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Abstract

We study optimal patent design with sequential innovation. Firms innovate by
undertaking “research” activities to generate new ideas and by undertaking “devel-
opment” activities to transform these ideas into viable products. We characterize
optimal patent policy, in particular, the tradeoff between patent length and breadth
in this setting. We identify a “replacement effect” from the social planner’s per-
spective: for given reward size, a better patent that generates higher social surplus
is shorter but broader. The optimal patent breadth is independent of whether the
current patent is expired or not. The optimal patent length may be finite.
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1 Introduction

Innovation is the engine of economic growth. Innovation activities are only undertaken if

an innovator can appropriate future benefits from its invention to cover its costs. In recog-

nition of the possibility that without legal protection there will be too little innovation,

the patent system was created to promote innovations by granting inventors an exclusive

right (patent) to their inventions for a limited period of time. Patents foster innovation,

facilitate commercialization and improve disclosure, but the resulted patent monopoly

is associated with a variety of distortions. The tradeoff between standard deadweight

loss and incentives for innovation is the focus of early patent design studies initiated by

Nordhaus (1969).1 They demonstrate how patent length should be chosen appropriately

to balance incentives and deadweight loss.

The two-dimensional analysis used in these early studies, though insightful, is not

adequate because both incentives and welfare costs are multidimensional. First, patents

are granted after invention but before commercialization. By centering on pre-invention

incentives, the early analysis ignores the impact of the patent on incentives for post-

invention development. In addition, it considers only one innovator, so the welfare costs

due to rent-seeking activities such as “patent races”, which are often more significant

than the standard deadweight loss, are not taken into account.2 Second, there are policy

instruments other than patent length, such as patent breadth and patent scope, which are

arguably more important and are subject to more discretion than patent length.3 Third,

innovation is often sequential, in the sense that new technologies build on existing ones.

In the setting of sequential innovation, there is an additional welfare cost associated with

patent monopoly because it may block future improvements. Since the early analysis is

conducted in the context of one-time innovation, this additional welfare cost is not taken

into account.

Subsequent contributions to the patent design literature have addressed in isolation

the incentives for post-invention development, the tradeoff between patent length and

patent breadth, and the nature of sequential innovation.4 This approach is not entirely

satisfactory because these issues are closely connected. The goal of this paper is to

conduct an integrated analysis of optimal patent policy, providing insight on how different

incentives and welfare costs interact and how the level and decomposition of social value

1See also Scherer (1972) and Tandon (1982).
2Posner (1975) forcefully argues that the producer surplus or the rent captured by the monopolist

should also be counted as part of the social costs of monopoly.
3See Merges and Nelson (1990) for an extensive discussion on the importance of patent breadth and

patent scope in patent policy.
4We will discuss relevant literature shortly.
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of innovation factor into patent design. Our main finding is that it is optimal to reward

innovations of higher social values with broader but shorter patents.

In order to study patent policy that provides innovators with incentives for both

pre-invention research investment and post-invention commercialization investment, and

that also takes into account the multidimensional welfare costs associated with patent

monopoly, we introduce a model of dynamic innovation whose main components are:

1. Firms innovate by undertaking costly “research” activities to generate new ideas

and by undertaking costly “development” activities to turn these ideas into viable

products. The competition in research is modeled as “patent races” in order to

capture the welfare cost due to competitive activities in seeking a patent monopoly.

Both pre-invention and post-invention incentives are considered in our model.

2. Innovation is sequential and new products supersede old ones. That is, industry

experiences ongoing series of acts of “creative destruction”. Hence, our model con-

siders the additional welfare cost due to the possible blocking of future improvements

over the existing technology, in particular, the tradeoff between rewarding current

innovators and rewarding future innovators.

3. The social planner chooses a set of instruments, which consists of an expiration time

(patent length) and a possibly time-dependent patentability requirement (patent

breadth), to maximize the total discounted social welfare, subject to a constraint

that she must deliver patent rewards promised to earlier patents.

In our model, a large number of firms undertake “research” activities to generate

new ideas which are heterogeneous in quality. We interpret ideas as initial inventions, so

the heterogeneity of idea quality captures the fact that inventions may differ in terms of

“novelty”, “utility”, and “nonobviousness”. We assume free entry of research firms. A

research firm with a new idea can apply for a patent. A patent allows the patentee to

prevent its rivals from producing its patented product during the period that the patent

is valid. Upon patent approval, the patentee then undertakes “development” activities

to commercialize the patent. We assume that, once a new patent is filed, the current

patent, if not yet expired, terminates immediately. In order to ease exposition and save

notation, we primarily focus on a setting where innovation is radical in the sense that a

new patented product priced at a monopoly price completely drives the old one out of

market, although our analysis applies more generally.

A patent policy consists of an expiration time (not necessarily finite) for the current

patent, and a sequence of patent reward functions for future ideas, one reward function

for each time period. Specifically, the patent reward function for time t specifies how
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much to reward a new idea with a particular quality arriving at time t. The size of the

patent reward, or patent duration, is measured in terms of the discounted length of the

period that the patent remains valid.5 For each fixed time t, and for each given patent

reward function, there is a cutoff such that only ideas with quality exceeding this cutoff

are profitable for commercialization. We will refer to this cutoff as patent breadth at time

t, while referring to the expiration time as patent length. Patent breadth is a patentability

requirement such that a new idea is patentable (and profitable) only if it exceeds the

quality threshold.

As pointed out in Gilbert and Shapiro (1990), patent policy can be decomposed into

two parts: how to choose the reward size for each patent, and how to structure each given

reward. We first characterize the socially optimal mix of patent length and breadth that

delivers a given patent reward, and then build on this characterization to address the

determination of optimal reward size.

Our characterization of the socially optimal mix between patent length and breadth

relies on two technical innovations. First, we reformulate our planner’s problem into a

standard optimal control problem by using the arrival rate of patentable ideas as the

control variable, so we can apply various versions of Arrow’s sufficiency theorem to char-

acterize the optimal policy when the instantaneous welfare flow is concave in the control

variable.6 If the instantaneous welfare flow is not concave, however, we cannot directly ap-

ply Arrow’s sufficiency theorem. Our second innovation is to develop a method, what we

call convex-envelope approach, to deal with possible non-concavity of the instantaneous

welfare flow. This new approach not only simplifies our derivation but also provides

intuition for an otherwise abstract control solution.

The optimal mix of patent length and breadth takes a simple form in our seemingly

complex framework. The optimal patent length could be finite or infinite. First, if the size

of a given reward is small and the social surplus generated by the current patent is high,

the optimal policy is characterized by a finite patent length T and one constant cutoff ẑ.

Only ideas with quality exceeding ẑ are patentable, and the current patent expires either

when T is reached or when a new patent is filed. Second, if the size of given reward is

large and the social surplus generated by the current patent is low, the optimal patent

length is infinite. The optimal policy is characterized either by a single cutoff or by two

cutoffs plus a switching time between these two cutoffs, and the current patent expires

5O’Donoghue, Scotchmer and Thisse (1998) refer to the expiration time as the statutory patent life
and the patent duration as the effective patent life.

6In particular, we uses three versions: finite horizon, infinite horizon, and free terminal time. Since
our characterization is quite simple, our exercises may be of pedagogical interest as well.
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immediately after a new patent is filed.

It is worth noting that the tradeoff between patent length and breadth in the former

case depends on the level rather than the decomposition of the social surplus. In particu-

lar, a better patent that generates a larger social surplus is shorter but broader. Moreover,

the patent breadth (cutoff) ẑ does not jump (up or down) when the current patent expires

at time T , i.e., the optimal policy maintains the same idea selection criterion regardless

of the state (expired or not) of the current patent. To understand this intuitively, let us

first consider the simpler scenario where all patents are expired. The product market is

fully competitive so there is no deadweight loss. Therefore, the social surplus generated

by the current (expired) patent is fully realized and accrues to consumers. The planner

chooses idea selection criterion (cutoffs) to balance having a new innovation sooner versus

having a better innovation. Note that, when waiting for the next innovation, she collects

the social surplus generated by the current patent. If this social surplus is large, it is less

costly for her to wait for better innovation. Hence, she will be more selective and thus

set a higher cutoff (i.e., bigger patent breadth). In other words, there is a “replacement

effect” from the planner’s perspective, analogous to the standard Arrow’s “replacement

effect” from the incumbent’s perspective.

Next consider the alternative scenario where there is an active patent. In this case,

a feasible patent policy must deliver the patent duration promised to the current patent.

The optimal patent length T must be chosen such that the shadow price of this promise-

keeping constraint equals exactly the flow deadweight loss. As a result, the welfare cost as-

sociated with patent monopoly, which equals the patent duration multiplying the shadow

price, does not depend on the specific mix of patent length and breadth. This implies

that, when choosing the cutoffs, the planner faces exactly the same tradeoff as in the case

with no active patent. Therefore, the idea selection criterion must be the same before

and after the patent expires, and the decomposition of the social surplus has no effect on

choosing the cutoff.

Although the decomposition of the social surplus does not play a role in structuring

a given reward, it is crucial in determining the optimal size of the reward. Building on

the characterization of optimal patent length and breadth, we show that a patent should

obtain a larger reward if its deadweight loss represents a smaller fraction of its social

surplus.

Finally, we adapt our analysis to the incremental innovation setting where the pricing

of the new product is constrained by the old ones. The optimal policy in this setting

is similar to what we find in a radical innovation setting. The optimal patent breadth

is constant, and different reward sizes are delivered by varying the patent length which

could be finite or infinite.
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Our paper extends and complements earlier analyses of patent scope. Gilbert and

Shapiro (1990) and Klemperer (1990) first introduce patent breadth into Naudhaus’s

framework to investigate the optimal mix of patent length and patent breadth that delivers

a given patent reward. In a one-time innovation model with vertical variety, Gilbert and

Shapiro show that optimal patents have infinite patent length and different reward sizes

can be delivered by varying the patent breadth. In a one-time innovation model with

horizontal variety, Klemperer provides conditions under which optimal patent length is

finite and conditions under which optimal patent length is infinite.7 Both papers, however,

acknowledge that the assumption of single innovation is an important limitation in their

analysis, and call for an extension of their analysis to multiple innovations. This paper

introduces sequential innovation into the framework of Gilbert and Shapiro (1990), and

shows that optimal patents can be finite. Furthermore, the relative size of deadweight

loss (or the decomposition of social surplus) associated with patents does not play a role

in optimal structuring a given reward.8

Our analysis also contributes to the rapidly growing literature on sequential innova-

tions. Important papers in this area include Scotchmer (1991, 1996), Scotchmer and Green

(1990), Green and Scotchmer (1996), Chang (1995), O’Donoghue (1998), O’Donoghue,

Scotchmer, and Thisse (1998, OST hereafter), Hunt (2004), Hopenhayn, Llobet and

Mitchell (2006, HLM hereafter), and Bessen and Maskin (2009), among others. O’Donoghue

(1998), OST and HLM are the closest to our model. In a sequential innovation setting sim-

ilar to ours, O’Donoghue (1998) shows that a minimal patentability requirement (patent

breadth) can stimulate R&D because it increases the length of market incumbency. But

he considers only stationary policies with infinite patent length. We extend his analysis

by considering a broader class of patent policies with time-dependent patent breadth and

endogenous patent length. We characterize optimal patentability requirement and the

tradeoff between patent length and breadth.9

OST find that a broad patent with a short statutory patent life improves the diffusion

of new products, but a narrow patent with a long statutory patent life can lower R&D

costs. HLM adopt the mechanism design approach to characterize optimal patent policy

7Gallini (1992) introduces the possibility of costly imitation and shows that broad patents with finite
patent lives can be optimal in the one-time innovation setting.

