Rotation-ordered information structures include two commonly used information tech-

nologies in the literature, relevant for later in the paper.

Example 1 (Gaussian Learning)

The buyers’ valuations {ωi} are independently drawn from a normal distribution with mean

µ and precision β : ωi ∼ N (µ, 1/β) . Buyer i can observe a signal si: si = ωi + εi, where εi

is independent of ωi, and εi ∼ N (0, 1/αi) . After observing si, buyer i forms his posterior

estimate of ωi:

vi (si, αi) ≡ E (ωi|si, αi) =
βµ+ αisi
αi + β

.

16The reverse is not true: two distributions ordered in terms of second-order stochastic dominance can
cross each other more than once.
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It follows that the distribution of vi, H (vi, αi) , is normal: vi ∼ N (µ, σ2 (αi)) , with variance

σ2 (αi) = αi/ ((αi + β) β) increasing in αi. It is easy to verify that

Hαi (vi, αi) = − β (vi − µ)

2αi (αi + β)
h (vi, αi) , (4)

which means that the criterion (3) is satisfied with v+ = µ for all αi.

Example 2 (Truth-or-Noise)

The buyers’ valuations {ωi} are independently drawn from a distribution F, and F has an

increasing hazard rate. Buyer i can acquire a costly signal si about ωi. With probability

αi ∈ [0, 1] , the signal si perfectly matches the true valuation ωi, and with probability 1−αi, si
is noise independently drawn from F. This information structure is referred to as “truth-

or-noise” in Lewis and Sappington (1994) and Johnson and Myatt (2006). A buyer who

observes si with precision αi will calculate his posterior estimate as:

vi (si, αi) ≡ E (ωi|si, αi) = αisi + (1− αi)µ.

Therefore, we have

H (vi, αi) = F

(
vi − (1− αi)µ

αi

)
,

and

Hαi (vi, αi) = −vi − µ
αi

h (vi, αi) . (5)

Thus, H (vi, αi) satisfies condition (3) with v+ = µ for all αi.

To ease our exposition, from now on, we will make the following assumption:

Assumption 1 (Rotation Order around µ)

The family of distributions of the posterior estimates {H (·, αi)} is rotation-ordered and the

rotation point is µ for all αi.

Note that the above assumption does not require the underlying distribution F to be

symmetric. For example, for the truth-or-noise technology, the underlying distribution F of

ωi could be convex or concave, but the rotation point is still µ. Throughout the paper, we

also assume the family of distributions {H (vi, αi)} satisfies the following regularity condition

which is standard in the mechanism design literature:

Assumption 2 (Regularity)

vi − [1−H (vi, αi)] /h (vi, αi) is strictly increasing in vi for all αi and vi.

For some of our results, we also impose the following additional assumption:
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Assumption 3 (Supermodularity)

−Hαi (vi, αi) /h (vi, αi) is strictly increasing in vi for all αi and vi.

This assumption is stronger than the rotation order assumption.17 It has a natural

interpretation in terms of the inverse of H (vi, αi): the posterior estimate vi conditional on

the signal si being its p-th percentile is supermodular in p and αi.
18 Ganuza and Penalva

(2010) develop an information order called “supermodular precision” based on this stronger

requirement and provide additional interpretation. Readers can find in their paper a list

of information technologies that satisfy this information order. We can directly verify from

expression (4) and (5) that both the Gaussian learning and the truth-or-noise technologies

satisfy these three assumptions.

4 Optimal Auctions with One Bidder

We start with a simple model with one buyer, which is a special case of the general model

we study later. In this case, posted price mechanisms are optimal,19 so we can interpret the

seller’s optimization problem as a monopoly pricing problem with endogenous information.

For a fixed reserve price r, the expected payoff for the buyer with choice αi is

πi (αi, r) ≡
∫ ω

r

(vi − r)h (vi, αi) dvi − C (αi) .

Using integration by parts, we can rewrite it as

πi (αi, r) =

∫ ω

r

[1−H (vi, αi)] dvi − C (αi) .

It follows that
∂2πi (αi, r)

∂r∂αi
= Hαi (r, αi) . (6)

17Indeed, the supermodularity assumption, together with the mean-preserving property of our information
structures, implies the rotation order.

18To see this, define p ≡ H (vi (p, αi) , αi). Then vi (p, αi) = H−1 (p, αi) and

∂vi
∂αi
|p = −Hαi

(vi, αi)
h (vi, αi)

.

Thus, the supermodularity assumption is equivalent to the supermodularity of vi in p and αi.
19As shown in the next section, after incorporating the information acquisition constraint, the seller’s

objective function will be the Lagrangian specified in (17). If there is only one bidder, it reduces to a simple
form similar to the one analyzed in Riley and Zeckhauser (1983). Therefore, their proof of the optimality of
the posted price mechanism still applies here.

12



Given Assumption 1, {H (·, αi)} is rotation-ordered around µ, so πi (αi, r) is supermodular

when r < µ and is submodular when r > µ. That is, the marginal value information to the

buyer is increasing in r when r < µ and is decreasing in r when r > µ. Topkis’s theorem

then implies that the buyer’s optimal information choice αi (r) is increasing in r if r < µ and

is decreasing in r if r > µ. In other words, the buyer acquires more information when the

posted price r is closer to µ. It is worth pointing out that the rotation order assumption is

necessary and sufficient for this result.

The seller chooses r and a recommendation α∗ to maximize her revenue:

max
r,α∗

{πs (α∗, r) ≡ r (1−H (r, α∗))} (7)

subject to

α∗ ∈ arg max
αi

πi (αi, r) . (8)

Therefore, we have
∂πs (α∗, r)

∂α∗
= −rHαi (r, α∗) . (9)

Since {H (·, α∗)} is rotation-ordered, πs (α∗, r) is increasing in α∗ for all r > µ and decreasing

in α∗ for all r < µ.

Before stating our main result in this section, we first define the standard reserve price

rα∗ which we will use as our benchmark.

Definition 2 (Standard Reserve Price)

The standard reserve price rα∗ is defined as

rα∗ ∈ arg max
r
r [1−H (r, α∗)] .

That is, rα∗ solves

rα∗ −
1−H (rα∗ , α

∗)

h (rα∗ , α∗)
= 0.

Therefore, the standard reserve price rα∗ is the solution to the seller’s maximization

problem (7) for a fixed α∗, without imposing the information acquisition constraint (8). In

other words, it is the optimal reserve price that the seller would have charged if the buyer’s

information α∗ were exogenously endowed. Given our Assumption 2, rα∗ is uniquely defined

for each α∗. Let r∗ denote the optimal reserve price when the equilibrium level of information

α∗ is endogenously chosen by the buyer, that is, r∗ solves the seller’s problem (7) subject

to the constraint (8). We compare r∗ with rα∗ to illustrate how the seller’s pricing strategy

responds to endogenous information or the information acquisition constraint (8) she faces.