8O’Donoghue, Scotchmer, and Thisse (1998) distinguish two types of patent breadth: “lagging
breadth” which protects against imitation, and “leading breadth” which protects against new innova-
tions. According to this terminology, the patent breadth analyzed in Gilbert and Shapiro (1990) and
Klemperer (1990) is more of a “lagging breadth” rather than a “leading breadth”, which is the focus of
this paper.

9We find that if the patent length is exogenously fixed, the optimal patent breadth is often time-
dependent. It is stationary, however, when the patent length is endogenously chosen. Hence, the station-
arity assumption in O’Donoghue (1998) is not without loss of generality.
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and find that the optimal patent policy is a menu of patents with infinite lengths but

different breadths.10

Our model builds on OST and HLM, but differs from theirs in at least two significant

ways. First, in OST and HLM (and O’Donoghue (1998)), consumers are homogenous and

thus there is no deadweight loss associated with a patent monopoly. In contrast, we allow

for a general form of monopoly inefficiency. Thus, the classical tradeoff between incentives

for innovation and deadweight loss, important in our analysis, is absent in their models.

Second, both OST and HLM focus on the incentives for post-invention development and

ignore the incentives for initial invention. In particular, they assume that ideas are free and

arrive exogenously. In our model, ideas are costly and the arrival process is endogenously

determined by firms’ research investments.11 As a result, our model can capture the

additional welfare cost of a patent monopoly in the form of a monopoly rent (or producer

surplus) which is dissipated through the rivalrous investments in research. Each feature

has important policy implications. For example, unlike in HLM, the optimal patent length

in our model can be finite or infinite.

We model the endogenous idea arrival process as a reduced-form patent race, following

Acemoglu and Cao (2010). They study a general equilibrium model with innovation by

both existing firms and entrants. The research and development in our model resembles

their entrant and incumbent innovation, but we focus on patent design while they focus

on the effect of innovation on growth and firm size distribution. Our paper is also related

to the recent analysis of state-contingent patent policy by Acemoglu and Akcigit (2011)

and Hopenhayn and Mitchell (2011). Both papers find that the optimal policy may favor

the technology leader rather than the follower.12

The remainder of the paper is organized as follows. Section 2 sets up the model and

formulates the planner’s optimization problem. Section 3 contains the characterization

of the optimal patent policy when there is no active patent. The characterization of

the optimal patent policy with an active patent is carried out in Section 4. Section

5 demonstrates how our analysis of radical innovation can be adapted to a setting with

incremental innovation. Section 6 concludes. All the proofs are relegated to the Appendix.

10The mechanism design approach was introduced to the patent design literature by Cornelli and
Schankerman (1999) and Scotchmer (1999).

11Banal-Estanol and Macho-Stadler (2010) and Scotchmer (2011) also make a distinction between re-
search and development, but their focus is quite different from ours. They investigate how the government
should subsidize research and development.

12There is a large literature on patent race, see for example, Dasgupta and Stiglitz (1980), Reinganum
(1982), and Harris and Vickers (1987). Recent growth models that incoporate sequential innovations
include Aghion, Harris and Vickers (1997), and Aghion, Harris, Howitt and Vickers (2001).
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2 Model Setup

Firms compete in innovation in continuous time. Innovation is sequential: new technolo-

gies must build on the old ones. The line of current and future products is modeled as

a “quality ladder”: a new product improves on the old one with higher quality or lower

cost or both. To ease exposition, innovation is assumed to be radical in the economic

sense: the new product completely drives out the old one at monopoly price. That is, the

new product selling at monopoly price is more attractive than the old one selling at the

marginal cost. We will remark later that this assumption is not critical for our analysis

(see Section 4.2). In addition, Section 5 will show how our analysis can be easily adapted

to the incremental innovation setting studied in HLM.

An innovation is carried out in two phases: a “research” phase to generate new ideas,

and a subsequent “development” phase to commercialize these ideas. Both research and

development activities, to be described below, are costly. The utilitarian social planner

and firms discount the future with a common discount rate r.

2.1 Research and Development

Every innovation starts with a new idea which can be used to improve the state of the art,

but new ideas are costly to generate. A large number of firms (or new entrants) invest in

research to generate new ideas. Following Acemoglu and Cao (2010), we assume that the

arrival rate of new ideas for each firm depends on both individual and aggregate research

investment. Specifically, if firm i invests Kit in research at time t, then firm i has a flow

rate of new ideas at time t equal to λit = γ (Kt)Kit, where Kt is the aggregate research

investment incurred by all firms in the market at time t, i.e., Kt =
∑

iKit. We assume

that γ (·) is continuous and strictly decreasing, which captures the idea that individual

research investment imposes negative externality on other research firms. The negative

externality may arise either because research firms draw ideas from a common idea pool

or because they compete for the same pool of research talents. We assume that the size of

individual investment Kit is small compared to the aggregate investment Kt, so all firms

will take Kt as given at time t. As a result, the individual arrival rate of new ideas to a

firm is linear in its own research investment.

Let λt denote the aggregate arrival rate of new ideas, that is, λt =
∑

i λit = Ktγ (Kt) .

We further assume that the aggregate arrival rate λt is strictly increasing in the aggregate

research investment Kt and that the following Inada-type condition holds:

lim
Kt→0

Ktγ (Kt)→ 0 and lim
Kt→∞

Ktγ (Kt)→∞.

Therefore, there is a unique λt associated with each patent policy. We assume there is no
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fixed entry cost and research firms are free to enter and exit at any point in time.

Once a firm has an idea, it has to decide whether to invest in development to trans-

form the idea into a viable product. An idea is either developed immediately or lost,

i.e., banking ideas is not possible.13 Moreover, a product can be freely imitated unless

patented. Therefore, once a firm generates a new idea, if patentable, it will immediately

apply for a patent and commercialize it. The profit flow generated by the new product

π̂ (κ, z), is increasing in both the idea quality z and the firm’s development investment κ.

The idea quality z is independently drawn from a distribution Φ (z) with support [0,∞)

and a density φ (z) > 0 for all z.

We will sometimes refer to the current patent holder at time t as the incumbent at

time t. Similar to OST and HLM, we assume that the incumbent, possibly due to the

replacement effect, does not invest in research to generate new ideas to replace its own

technology.14 This assumption helps rule out the possibility that a single firm may hold

two consecutive patents. It is a rather weak assumption in our setting because, given

a large number of research firms, the probability that a particular firm will obtain the

next patentable idea is negligible. If the patent policy is anonymous (i.e., independent of

firms’ identity), this assumption is innocuous: the incumbent indeed has no incentive to

invest in research because of the replacement effect and the fact that the expected profit

for each research firm is zero. This assumption is implicitly made in most of the patent

design literature.15

The size of research investment, the size of development investment, and the idea

arrival are the private information of respective firms, but the idea quality is assumed to

be publicly observable when a firm applies for patent.16

2.2 Patent Policy and R&D Investment

To provide firms with incentives to innovate, the social planner may grant a monopoly

right (patent) to a new idea held by a firm, which prevents other firms from producing

the patented product for a certain period of time. A patentee has market power on the

patented product until its patent terminates. Once the patent expires, the technology

becomes freely accessible and the price immediately drops to the level of marginal cost.

13See Erkal and Scotchmer (2009) for an analysis which allows innovators to bank ideas for future use.
14A similar assumption is made in Klette and Kortum (2004).
15A notable exception is Hopenhayn and Mitchell (2011) who study optimal patent policy in a setting

where two long-lived firms innovate repeatedly. But for tractability purpose, they assume that ideas are
homogeneous and the idea arrival process is exogenous.

16See HLM for an illustration of how a patent policy can be implemented with buyout schemes when
the idea quality is privately observed. In a related setting, Kramer (1998) proposes a clever auction
design to determine the private value of patents and thus facilitate the government to buy out patents.
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Let zn denote the idea of n-th patent which is currently active. Let ρn denote the

expected discounted length of the period that patent zn remains valid under a patent

policy P . That is, ρn is the expected discount duration of market incumbency, which we

also refer to as the patent duration of patent zn. Consider the incentives for the patent

holder to invest in development under policy P . We assume that both consumer demand

and production cost, conditional on product quality, do not vary over time, so the profit

flow π̂ (κ, zn) for patent zn is time-invariant during the period that patent zn is valid.

Then the equilibrium discounted payoff to the patentee when development investment κ

is chosen optimally is

π (ρn, zn) = max
κ

[π̂ (κ, zn) ρn − κ] . (1)

The equilibrium development investment κ (ρn, zn) will be a function of ρn and zn.

Condition (1) reveals that patent duration ρn plays a central role in the patentee’s

investment decision. First, to deliver this given reward ρn, the continuation play induced

by policy P must be consistent with ρn. Hence, the patent duration plays a similar role

in our setting as the “promised agent continuation utility” in the dynamic contracting

framework (Spear and Srivastrava (1987), Sannikov (2008)). Second, for a fixed zn, patent

duration ρn uniquely determines the equilibrium profits for the patent holder. Conditional

on ρn and zn, the patentee’s profit does not depend on the details of policy P . Therefore,

we can also refer to ρn as the reward size for patent zn. The planner’s problem of optimal

structuring a given reward ρn is to find the optimal P that maximizes the discounted

total social welfare and at the same time delivers ρn to patent zn.

We restrict attention to the class of patent policies under which a new idea is patentable

only if it does not infringe upon earlier patents. Therefore, the blocking patent situation17

described in Merges and Nelson (1990) is ruled out.18 This restriction, together with

our radical innovation assumption, implies that the current patent, if not yet expired,

terminates immediately after a new patent is approved, because the new patent is non-

infringing and will supersede the existing product in the market.

The planner can choose two patent instruments: an expiration time T for the current

patent zn (patent length), and a patent reward function for future ideas which may depend

on both idea quality and arrival time. Let t denote the calender time since patent zn is

approved. The patent reward function ρt(·) promises that if an idea z files for a patent at

time t it will obtain a patent duration ρt(z). Since the current patent terminates whenever

17A blocking patent is an earlier patent that must be licensed in order to market a later patent. This
often occurs between an improvement patent and the original one, when an improvement is patented but
the improvement patent infringes on the original one.

18Alternatively, we can assume that the current patent expires immediately after a new patent is filed,
a class of patent policies that HLM refer to as “exclusive rights” policies.
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a new patent is filed, and a patentable idea may arrive before T , the current patent may

terminate before T . OST call the expiration time as the statutory patent life and the

patent duration as the effective patent life.

We further restrict attention to patent policies with weakly increasing ρt(z).19 The fa-

miliar patent instrument, patent breadth, can then be derived from policy P = (T, {ρt(z)}∞t=0)

as follows. Let ẑt denote the minimal level of idea quality such that the patentee’s profits

π (ρt (ẑt) , ẑt) ≥ 0. Then a research firm with idea z at time t will file for a patent and

commercialize it if and only if z ≥ ẑt. We interpret the cutoff ẑt as the patent breadth of

the current patent at time t (see Figure 1).20

Figure 1: Patent breadth ẑt and reward function ρt(z)

When choosing policy P , the planner must obey the following constraint: the policy

P must deliver patent duration ρn that she promises to the current patent zn. Following

HLM, we refer to this constraint as the “promise-keeping” constraint. Formally, a feasible

patent policy P must satisfy

ρn =

∫ T

0

e−
∫ s
0 (λτ (1−Φ(ẑτ ))+r)dτds, (2)

where λt is the unique arrival rate of ideas at time t under policy P .21 We will describe

shortly how λt relates to P .

19Monotonicity is necessary for implementation (Cornelli and Schankerman 1999 and Scotchmer 1999).
20Our patent breadth is a leading breadth as defined in OST. It protects against new improved products.
21To understand this formula, let ρnt denote the remaining duration of the current patent at time t.