Proposition 1 (Monopoly Pricing)

Under Assumption 1 and 2, r∗ ≤ rα∗ .
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To understand this result, we can decompose the effect of a price increase on the seller’s

profits in three parts:

dπs
dr

= 1−H (r, α∗)︸ ︷︷ ︸
A

+ [−rh (r, α∗)]︸ ︷︷ ︸
B

+

[
∂πs (α∗, r)

∂α∗
∂α∗ (r)

∂r

]
︸ ︷︷ ︸

C

.

First, the seller’s profits increase given that a trade is made (term A). Second, for a fixed

information choice, a price increase reduces the probability of trade (term B). Third, with

endogenous information acquisition, a price increase affects the buyer’s incentive to acquire

information, thereby affecting the probability of trade (term C). The first two terms are

standard, while the last one is specific to the setting with endogenous information acquisition.

We now argue that the term C is nonpositive for all r, so that the marginal gain to

the seller from raising price r is always smaller than the gain in a setting with exogenous

information. To see this, note that if r > µ then ∂πs (α∗, r) /∂α∗ ≥ 0, and an increase

in r discourages information acquisition: ∂α∗/∂r ≤ 0; if r < µ then ∂πs (α∗, r) /∂α∗ ≤ 0,

and the buyer’s incentives to gather information are higher for a higher r: ∂α∗/∂r ≥ 0.

Therefore, ∂πs (α∗, r) /∂α∗ and ∂α∗/∂r have the opposite sign for all r 6= µ. If r = µ,

∂πs (α∗, r) /∂α∗ = 0. Hence, the term C is nonpositive for all r.

We prove r∗ ≤ rα∗ by showing that dπs (r) /dr < 0 for all r > rα∗ . By the definition of

rα∗ and Assumption 2, we have, for all r > rα∗ ,

1−H (r, α∗)− rh (r, α∗) =

(
1−H (r, α∗)

h (r, α∗)
− r
)
h (r, α∗) < 0. (10)

Since the term C is nonpositive for all r, inequality (10) implies dπs (r) /dr < 0 for all

r > rα∗ .

To conclude this section, we point out that the rotation order assumption is not necessary

for Proposition 1. Indeed, one can see from (6) and (9) that, even if the information structure

is not rotation-ordered, the effect of a price increase on the marginal value of information to

the buyer has the opposite sign of the effect of an increase in signal precision on the seller’s

profits. Therefore, one can show, via the implicit function theorem, that ∂πs (α∗, r) /∂α∗ and

∂α∗/∂r have the opposite sign and thus the term C is nonpositive. However, this alternative

approach requires that the buyer’s payoff πi (αi, r) be concave in αi for all r, which is not

needed when we apply Topkis’s theorem.

5 Optimal Auctions with Many Bidders

In the one-bidder model, there is no strategic interaction among bidders, and the simple

posted price mechanisms are optimal. In the case of many bidders, the posted-price mech-

anisms are no longer optimal, and the combination of moral hazard and adverse selection
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makes the general analysis very complicated.20 Thus, some restrictions on the structure of

model are necessary in order to characterize the optimal selling mechanism.

In this section, we restrict attention to the class of symmetric mechanisms that induce all

bidders to acquire the same level of information. We show that, with many bidders, standard

auctions are optimal but the reserve price has to be adjusted towards the mean valuation

of bidders. In the next section, we drop the restriction on symmetric mechanisms and focus

on the case when information acquisition is binary. There, we demonstrate that the optimal

asymmetric mechanism softens the price discrimination against (stochastically) strong bid-

ders compared to the case with exogenous information. The analysis in these two sections,

together with the analysis in the one-bidder case, helps clarify how the optimal mechanism

should respond to endogenous information and strategic interactions among bidders.

In what follows, we first analyze information acquisition in standard auctions, where

strategic interactions among bidders play an important role. The result is then used to

determine the seller’s preference in optimal auctions. Next, we show that standard auctions

with an adjusted reserve price are optimal within the class of symmetric mechanisms. We

also derive a necessary and sufficient condition under which the bidders’ incentives to acquire

information are socially excessive.

5.1 Standard Auctions

This subsection analyzes buyers’ information decisions and the value of information to the

seller in standard auctions with a reserve price. The result obtained here serves to facilitate

the analysis of optimal auctions in the next subsection. Since bidders are ex ante sym-

metric, we focus on the symmetric equilibrium where all bidders acquire the same level of

information: αj = α∗ for all j.

Consider the information decision of bidder i in any standard auction. Suppose bidders

other than i choose α∗ and bid according to some monotone equilibrium bidding function

b∗ (·). Then bidder i with posterior estimate vi will bid b∗ (vi), regardless of his information

choice αi, since his investment in information is sunk and covert. Therefore, the bidder i’s

expected payoff by choosing αi is given by21

πi (αi, r) = Hn−1 (r, α∗)

∫ ω

r

(vi − r) dH (vi, αi)

+

∫ ω

r

∫ ω

x

(vi − x) dH (vi, αi) dH
n−1 (x, α∗)− C (αi) . (11)

20We will elaborate on the nature of the technical difficulty shortly.
21The support of vi, say

[
ωαi

, ωαi

]
, could vary with respect to information choice αi. However, we can

always define H (vi, αi) = 0 for vi ∈
[
ω, ωαi

]
and H (vi, αi) = 1 for vi ∈ [ωαi

, ω]. Then we can treat the
domain of vi as [ω, ω].
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We can apply integration by parts to the second term and simplify πi (αi, r) into

πi (αi, r) =

∫ ω

r

Hn−1 (vi, α
∗) [1−H (vi, αi)] dvi − C (αi) . (12)

Hence, we have
∂2πi (αi, r)

∂r∂αi
= Hn−1 (r, α∗)Hαi (r, αi) . (13)

Given our rotation order assumption, Topkis’s theorem again implies that αi (r) is increasing

in r if r < µ and decreasing in r if r > µ. Comparing (13) to (6), we can see that the bidder

competition does not qualitatively affect how a bidder’s incentive responds to changes in the

reserve price.

In contrast, the seller’s preference for information may vary with the number of bidders.

In a standard auction with reserve price r and information choice α∗, the seller’s revenue is

given by

πs (α∗, r) = r [1−H (r, α∗)n] +

∫ ω

r

[
1− nH (vi, α

∗)n−1 + (n− 1)H (vi, α
∗)n
]
dvi.

The seller prefers more information if ∂πs (α∗, r) /∂α∗ > 0, where

∂πs (α∗, r)

∂α∗
= −nrH (r, α∗)n−1Hαi (r, α∗)

−n (n− 1)

∫ ω

r

H (vi, α
∗)n−2 [1−H (vi, α

∗)]Hαi (vi, α
∗) dvi. (14)

Proposition 2 (Value of Information to the Seller)

Suppose information α∗ is exogenously given, and Assumption 1 and 2 hold. Further assume

that there exists a δ ∈ (µ, ω) such that

min
vi∈[δ,ω]

−Hαi (vi, α
∗)

h (vi, α∗)
= γ, (15)

for some γ > 0. Then there exists n∗ such that ∂πs (α∗, r) /∂α∗ > 0 for all r and n ≥ n∗.