Then ρnt can be written recursively as

ρnt = dt+ λt (1− Φ (ẑt)) dt · 0 + e−rdt [1− λt (1− Φ (ẑt)) dt] ρnt+dt.

Subtracting both sides by e−rdtρnt, dividing both sides by dt, and let dt→ 0, we have

ρ̇nt − (λt (1− Φ (ẑt)) + r) ρnt = −1.

Using boundary condition ρnT = 0, we can find the solution to the ordinary differential equation and
obtain (2) by setting t = 0.
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The timing of the game between the n-th and (n+ 1)-th patent approval is the fol-

lowing: Immediately after a firm files for patent zn and obtains protection ρn, the planner

announces future patent policy P = {T (ρn) , {ẑt (ρn)}∞t=0 , {ρt(·, ρn)}∞t=0} that is con-

sistent with ρn. Then at time t = 0 the current patent holder (incumbent) chooses a

lump-sum development investment κ, and in every future period t research firms decide

whether to enter and how much to invest in research. The aggregate flow investment Kt

incurred by all research firms in period t generates new ideas with aggregate arrival rate

λt = Ktγ (Kt). If no patentable idea arrives before the expiration date T (ρn), the current

patent expires at time T . If a firm gets an idea zn+1 with zn+1 ≥ ẑt at time t, either before

T or after T , the firm files a new patent and obtains protection ρt (zn+1, ρn), and the old

patent zn, if not yet expired, terminates immediately. The new patentee becomes the

new incumbent. Now the new patent protection becomes ρn+1 = ρt (zn+1, ρn). The plan-

ner then announces a new policy P ′ = {T
(
ρn+1

)
,
{
ẑt
(
ρn+1

)}∞
t=0

,
{
ρt(·, ρn+1)

}∞
t=0
} that

is consistent with ρn+1. The process repeats.22 For notational simplicity, we sometimes

suppress the dependence of the patent policy instruments on ρn.

Next consider the entrants’ incentives to invest in research. Under policy P , the

instantaneous payoff for firm i at time t is given by

Kitγ(Kt)

∫ ∞
ẑt

π (ρt(ξ), ξ)φ (ξ) dξ −Kit = Kit

[
γ(Kt)

∫ ∞
ẑt

π (ρt(ξ), ξ)φ (ξ) dξ − 1

]
Free entry then implies that

γ(Kt)
∫∞
ẑt
π (ρt(ξ), ξ)φ (ξ) dξ ≤ 1 if Kit = 0,

γ(Kt)
∫∞
ẑt
π (ρt(ξ), ξ)φ (ξ) dξ = 1 if Kit > 0.

(3)

Therefore, if the equilibrium aggregate investmentKt is positive, we can deriveKt (ρt(·), ẑt)
as a function of the reward function ρt(·) and the cutoff ẑt at time t.

It is useful to introduce the arrival rate of patentable ideas u (ρt(·), ẑt) as

u (ρt(·), ẑt) ≡ λt [1− Φ (ẑt)] . (4)

Since γ (·) is assumed to be strictly decreasing, Kt (ρt(·), ẑt) must be strictly decreasing

in ẑt. Hence, λt = Ktγ (Kt) and u (ρt(·), ẑt) are also strictly decreasing in ẑt. To simplify

notation, from now on, we will write λ (ρt(·), ẑt) ≡ λt (Kt (ρt(·), ẑt)) and ut ≡ u (ρt(·), ẑt).
22Alternatively, the planner could commit to a patent policy that specifies a fully history-contingent

sequence of expiration time and reward functions for all future patentable ideas, not just the next one. It
is equivalent to our current formulation where the planner has to choose a new patent policy after every
new patent approval.
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2.3 The Patent Design Problem

Suppose the current patent has idea quality zn and is promised a patent duration ρn. The

social planner is utilitarian and chooses P to maximize the sum of the discounted payoff

to incumbents, entrants (research firms), and consumers, subject to the promise-keeping

constraint (2).

Let S (ρn, zn) denote the flow of total social surplus generated by the current patent,

consisting of the consumer surplus C (ρn, zn), the producer surplus P (ρn, zn), and the

efficiency loss χ (ρn, zn) associated with patent monopoly, i.e.23

S (ρn, zn) ≡ C (ρn, zn) + P (ρn, zn) + χ (ρn, zn) ,

where

P (ρn, zn) ≡ π̂ (κ (ρn, zn) , zn) . (5)

Functions S, C and P are assumed to be increasing in both arguments. In what follows,

χ (ρn, zn) is often referred to as the standard deadweight loss, but it could include other

sources of monopoly inefficiency.24 If the current patent expires after T , the production

market returns to competition and the full social surplus S (ρn, zn) is realized. If the

current patent terminates because a new patent zn+1 is filed before T with protection ρn+1,

the old deadweight loss χ (ρn, zn) is replaced by a new deadweight loss χ
(
ρn+1, zn+1

)
, a

result of the new monopoly.

We first formulate the continuation value for the planner at time T when the current

patent zn just expires. In this case, there is no promise for the planner to keep, and the

relevant policy instruments are the cutoffs and reward functions. Let V f (ρn, zn) denote

the continuation value in the “free” state with no active patent, when the expired patent

zn was awarded patent protection ρn. Then we can write V f (ρn, zn) as

V f (ρn, zn) = max
P

∫ ∞
0

{
utE [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ) |ξ ≥ ẑt]

+S (ρn, zn)−K (ρt(·), ẑt)

}
e−

∫ t
0 (uτ+r)dτdt,

where V (ρt (z) , z) denotes the continuation value for the planner immediately after a new

patent z is approved with promised patent duration ρt (z) and the development investment

κ (ρt (z) , z) is made. Here t denotes the calender time since the expiration of patent zn.

Note that the product prevailing in the current market is based on the expired patent zn.

23The functional form of S, C and P may differ across different generations of technologies. Hence, we
should index each function by n. To simplify notation, we suppress this index when no confusion arises,
but the reader should keep this in mind.

24For example, it could include the efficiency loss due to poor management practice (Bloom and Van
Reenen, 2007).
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To understand this formula, note that when no patentable idea arrives at time t, the

planner collects the full social surplus S (ρn, zn) due to competitive pricing, and in the

meantime she incurs a flow research cost of K (ẑt, ρt(·)). When a new patentable idea

ξ ≥ ẑt arrives at time t, a continuation payoff V (ρt (ξ) , ξ) is received and a development

investment κ (ρt (ξ) , ξ) is incurred. Finally, the arrival process of patentable ideas under

P is a non-homogeneous Poisson process with arrival rate ut which is defined in (4).

It follows from the free-entry condition (3) that

λ (ρt(·), ẑt)
∫ ∞
ẑt

π (ρt(ξ), ξ)φ (ξ) dξ = K (ρt(·), ẑt) ,

which is equivalent to

utE [π (ρt (ξ) , ξ) |ξ ≥ ẑt] = K (ρt(·), ẑt) . (6)

As argued in Posner (1975), the producer surplus or the rent captured by the monop-

olist should also be counted as part of the social cost of monopoly. In our model, the

research cost incurred in order to obtain a patent is, on the margin, equal to the total pro-

ducer surplus generated by the patent, as shown in the above rent-dissipation condition

(6). However, different from monopoly model considered in Posner (1975), the incurred

research cost here generates new ideas – a socially valuable by-product.

Therefore, we can rewrite V f (ρn, zn) as

V f = max
P

∫ ∞
0

{
utE [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ)− π (ρt(ξ), ξ) |ξ ≥ ẑt]

+S (ρn, zn)

}
e−

∫ t
0 (uτ+r)dτdt.

(7)

Intuitively, the conditional expectation term can be interpreted as the net expected sur-

plus generated by a new patentable idea, which is the future benefit (V ) minus the de-

velopment cost (κ) and the accumulated research cost (which is translated into π by the

rent-dissipation condition (6)).

After we formulate the continuation value V f (ρn, zn) , we can write the planner’s

continuation value V (ρn, zn) as

V (ρn, zn) = max
P


∫ T

0
{utE [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ) |ξ ≥ ẑt]} e−

∫ t
0 (uτ+r)dτdt

+
∫ T

0
[C (ρn, zn) + P (ρn, zn)−K (ρt(·), ẑt)] e−

∫ t
0 (uτ+r)dτdt

+e−
∫ T
0 (uτ+r)dτV f (ρn, zn)

 .

To understand this formula, note that under policy P , if an idea z arrives at time t <

T and z ≥ ẑt, the idea is patented and rewarded with patent duration ρt(z). After

incurring a lump-sum development cost κ (ρt(z), z), the planner receives continuation

payoff V (ρt (z) , z). During the inter-arrival period [0, t], the planner collects the flow
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of consumer surplus and producer surplus (C + P ) generated by the current patent but

she also incurs the flow aggregate research cost K (ρt(·), ẑt). If no patentable idea arrives

before T , which happens with probability exp
(
−
∫ T

0
uτdτ

)
, the current patent expires

and the planner gets continuation value V f (ρn, zn). Using the free-entry condition (3),

we can rewrite the planner’s problem as

max
P

{ ∫ T
0
utE [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ)− π (ρt(ξ), ξ) |ξ ≥ ẑt] e

−
∫ t
0 (uτ+r)dτdt

+
∫ T

0
[C (ρn, zn) + P (ρn, zn)] e−

∫ t
0 (uτ+r)dτdt+ e−

∫ T
0 (uτ+r)dτV f (ρn, zn)

}
.

As we discussed above, when choosing P , the planner has to respect the promising-keeping

constraint (2): ∫ T

0

e−
∫ s
0 (uτ+r)dτds = ρn.

3 Optimal Policy with No Active Patent

We first characterize the optimal patent policy in the “free” state with no active patent.

Since there is no active patent, there is no expiration date and the patent policy P consists

of a sequence of cutoffs {ẑt}∞t=0 and a sequence of reward functions {ρt(·)}
∞
t=0. To facilitate

the analysis, let us define Q (ut, ρt(·), ẑt) as:

Q (ut, ρt(·), ẑt) ≡ utE [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ)− π (ρt(ξ), ξ) |ξ ≥ ẑt] . (8)

With abuse of notation, we define

Q (ut) ≡ max
{ρt(·),ẑt: λ(ρt(·),ẑt)[1−Φ(ẑt)]=ut}

Q (ut, ρt(·), ẑt) , (9)

Therefore, Q (ut) is the flow payoff that is translated from the expected net surplus

associated with future innovation when patentable ideas arrive at rate ut. Note that

state variables ρn and zn enter the Q function only through ut. We can rewrite the value

function V f (ρn, zn) as 25

V f (ρn, zn) = max
{ut}∞t=0

∫ ∞
0

[Q (ut) + S (ρn, zn)] e−
∫ t
0 (uτ+r)dτdt.

25The reformulation is based on the following observation:

max
{ut,ρt(·),ẑt}∞t=0

∫ ∞
0

[Q (ut, ρt(·), ẑt) + S (ρn, zn)] e−
∫ t
0 (uτ+r)dτdt

= max
{ut}∞t=0

∫ ∞
0

{
max

{ρt(·),ẑt: λ(ρt(·),ẑt)[1−Φ(ẑt)]=ut}
Q (ut, ρt(·), ẑt) + S (ρn, zn)

}
e−

∫ t
0 (uτ+r)dτdt.
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Let λ denote the maximal arrival rate of ideas at time t that can be possibly induced

in equilibrium. Since ẑt ≥ 0 and ρt (z) ≤ 1/r for all z, we must have

λ = γ (Kmax)Kmax, (10)

where Kmax is the unique solution to the equation (3) when ẑt = 0 and ρt (z) = 1/r for

all z, which is replicated here:

γ(Kmax)

∫ ∞
0

π (1/r, ξ)φ (ξ) dξ = 1.

Let us define u∗ (ρn, zn) as

u∗ (ρn, zn) = arg max
u∈[0,λ]

Q (u) + S (ρn, zn)

u+ r
. (11)

Note that the expression inside the arg max operator represents the continuation value

generated by a constant arrival rate u in the absence of an active patent. Hence, u∗

maximizes the continuation value among all constant arrival rates u ∈
[
0, λ
]
. If the

maximizer is not unique, we pick the smallest one. The following proposition characterizes

the optimal policy when there is no active patent.

Proposition 1 In the absence of active patents, a policy with ut = u∗ (ρn, zn) for all t is

optimal. The continuation payoff V f (ρn, zn) is given by

V f (ρn, zn) =
Q (u∗ (ρn, zn)) + S (ρn, zn)

u∗ (ρn, zn) + r
. (12)

Intuitively, when there is no active patent, the environment is stationary up to the

arrival of the next patentable idea, as is the optimal patent policy. Note that a higher

arrival rate u affects the continuation value through three channels. First, the expected

waiting time for the next innovation is smaller, which increases the continuation value.

Second, the patent breadth or quality cutoff is smaller so the expected quality of the

next innovation is lower, which decreases the continuation value. Third, the planner

has a shorter time span to collect the social surplus S (ρn, zn) generated by the current

(expired) patent zn, which also hurts the continuation value. The optimal arrival rate

of patentable ideas is constant and chosen appropriately to balance these three possible

effects.

To conclude this section, we argue that u∗ (ρn, zn) is interior and thus must satisfy the

first-order condition for problem (11). By definition, u∗ (ρn, zn) ∈
[
0, λ
]
. If u∗ (ρn, zn) = 0,

innovation stops. If u∗ (ρn, zn) = λ, the planner must set ρt (z) = 1/r for all z and t. As a

result, once an idea arrives and a new patent is filed and commercialized, innovation again
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stops. Neither case is realistic or interesting. Therefore, we assume u∗ (ρn, zn) ∈
(
0, λ
)

for all (ρn, zn). By the definition of u∗ (ρn, zn) and Proposition 1, we must have

Q′ (u∗ (ρn, zn)) = V f (ρn, zn) . (13)

To ease notation, we will suppress the dependence of u∗ on (ρn, zn) when no confusion

will arise.

4 Optimal Policy with Active Patent

This section will characterize the optimal patent policy when there is an active patent

zn with a promised patent duration ρn. Using the notation Q (ut), we can rewrite the

planner’s optimization problem as

V (ρn, zn) = max
T,{ut}∞t=0

{ ∫ T
0

[Q (ut) + C (ρn, zn) + P (ρn, zn)] e−
∫ t
0 (uτ+r)dτdt

+V f (ρn, zn) e−
∫ T
0 (uτ+r)dτ

}
(14)

subject to the promise-keeping constraint (2).

4.1 Reformulation of the Planner’s Problem

We first reformulate the planner’s problem into a standard optimal control problem by a

sequence of changes of variables. Let’s define state variable x (t) as

x (t) = e−
∫ t
0 [u(τ)+r]dτ

with boundary conditions x0 = 1 and xT free. Then we have

ẋ (t) = − [u (t) + r]x (t) , (15)

which implies that

x(T ) = 1−
∫ T

0

[u (t) + r]x (t) dt. (16)

Let us introduce another state variable y (t) which is defined as

y (t) =

∫ t

0

x (s) ds. (17)

Then we can replace the promise-keeping constraint (2) by

ẏ (t) = x (t) with boundary condition y0 = 0 and yT = ρn. (18)
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Let u (t) be the control variable and (x (t) , y (t)) be the state variables. We use expression

(16) to rewrite the planner’s problem as

max
T,u(t)

∫ T

0

[
Q (u (t)) + C + P − (u (t) + r)V f

]
x (t) dt+ V f

subject to : ẋ (t) = − [u (t) + r]x (t) (19)

: ẏ (t) = x (t) (20)

: x0 = 1 and xT free (21)

: y0 = 0 and yT = ρn (22)

: u (t) ∈ U ≡
{
u : 0 ≤ u ≤ λ

}
(23)

From now on, we will refer to this concave optimal control problem as Program C. Math-

ematically, it is an optimal control problem with free terminal time.

4.2 Optimal Structuring of Given Reward

We assume for now that the function Q (u) is strictly concave in u, which will be relaxed

in Section 4.4. The Hamiltonian is given by

H (x, y, u, p1T , p2T , t) =
[
Q (u (t)) + C + P − (u (t) + r)V f

]
x (t)

−p1T (t) [u (t) + r]x (t) + p2T (t)x (t) , (24)

where p1T (t) and p2T (t) are the adjoint functions associated with (19) and (20), respec-

tively. Define Ĥ (x, y, p1T , p2T , t) as the maximum value of the Hamiltonian when u is

chosen optimally:

Ĥ (x, y, p1T , p2T , t) ≡ max
u

H (x, y, u, p1T , p2T , t) . (25)

Let uT (t) denote the optimal control that solves Program C, and let xT (t) and yT (t)

denote the associated optimal path.

To facilitate the analysis, we introduce two more notations: un and T ∗. First, we

define un as

ρn =

∫ ∞
0

e−
∫ s
0 (un+r)dτds =

1

un + r
. (26)

That is, a patent policy with ut = un for all t delivers patent duration ρn. Next, we define

T ∗ as the solution to the following equation:

ρn =
(
1− e−(u∗+r)T ∗

)
/ (u∗ + r) . (27)

That is, a patent policy with T = T ∗ and ut = u∗ for all t ≤ T ∗ delivers patent duration

ρn. Note that T ∗ is finite if and only if u∗ < un.
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We first consider the infinite horizon case where T is exogenously fixed at ∞. In this

case, the optimal policy is simple: set a constant cutoff through time such that the patent

duration ρn is delivered.

Proposition 2 (Concave Q, Infinite Horizon) Suppose Q is strictly concave. The

optimal solution to Program C with T =∞ is u∞ (t) = un for all t, and

V ∞ (ρn, zn) = ρn [Q (un) + C (ρn, zn) + P (ρn, zn)] . (28)

In the prior literature, much attention has been paid to settings where the idea arrival

process is exogenous (e.g., OST and HLM). For comparison, suppose innovation ideas

occur randomly and freely to individual research firms, and the aggregate arrival rate λ

of new ideas is exogenously fixed. We can characterize the optimal policy with exogenous

arrival of ideas as a corollary of Proposition 2, by showing that Q is necessarily concave if

the idea arrival process is exogenous. It replicates the characterization of optimal policy

in HLM where the idea arrival process is assumed to be deterministic and exogenous.

Corollary 1 Suppose the arrival process of new ideas is exogenous with arrival rate λ.

Further assume that the patent length is fixed at infinity (i.e., T = ∞). Then Q (u) is

concave in u. Therefore, the optimal policy sets u (t) = un for all t.

Next we consider our main interest, the case where T is optimally chosen and is finite.

Given the concavity of Q and the characterization of optimal policy in Proposition 1, we

conjecture that the optimal solution uT (t) = u∗ for all t while the optimal patent length

T ∗ is implicitly defined in (27). To verify this solution, we apply the following sufficiency

theorem with free terminal time.

Consider Program C with free terminal time T ∈ [0, T̂ ], where T̂ is finite but can be

arbitrarily large. Suppose for each T ∈ [0, T̂ ], there exists a vector (xT (t) , yT (t) , uT (t) ,

p1 (t) , p2 (t)) defined on [0, T̂ ] satisfying the conditions in Arrow’s sufficiency theorem with

finite horizon. If xT (T ) is continuous in T , the set
{
p1T , p2T : T ∈ [0, T̂ ]

}
is bounded, and

the function

F (T ) ≡ H (xT (T ) , yT (T ) , uT (T ) , p1T (T ) , p2T (T ) , T )

has the property that there exists a T ∗ ∈ [0, T̂ ] such that

F (T ∗) = 0

F (T ) ≥ 0 for all T ≤ T ∗

F (T ) ≤ 0 for all T ≥ T ∗
, (29)

then (xT ∗ (t) , yT ∗ (t) , uT ∗ (t)) defined on [0, T ∗] solves Program C with free terminal time

T .26 Applying this theorem, we obtain the following characterization.

26Theorem 13 in Seierstad and Sydsaeter (1987), page 145. This sufficiency theorem is similar to
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Proposition 3 (Concave Q, Endogenous T) Suppose Q is strictly concave and T ∗ is

finite. The optimal solution to Program C with free terminal time T ∈ [0, T̂ ] is T = T ∗

and uT ∗ (t) = u∗ for all t. Moreover,

V (ρn, zn) = V f (ρn, zn)− χ (ρn, zn) ρn. (30)

The proof in the Appendix proceeds in two steps. The first step applies Arrow’s

sufficiency theorem with finite horizon to characterize the optimal patent policy with

finite and exogenous T , establishing the existence of the vector (xT (t) , yT (t) , uT (t) ,

p1 (t) , p2 (t)) that satisfies the conditions in Arrow’s sufficiency theorem. Building on

this characterization, the second step shows that the shadow price of the promise-keeping

constraint, p2T , is equal to the flow deadweight loss χ (ρn, zn) if and only if T = T ∗.

Specifically,

p2T < χ (ρn, zn) if T > T ∗

p2T = χ (ρn, zn) if T = T ∗

p2T > χ (ρn, zn) if T < T ∗
. (31)

This property is then used to verify condition (29).

To gather some intuition about the relationship (30), we insert the optimal solution

with finite T ∗ back into the objective function to obtain

V (ρn, zn) = [Q (u∗) + C (ρn, zn) + P (ρn, zn)] ρn + e−(u∗+r)T ∗V f (ρn, zn)

Using the relation between ρn and u∗ in (27) and the expression of V f in (12), we can

reduce the above expression for V to (30). Intuitively, the continuation value V (ρn, zn)

with an active patent equals the continuation value with no active patent V f (ρn, zn)

minus the deadweight loss cumulated during the period that the patent is valid.

An alternative perspective to understand the relationship (30) between V and V f is

to compare the two maximization problems. They share the same objective function,

but the maximization problem for V has to respect the promise-keeping constraint (2)

while the maximization problem for V f is unconstrained. Since the shadow price p2T of

the promise-keeping constraint when T = T ∗ equals the deadweight loss χ (ρn, zn), the

social cost of maintaining the constraint is χ (ρn, zn) ρn. Hence, the relationship (30) is

expected: V should differ from V f by χ (ρn, zn) ρn.

This alternative perspective also provides intuition why the optimal solution uT ∗ (t) =

u∗ for all t. Because Q is concave, the optimal control is constant before T ∗ and after

Arrow’s sufficiency theorem with finite horizon. But with free terminal time, we need the additional
condition (29). Seierstad (1984) observes that F (T ) is the optimal value of Program C as a function
of the terminal time T , and condition (29) is sufficient for the optimal value F (T ) to be maximized at
T = T ∗.
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T ∗, but there is no a priori reason that uT ∗ (t) should not jump at t = T ∗ when the

current patent expires. However, since the optimal value of the planner’s maximization

problem before T ∗ and after T ∗ differs only by a constant χ (ρn, zn) ρn for given (ρn, zn),

the planner must face the same tradeoff before and after T ∗. It follows that the optimal

arrival rate of patentable ideas uT ∗ (t) should not jump at t = T ∗.