Condition (15) requires that the upper tail of Hαi (vi, α
∗) be bounded away from zero. It

is trivially satisfied if we impose Assumption 3. The intuition for Proposition 2 is as follows:

when more information (a higher α∗) is acquired, the variability or spread of H (·, α∗) in-

creases, which has two effects on the seller’s revenue. First, it affects the probability of trade,

1−H (r, α∗)n. Second, it also affects the seller’s revenue conditional on trade, max {r, Vn−1,n},
where Vn−1,n denotes the second highest order statistic among n samples from distribution

H (·, α∗). When r > µ, both effects go in the same direction, so the seller’s revenue is higher

with a higher α∗. When r < µ, the two effects may go in the opposite direction, but, as

long as n is not too small, the probability of Vn−1,n > r is close to 1 and the reserve price is

16



almost never binding. Furthermore, for a sufficiently large n, an increase in the variability of

H (·, α∗) always increases E [Vn−1,n]. Therefore, the second effect is positive and dominates

the first one, and a seller would prefer a higher α∗.

It follows that, in standard auctions with n ≥ n∗, the seller should set the optimal reserve

price r∗ closer to µ than the standard reserve price rα∗ to induce bidders to acquire more

information.

5.2 Optimal Symmetric Mechanisms

In this subsection, we restrict our attention to symmetric selling mechanisms with α∗1 = ... =

α∗n = α∗, and assume α∗ ∈ (α, α). We will show that standard auctions with an appropriately

chosen reserve price are optimal.

Using (1) and integration by parts, we can rewrite the information acquisition constraint

(IA) as

α∗i ∈ arg max
αi

Ev−i|α−i=α∗−i

{∫ ω

ω

[1−H (vi, αi)] qi (vi, v−i) dvi − C (αi)

}
.

We adopt the standard first-order approach (Mirrlees (1999), and Rogerson (1985)) to replace

it by its first-order condition:

− Ev−i|α−i=α∗−i

∫ ω

ω

Hαi (vi, α
∗
i ) qi (vi, v−i) dvi − C ′ (α∗i ) = 0. (16)

The first-order approach is valid if the second-order condition of the bidders’ optimization

problem is satisfied, which we will assume for now and relegate detailed discussions to Section

7 and Appendix B. In principle, the equilibrium information choices could be different for

different agents, so there is a system of n first-order conditions, one for each bidder.

We use the Lagrangian approach to incorporate the n first-order conditions. As in the

standard moral hazard model, the main difficulty lies in the determination of the sign of

the Lagrange multiplier of these first-order conditions (Rogerson (1985)). The seller’s max-

imization problem here is, however, substantially more complicated in three ways. First,

we have n agents and n first-order conditions. Second, unlike in the standard moral hazard

model where higher effort always benefits the principal if it is costless to induce effort, more

information here may hurt the seller, as we can see from the one-bidder case. Finally, the

seller has to give bidders not only incentives to acquire information, but also incentives to

tell the truth, that is, our model is a mixed model with moral hazard and adverse selection.

As such, some restrictions on the model are necessary in order to characterize the optimal

selling mechanism.
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The symmetric restriction α∗1 = ... = α∗n = α∗ we impose in this subsection helps reduce

the system of first-order conditions to a single equation (16). Replacing the incentive con-

straint by equation (1) and (2), and replacing the (IA) constraint by (16), we can transform

the seller’s optimization problem from the allocation-transfer space into the allocation-utility

space:

max
qi,ui(ω),α∗

{
Ev|αj=α∗,∀j

n∑
i=1

[(
vi −

1−H (vi, α
∗)

h (vi, α∗)

)
qi (vi, v−i)

]
− nui (ω)

}
,

subject to

0 ≤ qi (vi, v−i) ≤ 1;
n∑
i=1

qi (vi, v−i) ≤ 1, (allocation)

Qi (vi) is weakly increasing in vi, (monotonicity)

ui (ω) ≥ 0, (IR)

Ev|αj=α∗,∀j

[
−Hαi (vi, α

∗)

h (vi, α∗)
qi (vi, v−i)

]
− C ′ (α∗) = 0. (IA-FOC)

It is easy to see that the (IR) constraint must be binding. For now we ignore the allocation

constraint and the monotonicity constraint, and verify that they are satisfied later. Then the

only remaining constraint is the (IA-FOC) constraint. Let λ denote the Lagrange multiplier

for the (IA-FOC) constraint, and write the Lagrangian for the seller’s maximization problem

as

L = Ev|αj=α∗,∀j

n∑
i=1

[(
vi −

1−H (vi, α
∗)

h (vi, α∗)
− λ

n

Hαi (vi, α
∗)

h (vi, α∗)

)
qi (vi, v−i)

]
− λC ′ (α∗) . (17)

A positive λ means that the seller benefits from a deduction in the marginal cost of infor-

mation. Therefore, the virtual surplus function J∗ (vi) is given by

J∗ (vi) = vi −
1−H (vi, α

∗)

h (vi, α∗)
− λ

n

Hαi (vi, α
∗)

h (vi, α∗)
. (18)

In order to characterize the optimal symmetric auction, we first need to identify the

seller’s information preferences – that is, the sign of the Lagrange multiplier λ for the (IA-

FOC) constraint. It turns out that this is the difficult part of the analysis. We use the tech-

nique in Rogerson (1985) to sign λ: we first relax the (IA-FOC) constraint to an inequality

constraint, characterize the optimal solution of the relaxed problem, and then verify that

(IA-FOC) constraint is binding in the optimal solution if the seller’s revenue in standard

auctions is increasing in the level of information.

Lemma 1 (Lagrange Multiplier)

Suppose the first-order approach is valid, and Assumptions 1, 2 and 3 hold. The seller

benefits from a reduction in the marginal cost (λ > 0) if the seller’s revenue πs (α, r) in

standard auctions is strictly increasing in α for all r.
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Note that, under Assumption 1-3 and for a sufficiently large n, the seller’s revenue πs (α, r)

in standard auctions is strictly increasing in α for all r according to Proposition 2, and

thus the seller will prefer more information in the optimal auction setting with endogenous

information. The next result shows that any standard auction with an appropriately chosen

reserve price is optimal.

Proposition 3 (Optimal Symmetric Mechanism)

Suppose the first-order approach is valid, and Assumptions 1, 2 and 3 hold. If the seller’s

revenue πs (α, r) in standard auctions is strictly increasing in α for all r, then any standard

auction with reserve price r∗ is optimal, where r∗ ≡ min {r : J∗ (r) ≥ 0}. Moreover, r∗ is

closer to µ than rα∗ . Specifically, if rα∗ < µ then rα∗ ≤ r∗ < µ; if rα∗ = µ then r∗ = µ; and

if rα∗ > µ then µ < r∗ ≤ rα∗ .