Proposition 3 has an important implication: for a given patent reward, a better patent

with higher social surplus should be broader but expire sooner. To see this, note that the

optimal solution u∗ is implicitly defined in (13):

Q′ (u∗) = V f (ρn, zn) =
Q (u∗) + S (ρn, zn)

u∗ + r

which implies that

Q′ (u∗) (u∗ + r)−Q (u∗) = S (ρn, zn) . (32)

By concavity of Q, Q′ (u∗) (u∗ + r)−Q (u∗) is decreasing in u∗, so u∗ is decreasing in the

size of total surplus S (ρn, zn). That is, a patent that generates a higher social surplus

should correspond to a smaller u∗. Further recall (9) that u∗ relates to the reward function

ρt (·) and patent breadth ẑt through the following constrained maximization problem:

max
ρt(·),ẑt

Q (u∗, ρt (·) , ẑt) (33)

subject to : λ (ρt (·) , ẑt) [1− Φ (ẑt)] = u∗.

Since u∗ is independent of t, the above maximization problem is time-invariant. As a

result, the optimal solution ρt (·) and ẑt must be independent of t, and we can write ρ (·)
and ẑ, respectively. Moreover, the patent breadth ẑ is decreasing in u∗. Therefore, one

should reward an innovation of higher social surplus S (ρn, zn) by a broader but shorter

patent.

The intuition for the tradeoff between patent length and breadth is as follows. For

the case with no active patent, the product market is fully competitive and there is no

efficiency loss. As we pointed out earlier, the planner faces the tradeoff between having

a new innovation sooner or having a better innovation. When the planner is waiting for

the next innovation, she is also collecting the social surplus, S (ρn, zn), generated by the

current (expired) patent. Therefore, the larger the social surplus, the smaller the waiting

cost, and the more selective the planner’s choice of patentable innovation, which implies

a higher optimal cutoff ẑ. As a result, there is a replacement effect from the planner’s

perspective, akin to the standard Arrow’s replacement effect from the incumbent firm’s

perspective. Since the social cost to maintain the promise-keeping constraint is constant

for a given reward, the above cutoff ẑ is also optimal for the setting with an active patent.

To complete the characterization of the socially optimal mix of patent length and

breadth for a given reward, we need to compare social welfare under optimal policy with
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T < ∞ with social welfare under optimal policy with T = ∞. Note that we cannot

directly apply the above sufficiency theorem with free terminal time by allowing T̂ to

take∞, i.e., T̂ ∈ (0,∞)∪{∞}, because the theorem requires that uT (T ) is continuous in

T for all T ∈ [0, T̂ ] but uT (T ) is not continuous in the limit T =∞ as long as u∗ 6= un. To

see this, note that the boundary condition uT (T ) = u∗, condition (48) in the Appendix,

for the optimal control with finite T does not depend on T . But with T = ∞, we have

u∞ (t) = un for all t. Therefore, limT→∞ uT (T ) 6= u∞ (∞) as long as u∗ 6= un.

Proposition 4 (Optimal Policy, Concave Q) If u∗ (ρn, zn) < un, then the optimal

policy sets T = T ∗ (ρn, zn) and u (t) = u∗ (ρn, zn) for all t. If u∗ (ρn, zn) ≥ un, then the

optimal policy sets T =∞ and u (t) = un for all t.

Therefore, for a given reward size ρn, if the social surplus S (ρn, zn) associated with

patent zn is high, patent zn will have a finite patent length but enjoy broader protection.

On the other hand, if patent zn generates a low social surplus S (ρn, zn), it will have an

infinite patent length but enjoy narrower protection.

Finally, we would like to point out that the radical innovation assumption is not

critical for the above analysis. If innovation is not radical, so that the pricing of a new

product is constrained by the competition from an existing product, then the price of

the new product based on the n-th patent may depend on the (n− 1)-th patent. The

equilibrium price will not affect the social surplus S (ρn, zn) generated by the n-th patent

but will affect its decomposition. That is, consumer surplus C, producer surplus P and

deadweight loss χ will be functions not only of ρn and zn, but also of ρn−1 and zn−1.

As a result, ρn−1, zn−1, ρn,and zn will directly enter the function Q. With non-radical

innovation, condition (32) for u∗ becomes

Q′
(
u∗; ρn−1, zn−1, ρn, zn

)
(u∗ + r)−Q

(
u∗; ρn−1, zn−1, ρn, zn

)
= S (ρn, zn) .

Therefore, the analysis of non-radical innovation will be qualitatively similar to the case

of radical innovation. In Section 5, we demonstrate how to adapt our analysis to a special

setting with incremental innovation.

4.3 Optimal Reward Size: Higher Deadweight Loss, Smaller Re-

ward

Thus far we have characterized the optimal mix of patent length and breadth to deliver

a given reward size. Most of the literature on patent design stops here, for example,

Gilbert and Shapiro (1990) and Klemperer (1990). Another important question of patent

design left answered is how much to reward each innovation. As pointed out by Gilbert
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and Shapiro (1990), to derive optimal reward size, one needs additional knowledge about

the demand and supply conditions for innovation. Moreover, this question is also less

tractable. Hence, we content ourselves here by delineating factors that are important in

determining the optimal reward size. In particular, we demonstrate how the decomposi-

tion of social surplus, the fraction of social surplus being the deadweight loss, affects the

reward size.

To gain insight into this question, we relate the optimal control solution u (t) to the

two patent instruments: patent reward function ρ (·) and patent breadth ẑ. To ease

exposition, we again assume that Q is concave, and focus on the case where the optimal

patent length T ∗ is finite.

Recall from (33) that ρ (·) and ẑ solve the following constrained maximization problem:

max
ρ(·),ẑ

Q (u∗, ρ (·) , ẑ)

subject to : λ (ρ (·) , ẑ) [1− Φ (ẑ)] = u∗ (34)

where Q (u∗, ρ (·) , ẑ) is defined by (8). Given our earlier characterization of u∗ and V , the

functional form of Q can, in principle, be derived from our primitives. Using constraint

(34), we can write the cutoff ẑ as a function of the reward function ρ (·). By substituting

ẑ (ρ (·) , u∗) into the objective, we can rewrite the optimization problem as

max
ρ(·)

Q (u∗, ρ (·) , ẑ (ρ (·) , u∗)) .

Let Nε (z0) denote a small interval [z0 − ε, z0 + ε] around z0 with z0 − ε > ẑ. If ρ (z)

increases uniformly for all z ∈ Nε (z0) while keeping ρ (z) fixed for all z /∈ Nε (z0), then

ẑ (ρ (·) , u∗) increases.27 Intuitively, as the reward for future ideas increases, the planner

can strengthen the patentability requirement and still maintain the same arrival rate of

the patentable ideas u∗. With small ε, the marginal gain due to an increase of ρ (z)

uniformly for z ∈ Nε (z0) can be approximated by

u∗
{
∂

∂ẑ
E [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ)− π (ρt(ξ), ξ) |ξ ≥ ẑt]

}
∂ẑ

∂ [ρ (z)]z∈Nε(z0)

+
u∗

1− Φ (ẑ)
(2φ (z0) ε) [Vρ (ρ (z) , z)− κρ (ρ (z) , z)− πρ (ρ(z), z)]

The first line represents the indirect effect by raising the patent breadth ẑ, while the

second line captures the direct effect. With some algebra (details in the Appendix), we

can rewrite Vρ (ρ, z)− κρ(ρ, z)− πρ (ρ, z) as

ρCρ(ρ, z)− χ (ρ, z) +

(
1

u∗ (ρ, z) + r
− ρ
)
Sρ (ρ, z)− P (ρ, z) . (35)

27By considering an increase in patent reward for a small set of z instead of a particular z, we ensure
that the indirect effect through the patent breadth ẑ is well-defined.
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The four terms in (35) capture four different sources of the direct effect. The first term,

ρCρ(ρ, z), is the positive externality on consumer surplus in the duration of the patent.

A bigger reward encourages the patentee to invest more to develop his idea into a better

product, generating higher consumer surplus in the patent duration ρ. But an increase

in ρ also increases the duration of the deadweight loss χ (ρ, z), which is the second term.

To understand the third term, note that, after the patent terminates but before the next

new patent is filed, consumers enjoy the total social surplus S. The expected waiting

time for the next new innovation is 1/ [u∗ (ρ, z) + r]− ρ, which is positive if T ∗ <∞ and

vanishes if T ∗ =∞.28 Therefore, the third term captures the accrued welfare gain during

this waiting period. Finally, an increase in ρ implies that the incumbent collects producer

surplus, P (ρ, z), for a longer period, which counts as a welfare cost because producer

surplus is fully dissipated through competition in research.

To conclude this subsection, we investigate how the decomposition of the social surplus

(C + P + χ) affects the optimal reward size. Suppose, for all ρ and z ∈ Nε (z0), χ (ρ, z) is

shifted up by ε > 0, and C (ρ, z) is shifted down correspondingly by ε, while leaving both

the producer surplus and the social surplus unchanged.29

Consider first the indirect effect of such a shift. Since the shift does not involve the

producer surplus, the incentives of research firms remain unchanged. As a result, it does

not affect the free-entry condition (3) which determines the aggregate flow of research

investment K (ρ (·) , ẑ) which will be the same before and after the shift. Furthermore,

since ẑ and ρ (·) are linked by

λ (K (ρ (·) , ẑ)) [1− Φ (ẑ)] = u∗,

the function ẑ (ρ (·) , u∗) is also not affected by such a shift. Note further that V (ρ, z) =

V f (ρ, z)− ρχ (ρ, z) and V f is not affected by such a shift, so V (ρ, z) is shifted down by

ρε. Therefore, the indirect gain due to an increase in ρ is smaller after the shift.

Next consider the direct effect. It is easy to see from (35) that the direct gain is also

smaller when χ (ρ, z) is shifted up by ε > 0. Hence, both direct and indirect effects go in

the same direction, which implies that an increase in the proportion of deadweight loss in

the total social surplus leads to a lower optimal reward. Therefore, the decomposition of

the total social surplus does not play a role in structuring a given reward, but it is crucial

in determining the size of the optimal reward.

28Note the reward ρ is linked to u∗ and T ∗ by (27) with ρ =
(
1− e−(u∗+r)T∗

)
/ (u∗ + r) .

29It may be due to, for instance, an decrease in the demand elasticity.
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4.4 Generalize to Nonconcave Q

So far we have assumed that the Q function is strictly concave. If Q is weakly concave,

we lose uniqueness but our previous analysis still works. If Q is not concave, we develop

a technique below, which we call convex envelope approach, to generalize our previous

analysis. We first form a concave function Q (u) from the original Q (u) by replacing all

its non-concave segments by corresponding linear segments as illustrated in Figure 2. We

refer to Q (u) as the convex envelope of the original function Q (u).

( )uQ

( )uQ

1u nu 2u u

Figure 2: Convex envelope

Recall that the value function V (ρn, zn) is given by:

V (ρn, zn) = max
{ut}∞t=0

{∫ T

0

[Q (ut) + C + P ] e−
∫ t
0 (uτ+r)dτdt+ V f (ρn, zn) e−

∫ T
0 (uτ+r)dτ

}
subject to the promise-keeping constraint (2). We define a new value function V (ρn, zn) ,

by replacing Q function by its convex envelope Q, as follows:

V (ρn, zn) = max
{ut}∞t=0

{∫ T

0

[
Q (ut) + C + P

]
e−

∫ t
0 (uτ+r)dτdt+ V f (ρn, zn) e−

∫ T
0 (uτ+r)dτ

}
subject to the same promise-keeping constraint. By the definition of Q (u), it is clear that

the optimal value V (ρn, zn) achieved with the convex envelope Q (u) is weakly higher

than the optimal value V (ρn, zn) achieved with the original function Q (u). The next

proposition shows that, in fact, V (ρn, zn) = V (ρn, zn).

Let u∗ and T ∗ be the arrival rate and expiration time defined with respect to the convex

envelope Q (u). Since u∗ is defined as the smallest u that maximizes
(
Q (u) + S

)
/ (u+ r),

u∗ cannot lie in the interior of a linear segment. Therefore, we must have Q (u∗) = Q (u∗).
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Proposition 5 (Optimal Policy, General Q) Suppose Q is not concave. Then V (ρn, zn) =

V (ρn, zn). Furthermore, the optimal policy is described as follows:

(1) Finite horizon (T ∗ <∞). The optimal policy sets T = T ∗ and u (t) = u∗ for all t.

(2) Infinite horizon (T ∗ =∞). If Q (un) = Q (un), the optimal policy sets u (t) = un for

all t. If Q (un) 6= Q (un), then un must lie on some linear segment of Q with end points

Q (u1) and Q (u2) and u1 < un < u2. The optimal policy sets u (t) = u1 if t ≤ τ and

u (t) = u2 if t > τ , where the transition time τ is chosen to keep the promise ρn:

ρn =
(
1− e−(u1+r)τ

) 1

u1 + r
+ e−(u1+r)τ 1

u2 + r
.

The characterization of the optimal policy with general Q function proceeds as follows.

We first construct the convex envelope Q, and apply Proposition 4 to the convex envelope

Q to obtain V (ρn, zn). Proposition 4 will also tell us whether optimal patents under

Q will have finite patent length. We then show that the optimal value V (ρn, zn) can

be achieved under the original function Q by choosing patent length T and control u (t)

appropriately.

Specifically, if optimal patents under Q have finite patent length, then the optimal

policy under Q and the optimal policy under Q coincide. Otherwise, the optimal patents

under Q will have infinite patent length. In the latter case, if un lies on a linear segment

of Q (see Figure 2), the optimal policy under Q is a “two-point” policy (u1, u2, τ), where

Q (u1) and Q (u2) are the two end points of the linear segment that Q (un) lies on, with

u1 < un < u2. The transition time τ is chosen such that the promise keeping constraint is

satisfied. If un does not lie on a linear segment of Q, then the optimal policy is u (t) = un

for all t.

5 Incremental Innovation

In this section, we assume that innovation is incremental so that the pricing of the new

technology is constrained by the old technology. We will sketch below how our previous

analysis can be adapted to this setting. To keep our exposition simple, we adopt the simple

setting studied in HLM, except that the idea generation process here is endogenous and

stochastic. We focus on the class of patent policies where the current patent expires

immediately after a new patent is filed.

There is a mass of one consumers, and their demand is completely inelastic. A new

product supersedes the old one by posting an incremental quality improvement ∆ (κ, z),

which is increasing in both development investment κ and idea quality z. The pricing of

the new product is constrained by the old technology, so the new product is sold at price

p = ∆. There is no cost associated with production in additional to the development cost.

26



Consider the patentee of the n-th innovation zn which is promised a patent duration ρn.

Its expected profits are given by

π (zn, ρn) = max
κ

[∆ (κ, zn) ρn − κ] .

Both equilibrium development investment κ (ρn, zn) and quality improvement ∆ (ρn, zn)

will be functions of the promised patent duration ρn and the idea quality zn. The research

process is the same as before, and the research investment at time t is characterized by

the same free-entry condition (3).

Consider the social welfare generated by the n-th innovation zn, discounted to the point

of time when the patent is filed. Given patent duration ρn and idea quality zn, the producer

surplus is ρn∆ (ρn, zn), and the consumer surplus is (1/r − ρn) ∆ (ρn, zn). Therefore, the

aggregate flow of consumer surplus and producer surplus is given by ∆ (ρn, zn). Since

consumer demand is completely inelastic, there is no deadweight loss: χ (ρn, zn) = 0.

As before, we can define the Q function as in (8) and (9), and formulate the continu-

ation value V f when there is no active patent as

V f = max
{ut}∞t=0

∫ ∞
0

Q (ut) e
−

∫ t
0 (uτ+r)dτdt, (36)

and write the continuation value V (ρn, zn) when there is active patent zn as

V (ρn, zn) =
1

r
∆ (ρn, zn) + max

{ut}∞t=0

∫ T

0

Q (ut) e
−

∫ t
0 (uτ+r)dτdt+ e−

∫ T
0 (uτ+r)dτV f (37)

subject to the promise-keeping constraint (2). The detailed algebra of obtaining (36) and

(37) is relegated to the Appendix which also contains the argument that in this setting

the optimal policy is independent of (ρn, zn).

Similar to the setting with radical innovation, we define u∗ as

u∗ ∈ arg max
u

[Q (u) / (u+ r)]

In other words,

Q′ (u∗) (u∗ + r)−Q (u∗) = 0. (38)

We define un and T ∗ as in (26) and (27).

Proposition 6 With incremental innovation, when there are no active patents, a sta-

tionary policy with ut = u∗ for all t is optimal.

This proposition is analogous to Proposition 1, and we omit its proof. A notable

difference is that the optimal arrival rate u∗ is independent of the idea quality zn and

the patent duration ρn of the current patent. We also obtain an analogous relationship
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between u∗ and V f as described in (13): Q′ (u∗) = V f . Our previous analysis with radical

innovation applies with minor modifications. We state without proof the main result of

this section.

Proposition 7 Suppose Q is strictly concave. If u∗ < un, then the optimal policy sets

T = T ∗ and u (t) = u∗ for all t. If u∗ ≥ un, then the optimal policy sets T = ∞ and

u (t) = un for all t.

This proposition is the counterpart of Proposition 4. The assumption of concave Q

can be relaxed using the convex-envelope approach we developed earlier.

We conclude this section with a comment on the choice of T . In HLM, ideas arrive

exogenously, so the planner never needs to worry about the research incentives. Moreover,

since there is no deadweight loss, and a larger patent duration yields stronger commer-

cialization incentives, a patent should never expire before a new patentable idea arrives.

In our model, the patent policy has an impact on research incentives as well, and the

planner takes this effect into account when choosing the policy. As a result, the planner

may want to restrict the size of the reward in order to curb socially excessive research.

6 Concluding Remarks

We build a sequential innovation model where both incentives and welfare costs are mul-

tidimensional. We characterize the optimal mix of patent length and breadth, identify a

“replacement effect” from the planner’s perspective, and demonstrate that the level and

decomposition of the social surplus generated by innovation play different role in optimal

patent design.

Several simplifying assumptions are made to facilitate our analysis. First, we assume

that the current patent expires or terminates whenever a new patent is approved, so

blocking patents are assumed away. We suspect that blocking patents should never be

allowed in optimal patent policy under some general conditions, but we are unable to

prove so. Second, we do not allow firms to bank ideas, so new ideas are either developed

immediately or lost. Third, licensing is not allowed in our model. Relaxing some or all of

the above assumptions would allow a more complete investigation of various tradeoffs in

optimal patent design. Finally, our model treats research and development separately, so

it is possible to introduce market for ideas into our model. We leave such extensions for

future research.
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7 Appendix: Proofs and Omitted Algebra

Proof of Proposition 1. The planner’s value function has an upperbound:∫ ∞
0

[Q (ut) + S (ρn, zn)] e−
∫ t
0 (uτ+r)dτdt

=

∫ ∞
0

Q (ut) + S (ρn, zn)

ut + r
(ut + r) e−

∫ t
0 (uτ+r)dτdt

≤
(

max
u

Q (u) + S (ρn, zn)

u+ r

)∫ ∞
0

(ut + r) e−
∫ t
0 (uτ+r)dτdt

= max
u

Q (u) + S (ρn, zn)

u+ r
.

The last equality follows from the fact that∫ ∞
0

(ut + r) e−
∫ t
0 (uτ+r)dτdt = 1.

This upperbound is achieved by setting ut = u∗ (ρn, zn) for all t.

Proof of Proposition 2. We use (14) to write Program C with infinite horizon as30

max
u(t)

∫ ∞
0

[Q (u (t)) + C + P ]x (t) dt

subject to : ẋ (t) = − [u (t) + r]x (t)

: ẏ (t) = x (t)

: x0 = 1 and x∞ free

: y0 = 0 and y∞ = ρn

: ut ∈ U ≡
{
u : 0 ≤ u ≤ λ

}
Let (x∞ (t) , y∞ (t)) denote the optimal path corresponding to our candidate control

u∞ (t) = un.

We apply the infinite horizon version of the Arrow sufficient theorem.31 We first find a

pair of continuous and piecewise continuously differentiable functions p1∞ (t) and p2∞ (t)

that satisfy the following adjoint equations

ṗ1∞ (t) = −Q (un)− C − P + p1∞ (t) (un + r)− p2∞ (t)

ṗ2∞ (t) = 0

30Alternatively, we can formulate the objective function in Program C with infinite horizon as∫ ∞
0

[
Q (u (t)) + C + P − (u (t) + r)V f

]
x (t) dt+ V f .

This formulation is closer to the one that we used to analyze the finite horizon case. The same procedure
leads to the same characterization of the optimal policy.

31Theorem 14 in Seierstad and Sydsaeter (1987), page 236.
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and the maximum principle:

H (x∞, y∞, un, p1∞, p2∞, t) ≥ H (x∞, y∞, u, p1∞, p2∞, t) for any feasible u.

The maximum principle implies that

∂H (x∞, y∞, un, p1∞, p2∞, t)

∂u
= [Q′ (un)− p1∞ (t)]x∞ (t) = 0

Therefore, p1∞ (t) = Q′ (un), which implies that ṗ1∞ (t) = 0. As a result, we obtain from

the two adjoint conditions that

p1∞ (t) = Q′ (un) ,

p2∞ (t) = Q′ (un) (un + r)−Q (un)− C − P.

It is straightforward to verify that these two functions indeed satisfy adjoint conditions

and the maximum principle.

Next, we need to verify that these two functions satisfy the following transversality

condition:

0 ≤ lim
t→∞

[p1∞ (t) (x (t)− x∞ (t)) + p2∞ (t) (y (t)− y∞ (t))] for all x (39)

Note that

lim
t→∞

[p1∞ (t) (x (t)− x∞ (t)) + p2∞ (t) (y (t)− y∞ (t))]

= lim
t→∞
{Q′ (un) (x (t)− x∞ (t)) + [Q′ (un) (un + r)−Q (un)− C − P ] (y (t)− y∞ (t))}

= Q′ (un) lim
t→∞

(x (t)− x∞ (t)) + [Q′ (un) (un + r)−Q (un)− C − P ] lim
t→∞

(y (t)− y∞ (t))

= 0.

The last equality follows because x (t)→ 0, x∞ (t)→ 0 and y (t)→ ρn as t→∞.

Finally, we need to verify the Arrow’s concavity condition:

Ĥ (x, y, p1∞, p2∞, t)

= max
u

H (x, y, u, p1∞, p2∞, t)

= max
u
{[Q (u (t)) + C + P ]x (t)− p1∞ (t) [u (t) + r]x (t) + p2∞ (t)x (t)}

= max
u
{[Q (u (t)) + C + P ]x (t)−Q′ (un) [u (t) + r]x (t) + [Q′ (un) (un + r)−Q (un)]x (t)}

= x (t) max
u

[Q (u (t)) + C + P −Q (un)−Q′ (un) (u (t)− un)]

The third equality follows by substituting expressions for p1∞ (t) and p2∞ (t). Thus,

Ĥ (x, y, p1, p2, t) satisfies the Arrow’s concavity condition. Thus, u∞ (t) = un is optimal,

and (28) follows by inserting u∞ (t) = un into the objective.
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Proof of Corollary 1. The social planner’s optimization problem becomes

max
{ut}∞t=0

∫ ∞
0

[QE (ut) + C + P ] e−
∫ t
0 (uτ+r)dτdt subject to

∫ ∞
0

e−
∫ s
0 (uτ+r)dτds = ρn,

where

QE (ut) ≡ max
ρt(·)

QE (ut, ρt(·))

= max
ρt(·)

{
utE

[
V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ) |ξ ≥ Φ−1 (1− ut/λ)

]
+ C + P

}
Let ρ∗t (·) and ẑt denote the optimal reward function and cutoff function corresponding to

the optimal arrival rate of ideas ut. Then ẑt = Φ−1 (1− ut/λ) and

ρ∗t (·) = arg max
ρt(·)

QE (ut, ρt(·)) . (40)

If we write η (u) ≡ ẑt (u) , then by definition, u = λ [1− Φ (η (u))] , which implies

1 = −λφ (η (u)) η′ (u) .