With many bidders, the optimal reserve price r∗ is closer to the mean µ than the standard

reserve price rα∗ , in sharp contrast to the one-bidder case where r∗ is always below rα∗ . This

is because competition among bidders changes the seller’s preference over information: as

we demonstrate in Proposition 2, when there are many bidders, the seller prefers more

information for all levels of reserve prices. In contrast, in the one-bidder case, the seller

prefers more information only when the reserve price is above the mean µ.

The identified simple rule of adjusting the reserve price is of practical importance since

a key element of the auction design is to determine the reserve price. It provides a useful

guidance for the seller to set the optimal reserve price when the bidders’ incentives to acquire

information are an important concern.

This result also has important implications for empirical analysis. The empirical auction

literature has attempted to evaluate the optimality of a seller’s reserve price policy from

observed bids. Most of these studies assume exogenous information and do not consider the

bidders’ incentives to acquire information. They use observed bids and equilibrium bidding

behavior to recover the distribution of bidders’ valuations, and then compare the actual

reserve price with the standard reserve price calculated from the estimated distribution.

Our results indicate that it may be preferable to use the optimal reserve price, instead of the

standard reserve price, as the benchmark when the bidders’ incentives to acquire information

are important.

Indeed, our analysis may help reconcile the discrepancy between the reserve price pre-

dicted by a theory model with exogenous information and the reserve price charged in prac-

tice. For example, Paarsch (1997) uses the framework of independent private values to

estimate the bidders’ valuation distribution for a sample of timber sales held in British

Columbia, Canada. The estimated distribution is then used to calculate the reserve price

(also known as the upset price in practice). He finds that the actual reserve price is much

lower than the calculated reserve price and concludes that “...the Forest Service was too
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lenient in the setting of the reserve price for timber”(page 352). The independent private

values framework is also adopted in Haile and Tamer (2003). They use data from U.S. Forest

Service timber auctions to estimate bounds for the bidders’ valuation distribution which are

then used to construct bounds for the reserve price. Their calculated lower bound is still

slightly higher than the average actual reserve price, so they also conclude that the actual

reserve price set by U.S Forest Service is well below the optimum.

Our results suggest that the low reserve price policy may be partially justified if informa-

tion acquisition is important. Indeed, the bidders’ incentives to gather information may be

important in timber auctions. For example, firms occasionally conduct cruises themselves

to obtain information additional to the public timber-cruise report, and they may also have

to spend resources to gather and evaluate information regarding their idiosyncratic future

demands for end products, contracts for future sales, and inventories of end products and

uncut timber from other sales. More importantly, as reported in Paarsch (1997), the mean of

the estimated valuation distribution for his sample is negative. Our simple rule then implies

that the optimal reserve price is adjusted downward toward the (negative) mean valuation.

Therefore, it could be ex ante optimal for the Forest Service to deliberately set a low reserve

price to induce more information acquisition.

To conclude this subsection, we compare the bidders’ incentive to acquire information to

the social incentive to acquire information in standard auctions with a reserve price. The

social planner chooses αi to maximize the social surplus∫ ω

0

(1−H (vi, αi)
n) dvi − nC (αi) .

So the marginal social value of information at αi is

−n
∫ ω

0

Hαi (vi, αi)H (vi, αi)
n−1 dvi.

On the other hand, we can derive the marginal individual value of information from equation

(12):

−
∫ ω

r

Hαi (vi, αi)H (vi, αi)
n−1 dvi.

Since the social planner has to pay n times the individual information cost, we normalize

the social value of information by multiplying 1/n. The difference between the social and

individual gain from acquiring information is

∆ (αi, n) = −
∫ r

0

Hαi (vi, αi)H (vi, αi)
n−1 dvi. (19)

Under rotation-ordered information structures, if r < µ, then ∆ (αi, n) < 0.That is, infor-

mation acquisition in auctions with r < µ is socially excessive.22 Thus, we have proved the

22However, the rotation order assumption is not necessary for this result.
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following result:

Proposition 4 (Informational Efficiency)

Suppose Assumption 1 holds. For standard auctions with reserve price r, there exists δ > 0

such that bidders have socially excessive incentives to acquire information if and only if

r < µ+ δ.

When r = 0, the bidders’ incentive to acquire information coincides with the social op-

timum, which can be easily seen from equation (19).23 As r increases, the buyers’ incentive

to acquire information increases, reaches maximum at r = µ, and declines thereafter. Con-

sequently, there exists a δ > 0 such that the individual incentive to acquire information

coincides with the social optimum when r = µ + δ. Therefore, the bidders’ incentive to

acquire information is socially excessive when r ∈ (0, µ+ δ). For the Gaussian specification,

δ = µ.

6 Optimal Asymmetric Mechanisms

In this section, we derive the optimal mechanisms with discrete information acquisition

without imposing symmetry restrictions. This is the limiting case when the information cost

consists of a lump-sum fixed cost and a very small marginal cost. We assume that bidders

are ex ante symmetric and endowed with a signal with precision α0. Each bidder can opt to

receive a signal α1 that is more informative than signal α0 in terms of our rotation order,

but he has to incur a lump-sum cost k. The distribution of bidder i’s posterior estimates vi

is denoted by H0 (·) if he does not acquire information, and H1 (·) if he acquires information.

Let h0 and h1 denote the corresponding densities. We assume that H0 and H1 satisfy the

regularity assumption: both vi−[1−H1 (vi)] /h1 (vi) and vi−[1−H0 (vi)] /h0 (vi) are strictly

increasing in vi.

Without loss of generality, suppose that the seller wants to induce the first m bidders

(0 ≤ m ≤ n) to acquire additional information. The seller sends a recommendation – “ac-

quire information” – to each of the first m bidders, and sends a recommendation – “do not

acquire information” to the remaining bidders. After receiving the seller’s recommendation,

bidders decide whether to follow, and after receiving their signals, bidders form their pos-

terior estimate and report to the seller. By the revelation principle, we can restrict to the

direct revelation mechanism {qi (v) , ti (v)}. In order to ensure that bidders participate and

report truthfully in the second stage, the mechanism must satisfy the standard (IC) and

23This is consistent with the results in Bergemann and Välimäki (2002): the individual incentives to
acquire information coincide with the social optimum for efficient mechanisms in the private value setting.
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(IR) constraints, namely

ui (vi) = ui (ω) +

∫ vi

ω

Qi (x) dx and Qi (vi) is weakly increasing in vi, for all i and vi,

ui (vi) ≥ 0, for all i and vi.

Moreover, in order to ensure that bidders follow the seller’s recommendation in the first

stage, the information acquisition (IA) constraints must be satisfied:∫ ω

ω

ui (vi) dH1 (vi)−
∫ ω

ω

ui (vi) dH0 (vi) ≥ k, for i ≤ m, (20)∫ ω

ω

ui (vi) dH1 (vi)−
∫ ω

ω

ui (vi) dH0 (vi) ≤ k, for i > m. (21)

That is, the mechanism has to ensure that the first m bidders have incentives to acquire

information and the remaining (n−m) bidders have incentives not to acquire information.