By Proposition 2, it is sufficient to show that QE (ut) is concave in ut. Note that

QE (ut, ρt(·)) can be written as

QE (ut, ρt(·)) = λ

∫ ∞
η(ut)

[V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ)]φ (ξ) dξ + C + P.

Therefore, by applying envelope theorem to problem (40), we have

Q′E(u) =
∂QE (ut, ρt(·))

∂ut
= −λ [V (ρ∗t (η (ut)) , η (ut))− κ (ρt (η (ut)) , η (ut))]φ (η (ut)) η

′ (ut)

= V (ρ∗t (η (ut)) , η (ut))− κ (ρ∗t (η (ut)) , η (ut))

Q′′E(u) = −d [V (ρ∗t (η (ut)) , η (ut))− κ (ρ∗t (η (ut)) , η (ut))]

dη (u)

1

λφ (η (ut))

= −d [V (ρ∗t (ẑt) , ẑt)− κ (ρ∗t (ẑt) , ẑt)]

dẑt

1

λφ (ẑt)

This implies that QE is concave if V (ρ∗t (ẑt) , ẑt)− κ (ρ∗t (ẑt) , ẑt) is increasing in ẑt.

To show that V (ρ∗t (ẑt) , ẑt)− κ (ρ∗t (ẑt) , ẑt) is increasing in ẑt, suppose the opposite is

true. That is, V (ρ∗t (ẑt) , ẑt)− κ (ρ∗t (ẑt) , ẑt) is strictly decreasing around some ẑt. There-

fore, we have a ẑt and a ẑ′t > ẑt, such that

V (ρ∗t (ẑt) , ẑt)− κ (ρ∗t (ẑt) , ẑt) > V (ρ̃∗t (ẑ
′
t), ẑ

′
t)− κ (ρ̃∗t (ẑ

′
t), ẑ

′
t) , (41)
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where ρ∗t is the optimal reward function corresponding to ẑt, and ρ̃∗t is the optimal reward

function corresponding to ẑ′t. Consider the following deviation: If idea ẑ′ arrives at time

t, provide it with protection ρ∗t (ẑt) instead of ρ̃∗t (ẑ
′
t). Since, everything else equal, a better

idea must deliver a higher continuation value minus development cost (lower innovation

cost or higher benefit), we must have

V (ρ∗t (ẑt) , ẑt)− κ (ρ∗t (ẑt) , ẑt) < V (ρ∗t (ẑt) , ẑ
′
t)− κ (ρ∗t (ẑt) , ẑ

′
t) (42)

Together with (41), this implies that

V (ρ̃∗t (ẑ
′
t), ẑ

′
t)− κ (ρ̃∗t (ẑ

′
t), ẑ

′
t) < V (ρ∗t (ẑt) , ẑ

′
t)− κ (ρ∗t (ẑt) , ẑ

′
t) .

Thus ρ̃∗t (ẑ′t) cannot be optimal. Therefore, V (ρ∗t (ẑt) , ẑt)−κ (ρ∗t (ẑt) , ẑt) must be increas-

ing. Thus QE(u) is concave.

Proof of Proposition 3. The proof consists of two steps. First we apply Arrow

Sufficiency Theorem with finite horizon to characterize optimal policy when T is exogenous

and finite. Second, we apply Arrow Sufficiency Theorem with free terminal time to

characterize optimal policy when T is optimally chosen and finite.

Step One. We claim that, if Q is strictly concave and T ∗ < ∞, the continuous

optimal control that solves Program C with fixed T ∈ [0,∞) must have the following

properties: (a) If T > T ∗, uT (t) must start at uT (0) > u∗ and reach u∗ from above at

time T ; (b) If T = T ∗, uT (t) must start at uT (0) = u∗ and remain there until time T ;

and (c) If T < T ∗, uT (t) must start at uT (0) < u∗ and reach u∗ from below at time T .

To verify the above claim, recall that the Hamiltonian is given by

H (xT , yT , uT , p1T , p2T , t) =
[
Q (uT (t)) + C + P − (uT (t) + r)

(
V f + p1T (t)

)
+ p2T (t)

]
xT (t) .

We first apply the optimal control theorem of necessary conditions to characterize the

property of optimal control uT (t).32 Let (xT (t) , yT (t)) defined on [0, T ] be the optimal

path associated with uT (t). Then there exists continuous and piecewise continuously

differentiable p1T (t) and p2T (t) such that

ṗ1T (t) = −∂H (xT , yT , uT , p1, p2, t)

∂x
= −Q (uT (t))− C − P + (uT (t) + r)

(
V f + p1T (t)

)
− p2T (t) (43)

ṗ2T (t) = −∂H (xT , yT , uT , p1, p2, t)

∂y
= 0 (44)

32Theorem 2 in Seierstad and Sydsaeter (1987), page 85.
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Moreover, the maximum principle implies that
p1T (t) ≥ Q′ (uT (t))− V f if uT (t) = 0

p1T (t) = Q′ (uT (t))− V f if uT (t) ∈
(
0, λ
)

p1T (t) ≤ Q′ (uT (t))− V f if uT (t) = λ

. (45)

Finally, p1T (t) must satisfy the following transversality conditions:

p1T (T ) = 0 (46)

Note that (44) implies that, for all t,

p2T (t) = p2T , (47)

for some constant p2T ≥ 0. By condition (46), we have p1T (T ) = 0. Therefore, by

definition of u∗ and the fact that u∗ ∈
(
0, λ
)
, condition (45) immediately implies that

uT (T ) = u∗. (48)

Moreover, condition (45) also implies that, when uT (t) is interior, uT (t) is continuous

because p1T (t) is piecewise continuously differentiable.

Suppose for some t, the optimal control uT (t) is interior, that is, uT (t) ∈
(
0, λ
)
. It

follows from condition (45) that, at points where p1T (t) is differentiable,

ṗ1T (t) = Q′′ (uT (t)) u̇T (t) . (49)

Hence uT (t) is differentiable at points where p1T (t) is differentiable. Moreover, (45) and

(47) establish that

ṗ1T (t) = −Q (uT (t))− C − P + (uT (t) + r)Q′ (uT (t))− p2T .

This equation, together with (49), implies that p1T (t) is twice differentiable at points

where p1T (t) is differentiable. Therefore,

p̈1T (t) = (uT (t) + r) ṗ1T (t) .

This condition implies that ṗ1T (t) never changes sign. It follows from (49) that u̇T (t)

does not change sign either. Therefore, uT (t) is either always weakly increasing or weakly

decreasing for all t ∈ [0, T ]. It follows immediately from the anchor condition (48) and

the promise-keeping constraint that the optimal control must take the form specified in

the proposition.

Next, we verify that the described candidate control is indeed the solution to Program

C with fixed and finite T by appealing to the finite horizon version of the Arrow sufficiency
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theorem.33 The sufficiency theorem claims that if the triple (xT (t) , yT (t) , uT (t)) defined

on [0, T ] satisfies not only the necessary conditions but also the following Arrow concavity

condition:

Ĥ (x, y, p1T , p2T , t) exists and is concave in x, y for all t ∈ [0, T ] , (50)

then (xT (t) , yT (t) , uT (t)) solves Program C. The proof takes advantage of two special

features of our Hamiltonian given in (24). First, it is concave in u if Q is concave, so its

maximizer is characterized by its first-order condition. Second, it is linear in xT (t) and

does not contain yT (t), so the Arrow concavity condition is trivially satisfied.

The functions p1T (t) and p2T (t) defined by (45) and (47) clearly satisfy (43), (44),

and (46). We need to verify that they also satisfy the maximum principle. Note that

∂H (xT , yT , u, p1T , p2T , t)

∂u
=
[
Q′ (u)−

(
V f + p1T (t)

)]
xT (t) ,

and H is concave in u by the concavity of Q. Therefore, the described optimal control

maximizes the Hamiltonian. Finally, we need to verify the Arrow’s concavity condition.

Note that

Ĥ (x, y, p1T , p2T , t) = max
u

H (x, y, u, p1T , p2T , t)

= max
u

[
Q (u) + C + P − (u+ r)

(
V f + p1T (t)

)
+ p2T (t)

]
x (t)

= x (t) max
u

[Q (u) + C + P − (u+ r)Q′ (uT (t)) + p2T ]

which is always linear in x. Thus, Ĥ (x, y, p1, p2, t) satisfies the Arrow’s concavity condi-

tion. Therefore, (xT (t) , yT (t) , uT (t)) solves Program C with fixed T ∈ [0,∞).

Step Two. By the claim in the previous step, we can set

p1T (t) = Q′ (uT (t))− V f , p2T (t) = p2T , uT (T ) = u∗.

In particular, when T is fixed at T ∗, uT ∗ (t) = u∗ for all t ∈ [0, T ∗]. Therefore, we have

p1T ∗ (t) = Q′ (u∗)− V f = 0 and thus ṗ1T ∗ (t) = 0. The adjoint equation involving p1T ∗ (t)

is given by (43):

ṗ1T ∗ (t) = −Q (u∗)− C − P + (u∗ + r)
(
V f + p1T ∗ (t)

)
− p2T ∗ (t)

It follows that

p2T ∗ = −Q (u∗)− C − P + (u∗ + r)
(
V f + p1T ∗ (t)

)
= −Q (u∗) + (u∗ + r)Q′ (u∗) .

33Theorem 5 in Seierstad and Sydsaeter (1987), page 107.
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It remains to verify condition (29). Note that, for interior uT (t), we can obtain the

following ordinary differential equation from (43), (44) and (45):

u̇T (t) =
1

Q′′ (uT (t))
[−Q (uT (t))− C − P + (uT (t) + r)Q′ (uT (t))− p2T ] , (51)

It follows from step one that, at points where uT (t) is differentiable, u̇T ∗(t) = 0, u̇T (t) ≤ 0

if T > T ∗ and u̇T (t) ≥ 0 if T < T ∗, and the inequality must be strict for some t. It follows

from (51), (13) and (12) that

p2T ∗ = −Q (u∗)− C − P + (u∗ + r)Q′ (u∗) = χ (ρn, zn) (52)

Equation (51) and boundary condition (uT (T ) = u∗) then imply that p2T < p2T ∗ if T > T ∗

and p2T > p2T ∗ if T < T ∗.

Further recall that the Hamiltonian is given by

H (xT , yT , uT , p1T , p2T , t) =
[
Q (uT (t)) + C + P − (uT (t) + r)

(
V f + p1T (t)

)
+ p2T (t)

]
xT (t) .

By definition of F (T ), we have

F (T ) = [Q (u∗) + C + P − (u∗ + r)Q′ (u∗) + p2T ]xT (T ) .

Therefore,

F (T ∗) = [Q (u∗) + C + P − (u∗ + r)Q′ (u∗) + p2T ∗ ]xT ∗ (T ∗) = 0.