Consider an informed bidder i ≤ m and an uninformed bidder j > m. The distributions

of the posterior estimates of bidder i and j are H1 and H0, respectively. The standard reserve

prices r0 and r1 are defined as before:

r0 −
1−H0 (r0)

h0 (r0)
= 0 and r1 −

1−H1 (r1)

h1 (r1)
= 0.

Since the information structures are rotation-ordered,

H0 (x) ≥ H1 (x) if x > v+

H0 (x) ≤ H1 (x) if x < v+
,

where v+ is the rotation point.

Now conditional on the posterior estimate x > v+, informed bidder i is stochastically

“stronger” than bidder j in the sense that the distribution of vi first-order stochastically

dominates the distribution of vj, but conditional on x < v+, uninformed bidder j is stochas-

tically “stronger” than bidder i. Myerson (1981) demonstrates that the optimal auction

should discriminate against “strong” bidders. Interestingly, endogenous information acqui-

sition reduces the level of ex post discrimination against “strong” bidders, as shown in the

following proposition:

Proposition 5 (Asymmetric Optimal Mechanism)

Suppose information acquisition is binary, and H0 and H1 are rotation-ordered. Then the

optimal reserve price for informed bidders, r∗1, lies between r1 and v+. In the optimal

mechanism, the level of price discrimination against “strong” bidders is weaker, compared

to Myerson’s discriminatory auctions.
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The first part of the proposition shows that the optimal rule for adjusting the reserve

price identified in Proposition 3 is still valid in this discrete setting. The second part suggests

that the seller should soften price discrimination in order to provide bidders with appropriate

incentives either to or not to acquire information.

Example 3 (Discriminatory Auctions)

Suppose four bidders compete for an object. Bidders’ true valuations are unknown ex-ante

and are i.i.d. from F (x) =
√
x on [0, 1]. If a bidder incurs a cost k = 0.1, he observes his

true valuation; otherwise he maintains his prior. Then the optimal selling mechanism is the

following: recommend three bidders to become informed, run a second-price auction with

r∗1 = 0.358 among these three bidders, and if unsold, sell the object to the fourth bidder at

1/3. Note that r∗1 is between the mean (1/3) and the standard reserve price r1 = 4/9 in

Myerson’s discriminatory auctions.

A key feature of the design problem here is that the information acquisition constraints

take the simple form of inequalities. Thus, the Lagrange multipliers associated with these

constraints are non-negative, which substantially simplifies the analysis. In contrast, in the

general setting with continuous information acquisition, the information acquisition con-

straints are much more complicated and make the analysis less tractable without imposing

symmetry restrictions.

7 Concluding Remarks

Most of the mechanism design literature ignores the influence of the proposed mechanisms

on agents’ incentives to gather information. In particular, with endogenous information

acquisition, the optimal selling mechanism should take into account the bidders’ information

gathering decision as a response to the proposed mechanism. This paper provides a general

framework for studying the mechanism design problem with information acquisition. We

solve the problem in three important classes of applications. First, we show that, with

a single buyer, the optimal monopoly price is always lower than the standard monopoly

price. Second, we show that, with many buyers, standard auctions with an adjusted reserve

price can be optimal among symmetric mechanisms. Third, we show that the optimal

selling mechanism with binary information acquisition employs a weaker price discrimination

against “strong” bidders.

In the paper we use the rotation order to rank signals, which is not necessary for some of

our results, for instance, Proposition 1 and 4. Since a buyer’s interim payoff is convex under

any feasible incentive compatible mechanism, it would be ideal if we order signals according

to the second-order stochastic dominance relation. Unfortunately, the relation of second-
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order stochastic dominance is not strong enough, for example, to establish Proposition 3

and 5. The rotation order, though slightly stronger than second-order stochastic dominance,

is analytically more tractable, especially in the case with many bidders.

To facilitate our analysis, we adopt the first-order approach to deal with the bidders’

information acquisition constraints. In Appendix B, we provide several sets of sufficient

conditions for the first-order approach to be valid. First, it is satisfied if the cost function is

sufficiently convex. Second, if the support of H (·, αi) is invariant with respect to αi, then a

condition analogous to the CDFC condition in the principal-agent literature (Mirrlees (1999),

and Rogerson (1985)) is sufficient. Third, we present sufficient conditions for the cases of

the Gaussian learning and the truth-or-noise technology, respectively.

As pointed out by Bolton and Dewatripoint (2005), the requirement that the bidders’

first-order condition be necessary and sufficient is too strong. All we need is that the replace-

ment of the (IA) constraint by the first-order condition can generate necessary conditions

for the seller’s original maximization problem. Indeed, for the monopoly pricing setting, we

can avoid the first-order approach by applying Topkis’s theorem.
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Appendix A: Omitted Proofs

Proof of Proposition 2. Recall that

∂πs (α∗, r)

∂α∗
= −nrH (r, α∗)n−1Hαi (r, α∗)

−n (n− 1)

∫ ω

r

H (vi, α
∗)n−2 [1−H (vi, α

∗)]Hαi (vi, α
∗) dvi.

Given that the family of distributions {H (·, α)} is rotation ordered, it is easy to see that
∂πs(α∗,r)
∂α∗

> 0 for r ≥ µ. It remains to show that ∂πs(α∗,r)
∂α∗

> 0 for r < µ.

If r < µ, we have

∂πs (α∗, r)

∂α∗
= −nrH (r, α∗)n−1Hαi (r, α∗)

−n (n− 1)

∫ µ

r

H (vi, α
∗)n−2 [1−H (vi, α

∗)]Hαi (vi, α
∗) dvi

−n (n− 1)

∫ ω

µ

H (vi, α
∗)n−2 [1−H (vi, α

∗)]Hαi (vi, α
∗) dvi

Since H (r, α∗) is strictly below 1, nH (r, α∗)n−1 goes to 0, as n goes to infinity. Therefore,

as n increases, the first term vanishes.

The second term can be rewritten as

−n (n− 1)

∫ µ

r

H (vi, α
∗)n−2 [1−H (vi, α

∗)]Hαi (vi, α
∗) dvi

= −n (n− 1)

∫ µ

r

[
H (vi, α

∗)n−2 −H (vi, α
∗)n−1]Hαi (vi, α

∗) dvi

> −n (n− 1)

∫ µ

r

[
H (µ, α∗)n−2 −H (r, α∗)n−1]Hαi (vi, α

∗) dvi

= −
[
n (n− 1)H (µ, α∗)n−2 − n (n− 1)H (r, α∗)n−1] ∫ µ

r

Hαi (vi, α
∗) dvi

Since both H (µ, α∗) and H (r, α∗) are strictly below 1, both n (n− 1)H (r, α∗)n−2 and

n (n− 1)H (r, α∗)n−1 go to 0, as n goes to infinity. Therefore, as n increases, the second

term also vanishes.
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Now consider the last term

−n (n− 1)

∫ ω

µ

H (vi, α
∗)n−2 [1−H (vi, α

∗)]Hαi (vi, α
∗) dvi

> −n (n− 1)

∫ ω

δ

H (vi, α
∗)n−2 [1−H (vi, α

∗)]Hαi (vi, α
∗) dvi

= n (n− 1)

∫ ω

δ

H (vi, α
∗)n−2 [1−H (vi, α

∗)]

[
−Hαi (vi, α

∗)

h (vi, α∗)

]
h (vi, α

∗) dvi

≥ n (n− 1)

{
min
vi∈[δ,ω]

−Hαi (vi, α
∗)

h (vi, α∗)

}∫ ω

δ

H (vi, α
∗)n−2 [1−H (vi, α

∗)]h (vi, α
∗) dvi

= n (n− 1) γ

[
1

n− 1
H (vi, α

∗)n−1 − 1

n
H (vi, α

∗)n
]ω
δ

= γ
[
1− nH (δ, α∗)n−1 + (n− 1)H (δ, α∗)n

]
Since H (δ, α∗) is strictly between 0 and 1, as n goes to infinity, the last term is no less than

the positive constant γ.

Therefore, as n goes to infinity, ∂πs(α∗,r)
∂α∗

> γ > 0. By continuity, there there exists n∗

such that ∂πs (α∗, r) /∂α∗ > 0 for all r and n ≥ n∗.

Proof of Lemma 1. The proof needs the following auxiliary result, which we label as

“standard auction lemma”. This lemma will be used to prove Proposition 3 as well.

Standard Auction Lemma. Suppose the first-order approach is valid, and Assump-

tions 1, 2 and 3 hold. Then standard auctions with a reserve price are optimal if the Lagrange

multiplier λ ≥ 0.

Proof of the standard auction lemma: Notice that if λ ≥ 0,

J∗ (vi) = vi −
1−H (vi, α

∗)

h (vi, α∗)
− λ

n

Hαi (vi, α
∗)

h (vi, α∗)
,

is strictly increasing in vi under Assumption 1-3. We can then define the reserve price as

r∗ = min {r : J∗ (r) ≥ 0} .

The optimal auctions will assign the object to the bidder with the highest posterior estimate

provided his estimate is higher than r∗, that is, they are standard auctions. Thus, standard

auctions with a reserve price are optimal. End of proof.

Now we can proceed to prove Lemma 1. We adopt the same strategy of Rogerson (1985)

by weakening the equality (IA-FOC) constraint to the following inequality constraint:

−Ev|αj=α∗,∀j

[
Hαi (vi, α

∗)

h (vi, α∗)
qi (vi, v−i)

]
− C ′ (α∗) ≥ 0.
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With the inequality constraint, the corresponding Lagrange multiplier λ is always nonnega-

tive. If we can show that λ > 0 at the optimal solution of the relaxed program, the (IA-FOC)

constraint must be binding in equilibrium, which implies that the optimal solution of relaxed

program is also an optimal solution of the original program. Hence, λ > 0 for the original

program.

We can write and simplify the Lagrangian for the relaxed program as

L = Ev|αj=α∗,∀j

n∑
i=1

[(
vi −

1−H (vi, α
∗)

h (vi, α∗)
− λ

n

Hαi (vi, α
∗)

h (vi, α∗)

)
qi (vi, v−i)

]
− λC ′ (α∗) .

The necessary first-order condition is

0 =
∂L

∂α∗
=
∂
[
Ev|αj=α∗,∀j

∑n
i=1

(
vi − 1−H(vi,α

∗)
h(vi,α∗)

)
qi (vi, v−i)

]
∂α∗

+λ
∂
[
− 1
n
Ev|αj=α∗,∀j

∑n
i=1

(
Hαi (vi,α

∗)

h(vi,α∗)
qi (vi, v−i)

)
− C ′ (α∗)

]
∂α∗

. (22)

Since λ ≥ 0, standard auctions are optimal by the standard auction lemma. By our

assumption, the seller’s revenue in standard auctions,

πs (α∗, r) = Ev|αj=α∗,∀j

n∑
i=1

(
vi −

1−H (vi, α
∗)

h (vi, α∗)

)
qi (vi, v−i) ,

is strictly increasing in α∗. Therefore, the first term on the right hand side of (22) is positive.

In order to show λ > 0, we need to prove that the coefficient of λ in (22) is negative. Note

that a standard auction with reserve price r allocates the object to the bidder with the

highest valuation that is also higher than r, so we have

− 1

n
Ev|αj=α∗,∀j

n∑
i=1

(
Hαi (vi, α

∗)

h (vi, α∗)
qi (vi, v−i)

)
= −

∫ ω

r

Hαi (vi, α
∗)H (vi, α

∗)n−1 dvi.

Therefore, the coefficient of λ in (22) can be rewritten as

∂
[
−
∫ ω
r
Hαi (vi, α

∗)H (vi, α
∗)n−1 dvi − C ′ (α∗)

]
∂α∗

= −
∫ ω

r

∂2H (vi, α
∗)

∂α2
i

H (vi, α
∗)n−1 dvi − C ′′ (α∗)︸ ︷︷ ︸

A

−
∫ ω

r

Hαi (vi, α
∗) (n− 1)H (vi, α

∗)n−2Hαi (vi, α
∗) dvi︸ ︷︷ ︸

B

.

The local second-order condition of bidder i’s optimization problem implies that the term

A is nonpositive (see expression (12) for bidder i’s payoff in a standard auction). The term
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B is clearly positive, so the coefficient of λ is negative. Therefore, λ > 0 at the optimal

solution (α∗, q) . This implies that the solution to the relaxed program is the same as the

one for the original program, and the maximum of the relaxed program can be achieved by

the original program. Hence, the Lagrange multiplier λ > 0 for the original program. �

Proof of Proposition 3. It follows from Lemma 1 that λ > 0 under conditions specified

in the proposition. The standard auction lemma used in the proof of Lemma 1 then implies

that standard auctions are optimal. To complete the proof, we only need to show that r∗ is

set according to the rule specified in the proposition. There are three cases.

Case 1: rα∗ > µ. First we show r∗ ≤ rα∗ . By definition of rα∗ ,

rα∗ −
1−H (rα∗ , α

∗)

h (rα∗ , α∗)
= 0.

Then for all vi ≥ rα∗ > µ,

J∗ (vi) ≥ −
λ

n

Hαi (vi, α
∗)

h (vi, α∗)
≥ 0.

The last inequality follows from the rotation order. Therefore, the optimal reserve price

r∗ ≤ rα∗ .