Therefore, for all T < T ∗,

F (T ) = [Q (u∗) + C + P − (u∗ + r)Q′ (u∗) + p2T ]xT (T ) > 0.

For all T > T ∗,

F (T ) = [Q (u∗) + C + P − (u∗ + r)Q′ (u∗) + p2T ]xT (T ) < 0.

Since condition (29) holds, we conclude that T = T ∗ and uT ∗ (t) = u∗ for all t ∈ [0, T ∗]

solve Program C with free terminal time T.

In order to obtain (30), we insert the optimal solution with finite T ∗ back into the

objective function to obtain

V (ρn, zn) = [Q (u∗) + C (ρn, zn) + P (ρn, zn)] ρn + e−(u∗+r)T ∗V f (ρn, zn)

We apply (27) and (12) to obtain

V (ρn, zn) = [Q (u∗) + S (ρn, zn)− χ (ρn, zn)]
(
1− e−(u∗+r)T ∗

)
/ (u∗ + r)

+e−(u∗+r)T ∗V f (ρn, zn)

=
(
1− e−(u∗+r)T ∗

)
V f (ρn, zn)− χ (ρn, zn) ρn + e−(u∗+r)T ∗V f (ρn, zn)

= V f (ρn, zn)− χ (ρn, zn) ρn,
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which is exactly (30).

Proof of Proposition 4. First consider the case with u∗ < un. In this case, T ∗ <∞.

Therefore, the optimal policy with T <∞ will set T = T ∗ and the value function is

V (ρn, zn) =

∫ T ∗

0

[Q (u∗) + C + P ] e−
∫ t
0 (u∗+r)dτdt+ V f (ρn, zn) e−

∫ T
0 (u∗+r)dτ

= [Q (u∗) + C + P ] ρn + V f (ρn, zn) e−(u∗+r)T ∗

= [Q (u∗) + C + P ] ρn +Q′ (u∗) [1− ρn (u∗ + r)]

= [Q (u∗) + C + P ]
1

un + r
+Q′ (u∗)

(
un − u∗

un + r

)
=

1

un + r
[Q (u∗) + C + P +Q′ (u∗) (un − u∗)]

By concavity of Q, we have

V (ρn, zn)− V ∞ (ρn, zn) =
1

un + r
[Q (u∗) +Q′ (u∗) (un − u∗)−Q (un)] > 0.

Therefore, T = T ∗ and u (t) = u∗.

Next consider the case with u∗ ≥ un. In this case, T ∗ is not well-defined. Consider

the optimal policy with fixed T < ∞. Given the promise-keeping constraint and our

assumption that u∗ ≥ un, it follows from the proof for Proposition 3 that the only possible

path for optimal uT (t) is that uT (t) starts at uT (0) < u∗, increasing continuously and

approaching u∗ from below at time T . Therefore, there exists a time T0 ∈ (0, T ) such that{
uT (t) ≤ un if t ≤ T0

uT (t) ≥ un if t ≥ T0

.

In order to prove that the optimal policy sets T =∞ and u (t) = un for all t, it is sufficient

to show that V (ρn, zn)− V ∞ (ρn, zn) ≤ 0. Note that

V (ρn, zn)− V ∞ (ρn, zn)

=

∫ T

0

[
Q (uT (t)) + C + P − (uT (t) + r)V f

]
e−

∫ t
0 (uT (τ)+r)dτdt+ V f (ρn, zn)− Q (un) + C + P

un + r

=

∫ T

0

[Q (uT (t)) + C + P − (uT (t) + r)Q′ (u∗)] e−
∫ t
0 (uT (τ)+r)dτdt+Q′ (u∗)− Q (un) + C + P

un + r

=

∫ T

0

[Q (uT (t)) + C + P +Q′ (u∗) (un − uT (t))−Q (un)− C − P ] e−
∫ t
0 (uT (τ)+r)dτdt

=

∫ T0

0

[Q (uT (t)) +Q′ (u∗) (un − uT (t))−Q (un)] e−
∫ t
0 (uT (τ)+r)dτdt

+

∫ T

T0

[Q (uT (t)) +Q′ (u∗) (un − uT (t))−Q (un)] e−
∫ t
0 (uT (τ)+r)dτdt
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It follows from the concavity of Q that

V (ρn, zn)− V ∞ (ρn, zn)

≤
∫ T0

0

[Q (uT (t)) +Q′ (un) (un − uT (t))−Q (un)] e−
∫ t
0 (uT (τ)+r)dτdt

+

∫ T

T0

[Q (uT (t)) +Q′ (un) (un − uT (t))−Q (un)] e−
∫ t
0 (uT (τ)+r)dτdt

=

∫ T

0

[Q (uT (t)) +Q′ (un) (un − uT (t))−Q (un)] e−
∫ t
0 (uT (τ)+r)dτdt

≤ 0

This completes the proof.

Proof of Proposition 5. Finite Horizon (T ∗ <∞). By definition, u∗ is the minimal

solution to the following equation:

Q
′
(u∗) = V f (ρn, zn) .

Therefore, u∗ must either lie on a non-linear segment or lie on the lower end point of a

linear segment. This implies that Q (u∗) = Q (u∗). Therefore, optimal policy set u (t) = u∗

for all t and T = T ∗.

Infinite Horizon. If Q (un) = Q (un) then V (ρn, zn) = V (ρn, zn), because V (ρn, zn) is

attained under Q (u) by simply setting u (t) = un. If Q (un) 6= Q (un), then Q (un) must

lie on a linear segment of Q (u). Let Q (u1) and Q (u2) denote the two end points of this

linear segment, with u1 < un < u2. By definition of linear segment, Q (u1) = Q (u1) and

Q (u2) = Q (u2). Geometrically, we must have

Q (un) = Q(u1) +
Q (u2)−Q (u1)

u2 − u1

(un − u1) .

Therefore,

V (ρn, zn) = ρn
[
Q (un) + C + P

]
= ρn

[
Q(u1) +

Q (u2)−Q (u1)

u2 − u1

(un − u1) + C + P

]
.

Consider the following (u1, u2) policy which is feasible under Q (u):

u (t) =

{
u1 if t ≤ τ

u2 if t > τ
,

where the transition time τ is such that the promise-keeping constraint is satisfied:

ρn =
(
1− e−(u1+r)τ

) 1

u1 + r
+ e−(u1+r)τ 1

u2 + r
.
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Therefore, by definition of V (ρn, zn),

V (ρn, zn) ≥
∫ τ

0

[Q(u1) + C + P ] e−(u1+r)sds+ e−(u1+r)τ

∫ ∞
τ

[Q(u2) + C + P ] e−(u2+r)(s−τ)ds

= Q(u1)
(
1− e−(u1+r)τ

) 1

u1 + r
+Q(u2)e−(u1+r)τ 1

u2 + r
+ (C + P ) ρn

= Q (u1) ρn + [Q(u2)−Q (u1)] e−(u1+r)τ 1

u2 + r
+ (C + P ) ρn

= Q(u1)ρn + [Q(u2)−Q (u1)]
1

u1+r
− 1

un+r
1

u1+r
− 1

u2+r

1

u2 + r
+ (C + P ) ρn

= ρn

[
Q(u1) +

Q (u2)−Q (u1)

u2 − u1

(un − u1) + C + P

]
= V (ρn, zn)

Hence, we conclude V (ρn, zn) = V (ρn, zn) for T =∞.

Algebra for (35). Recall that with finite patent length, we have

V (ρ, z) = V f (ρ, z)− ρχ (ρ, z) ,

and

V f (ρ, z) =
Q (u∗ (ρ, z)) + S (ρ, z)

u∗ (ρ, z) + r
,

with Q′ (u∗ (ρ, z)) = V f (ρ, z). Therefore, applying envelope theorem to V f , we have

Vρ (ρ, z) = V f
ρ (ρ, z)− χ (ρ, z)− ρχρ (ρ, z) =

Sρ (ρ, z)

u∗ (ρ, z) + r
− χ (ρ, z)− ρχρ (ρ, z)

Furthermore, it follows from the first-order condition of the firm’s development invest-

ment decision that

ρ
∂π̂

∂κ
− 1 = 0⇒ ρ

∂π̂

∂κ
= 1

It follows from the definition of producer surplus (5) that πρ (ρ, z) = P (ρ, z) and

Pρ (ρ, z) =
∂π̂

∂κ
κρ(ρ, z).

Hence, we have

κρ(ρ, z) = ρPρ (ρ, z) .

Therefore, we can rewrite Vρ (ρ, z)− κρ(ρ, z)− πρ (ρ, z) as

Sρ (ρ, z)

u∗ (ρ, z) + r
− χ (ρ, z)− ρχρ (ρ, z)− κρ (ρ, z)− P (ρ, z)

=
Sρ (ρ, z)

u∗ (ρ, z) + r
− χ (ρ, z)− ρχρ (ρ, z)− ρPρ (ρ, z)− P (ρ, z)

= ρCρ(ρ, z)− χ (ρ, z) +

(
1

u∗ (ρ, z) + r
− ρ
)
Sρ (ρ, z)− P (ρ, z)
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which is exactly (35).

Algebra for (36) and (37). We first formulate the continuation value when there

is no active patent, which is given by

V f (ρn, zn) ≡ max
P

∫ ∞
0

{utE [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ) |ξ ≥ ẑt]−K (ρt(·), ẑt)} e−
∫ t
0 (uτ+r)dτdt.

We use the free-entry condition (3) to rewrite it as

V f (ρn, zn) ≡ max
P

∫ ∞
0

{utE [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ)− π (ρt(ξ), ξ) |ξ ≥ ẑt]} e−
∫ t
0 (uτ+r)dτdt.

Note that ρn and zn enter the value function V f only through policy instruments ut, ẑt

and ρt (z). It follows that the optimal patent policy and the continuation value V f (ρn, zn)

must be independent of ρn and zn. To see this, suppose that, for some (ρn, zn) 6= (ρ′n, z
′
n),

V f (ρn, zn) 6= V f (ρ′n, z
′
n) . Without loss, assume that V f (ρn, zn) > V f (ρ′n, z

′
n). Let

P(ρn, zn) and P (ρ′n, z
′
n) denote the optimal policy that attains V f (ρn, zn) and V f (ρ′n, z

′
n),

respectively. Note that policy P(ρn, zn) is also feasible when the previous patent is z′n
with patent duration ρ′n, a contradiction to the fact that P (ρ′n, z

′
n) is optimal. Therefore,

we can write V f as the continuation value to the planner in the absence of an active

patent.

The continuation value V (ρn, zn), when there is an active patent zn with protection

ρn, is given by

V (ρn, zn) =
1

r
∆ (ρn, zn)

+ max
P

{ ∫ T
0
{ut {E [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ) |ξ ≥ ẑt]}} e−

∫ t
0 (uτ+r)dτdt

−
∫ T

0
K (ρt(·), ẑt) e−

∫ t
0 (uτ+r)dτdt+ e−

∫ T
0 (uτ+r)dτV f

}
.

subject to the promise-keeping constraint (2). Again we use the free-entry condition to

rewrite it as

V (ρn, zn) =
1

r
∆ (ρn, zn)

+ max
P

{ ∫ T
0
utE [V (ρt (ξ) , ξ)− κ (ρt (ξ) , ξ)− π (ρt(ξ), ξ) |ξ ≥ ẑt] e

−
∫ t
0 (uτ+r)dτdt

+e−
∫ T
0 (uτ+r)dτV f

}
.

subject to the promise-keeping constraint (2). Using an analogous argument, we can show

that the optimal policy must be independent of ρn and zn. Once we reformulate V f and

V (ρn, zn) using notation Q, the expressions (36) and (37) immediately follow.
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