Next, we show r∗ > µ. Suppose r∗ ≤ µ by contradiction. Then

J∗ (r∗) < −λ
n

Hαi (r∗, α∗)

h (r∗, α∗)
≤ 0.

The first inequality follows because r∗ < rα∗ , and the second inequality follows from the

rotation order. This contradicts the fact the J∗ (r∗) ≥ 0. Thus, we have shown µ < r∗ ≤ rα∗

Case 2: rα∗ = µ. Then for all vi > µ,

J∗ (vi) > −
λ

n

Hαi (vi, α
∗)

h (vi, α∗)
≥ 0.

Therefore, r∗ cannot be higher than µ. On the other hand, for all vi < µ

J∗ (vi) < −
λ

n

Hαi (vi, α
∗)

h (vi, α∗)
≤ 0.

Therefore, r∗ cannot be lower than µ. Therefore, r∗ = rα∗ = µ.

Case 3: rα∗ < µ. Note that for all vi < rα∗ ,

J∗ (vi) < −
λ

n

Hαi (vi, α
∗)

h (vi, α∗)
≤ 0.

Therefore, r∗ ≥ rα∗ . Furthermore, for all vi ≥ µ,

J∗ (vi) > −
λ

n

Hαi (vi, α
∗)

h (vi, α∗)
≥ 0.
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Thus, r∗ < µ. As a result, rα∗ ≤ r < µ.�

Proof of Proposition 5. Let λi ≥ 0 denote the Lagrange multiplier of the information

acquisition constraint for bidder i, i = 1, ..., n. Then the Lagrangian can be written and

simplified as

L =
m∑
i=1

{∫ ω

ω

[
vi −

1−H1 (vi)

h1 (vi)
+ λi

H0 (vi)−H1 (vi)

h1 (vi)

]
Qi (vi) dH1 (vi)− λik

}
+

n∑
i=m+1

{∫ ω

ω

[
vi −

1−H0 (vi)

h0 (vi)
− λi

H0 (vi)−H1 (vi)

h0 (vi)

]
Qi (vi) dH0 (vi) + λik

}
.(23)

The proof of the first part is analogous to the proof of the second part of Proposition 3.

Consider the optimal reserve price r∗1 for informed bidders i ≤ m. Suppose r1 > v+ and we

want to show v+ < r∗1 ≤ r1. For all vi > r1,

J1 (vi) ≡ vi −
1−H1 (vi)

h1 (vi)
+ λi

H0 (vi)−H1 (vi)

h1 (vi)
≥ λi

H0 (vi)−H1 (vi)

h1 (vi)
> 0.

Therefore, r∗1 ≤ r1. The inequality r∗1 > v+ follows from the fact that, for all vi ≤ v+,

J1 (vi) < λi
H0 (vi)−H1 (vi)

h1 (vi)
≤ 0.

Now suppose r1 < v+ and we want to show r1 ≤ r∗1 < v+. Note that for all vi ≥ v+,

J1 (vi) > λi
H0 (vi)−H1 (vi)

h1 (vi)
≥ 0,

and for all vi < r1 < v+,

J1 (vi) < λi
H0 (vi)−H1 (vi)

h1 (vi)
≤ 0.

Thus, we must have r1 ≤ r∗1 < v+.

For the second part, notice that the difference between the virtual surplus functions for

bidder i ≤ m and bidder j ≥ m+ 1 is:

J1 (x)−J0 (x) =

(
x− 1−H1 (x)

h1 (x)

)
−
(
x− 1−H0 (x)

h0 (x)

)
+λi

H0 (x)−H1 (x)

h1 (vi)
+λj

H0 (x)−H1 (x)

h0 (x)
.

Since λi, λj ≥ 0, we have

J1 (x)− J0 (x) ≥
(
x− 1−H1(x)

h1(x)

)
−
(
x− 1−H0(x)

h0(x)

)
if x > v+

J1 (x)− J0 (x) ≤
(
x− 1−H1(x)

h1(x)

)
−
(
x− 1−H0(x)

h0(x)

)
if x < v+

.

Now suppose the valuations of informed bidder i and uninformed bidder j are such that

the values of resulting virtual surplus function are tied in the Myerson’s optimal auction with
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exogenous information, so that bidder i and j will win the object with equal probability.

With endogenous information, however, bidder i wins if their valuations are above v+ and

bidder j wins if their valuations are below v+. That is, compared to the case with exogenous

information, informed bidder i is treated more favorably if bidders’ valuations are above v+,

and uninformed bidder j is treated more favorably otherwise. In both cases, endogenous

information acquisition reduces price discrimination against “strong” bidders.�

Appendix B: Sufficient Conditions for the First-Order

Approach

This Appendix provides several sets of sufficient conditions under which the first-order ap-

proach is valid. Recall that bidder i chooses αi to maximize his payoff given other bidders

choose αj (j 6= i) . Bidder i’s payoff under mechanism {qi (v) , ti (v)} is

πi (αi) = Ev−i

∫ ωαi

ωαi

[1−H (vi, αi)] qi (vi, v−i) dvi − C (αi) .

Here, we explicitly write the support of vi as
[
ωαi , ωαi

]
, which could vary with respect to

the choice of αi.

We differentiate πi (αi) with respect to αi to obtain

∂πi
∂αi

= −
∫ ωαi

ωαi

Hαi (vi, αi)Qi (vi) dvi −Qi

(
ωαi
) ∂ωαi
∂αi

− C ′ (αi)

and differentiate it twice to obtain

∂2πi
∂α2

i

= −
∫ ωαi

ωαi

∂2H (vi, αi)

∂α2
i

Qi (vi) dvi −Hαi (ωαi , αi)Qi (ωαi)
∂ωαi
∂αi

+Hαi

(
ωαi , αi

)
Qi

(
ωαi
) ∂ωαi
∂αi

−Q′i
(
ωαi
)(∂ωαi

∂αi

)2

−Qi

(
ωαi
) ∂2ωαi
∂α2

i

− C ′′ (αi)

By our rotation order assumption, ωαi is decreasing in αi, ωαi is increasing in αi, and

Hαi

(
ωαi , αi

)
≥ 0. Therefore,

∂2πi
∂α2

i

≤ −
∫ ωαi

ωαi

∂2H (vi, αi)

∂α2
i

Qi (vi) dvi−Hαi (ωαi , αi)Qi (ωαi)
∂ωαi
∂αi
−Qi

(
ωαi
) ∂2ωαi
∂α2

i

−C ′′ (αi)

(24)

The first-order approach is valid if ∂2πi/∂α
2
i < 0, which holds as long as the cost function is

sufficiently convex.24

24Persico (2000) makes such an assumption in his example of information acquisition.
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If C ′′ (αi) > 0 and the support
[
ωαi , ωαi

]
is invariant with respect to αi, then a sufficient

condition for ∂2πi
∂α2

i
< 0 is

∂2H (vi, αi)

∂α2
i

≥ 0 for all vi. (25)

That is, the distribution of the posterior estimates is convex in the bidder’s information

choice. This condition is analogous to the CDFC (convexity of the distribution function

condition) in the principal-agent literature, which requires that the distribution function of

output be convex in the action the agent takes (Mirrlees (1999), and Rogerson (1985)).25

For the two leading information structures, we provide sufficient conditions for the first-

order approach to be valid.

Proposition 6 (Sufficient Conditions for First-Order Approach)

1. For the truth-or-noise technology: if C ′′ (αi)αi ≥ f (ω) (ω − µ)2 for all αi, the first-

order approach is valid when either (1) F (x) is convex, or (2) F (x) = xb (b > 0) with

support [0, 1] .

2. For the Gaussian specification, the first-order approach is valid if, for all αi,√
β3/

[
α3
i (αi + β)5] < 2

√
2πC ′′ (αi) .

For the truth-or-noise technology, the condition, C ′′ (αi)αi ≥ f (ω) (ω − µ)2, is to ensure

that the relative gain from information acquisition is not too high so that bidders will not

pursue extreme information choice α. Condition (2) indicates that the convexity of F is

not necessary for the first-order approach. For the Gaussian specification, the sufficient

condition for first-order approach is satisfied when α is large relative to β, which ensures

that information acquisition is profitable.

Proof: For the truth-or-noise technology, it follows from (24) that

∂2πi
∂α2

i

≤ −
∫ ωαi

ωαi

∂2H (vi, αi)
∂α2

i

Qi (vi) dvi −Hαi (ωαi , αi)Qi (ωαi)
∂ωαi
∂αi

−Qi
(
ωαi
) ∂2ωαi
∂α2

i

− C ′′ (αi)

= −
∫ ωαi

ωαi

∂2H (vi, αi)
∂α2

i

Qi (vi) dvi + f (ω)
(ω − µ)2

αi
Qi (ωαi)− C ′′ (αi)

≤ −
∫ ωαi

ωαi

∂2H (vi, αi)
∂α2

i

Qi (vi) dvi + f (ω)
(ω − µ)2

αi
− C ′′ (αi)

≤ −
∫ ωαi

ωαi

∂2H (vi, αi)
∂α2

i

Qi (vi) dvi.

The equality follows from equation (5) and the fact that

∂ωαi/∂αi = ω − µ, and ∂2ωαi/∂α
2
i = 0.

25See also Jewitt (1988).
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The last inequality follows from the assumption that C ′′ (αi)αi ≥ f (ω) (ω − µ)2 .

Note that

−
∫ ωαi

ωαi

∂2H (vi, αi)

∂α2
i

Qi (vi) dvi

= −
∫ ωαi

ωαi

{
f ′
(
vi − (1− αi)µ

αi

)
(µ− vi)2

α4
i

− f
(
vi − (1− αi)µ

αi

)
2 (µ− vi)

α3
i

}
Qi (vi) dvi

= −
∫ ω

ω

{
f ′ (si)

(si − µ)2

αi
+ f (si)

2 (si − µ)

αi

}
Qi (αisi + (1− αi)µ) dsi.

If F (·) is convex, then

∂2πi
∂α2

i

< − 2

αi

∫ ω

ω

(si − µ) f (si)Qi (αisi + (1− αi)µ) dsi

< − 2

αi

∫ µ

ω

(si − µ) f (si)Qi (µ) dsi −
2

αi

∫ ω

µ

(si − µ) f (si)Qi (µ) dsi

= − 2

αi
Qi (µ)

∫ ω

ω

(si − µ) f (si) dsi

= 0.

If F (x) = xb (0 < b ≤ 1) with support [0, 1] , then

∂2πi
∂α2

i

< −
∫ ω

ω

{
f ′ (si)

(si − µ)2

αi
+ f (si)

2 (si − µ)

αi

}
Qi (αisi + (1− αi)µ) dsi

= − 1

αi

∫ 1

0

[(b+ 1) s+ (1− b)µ] bsb−2 (s− µ)Qi (αis+ (1− αi)µ) ds

< − 1

αi
Qi (µ)

∫ 1

0

((b+ 1) s+ (1− b)µ) bsb−2 (s− µ) ds

= − 1

αi
Qi (µ) (b+ 1)

∫ 1

0

bsb−1 (s− µ) ds− 1

αi
Qi (µ) (1− b)µb

∫ 1

0

sb−2 (s− µ) ds

= − 1

αi
Qi (µ)

b

(1 + b)2

< 0.

For the Gaussian specification,

∂2πi
∂α2

i

= −Ev−i

∫ ∞
−∞

∂2H (vi, αi)

∂α2
i

qi (vi, v−i) dvi − C ′′ (αi) .

With some algebra, we can obtain

∂2H (vi, αi)

∂α2
i

=
4αi + 3β

2αi (αi + β)

(vi − µ)

2
√

2π

√
β3

α3
i (αi + β)

exp

(
−(vi − µ)2

2σ2

)(
1− αi + β

4αi + 3β

β2

αi
(vi − µ)2

)
.
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Thus, we can write the second derivative as

∂2πi
∂α2

i

=

 − ∫∞−∞ 4αi+3β
2αi(αi+β)

(vi−µ)

2
√

2π

√
β3

αi(αi+β)
exp

(
− (vi−µ)2

2σ2

)
Qi (vi) dvi

+
∫∞
−∞

β2

4α2
i

(vi−µ)3√
2π

√
β3

α3
i (αi+β)

exp
(
− (vi−µ)2

2σ2

)
Qi (vi) dvi

− C ′′ (αi)
=

(
− 4αi+3β

2αi(αi+β)

∫∞
−∞ (−Hαi (vi, αi))Qi (vi) dvi

+
∫∞
−∞

β2

4α2
i

(vi−µ)3√
2πσ

β
αi(αi+β)

exp
(
− (vi−µ)2

2σ2

)
Qi (vi) dvi

)
− C ′′ (αi) .

Given that the information structure is rotation-ordered, bidders always prefer a higher

αi, which implies ∫ ∞
−∞

(−Hαi (vi, αi))Qi (vi) dvi > 0.

Thus, a sufficient condition for the second-order condition is∫ ∞
−∞

β2

4α2
i

β

αi (αi + β)

(vi − µ)3

√
2πσ

exp

(
−(vi − µ)2

2σ2

)
Qi (vi) dvi < C ′′ (αi)⇔

β3

4α3
i (αi + β)

∫ ∞
−∞

(vi − µ)3

√
2πσ

exp

(
−(vi − µ)2

2σ2

)
Qi (vi) dvi < C ′′ (αi) .

A sufficient condition for the above inequality is,

β3

4α3
i (αi + β)

∫ ∞
µ

(vi − µ)3

√
2πσ

exp

(
−(vi − µ)2

2σ2

)
dvi < C ′′ (αi)⇔

1

2
√

2π

√
β3

α3
i (αi + β)5 < C ′′ (αi) ,

which is satisfied if β/αi is small.�
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