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Abstract

We propose a dynamic persuasion model of product adoption, where an

impatient, long-lived sender commits to a dynamic disclosure policy to per-

suade a sequence of short-lived receivers to adopt a new product. The sender

privately observes a sequence of signals, one per period, about the product

quality, and therefore the sequence of her posteriors forms a discrete-time

martingale. The disclosure policy specifies ex ante how the sender’s infor-

mation will be revealed to the receivers in each period. We introduce a new

concept called “Blackwell-preserving kernels” and show that if the sender’s

belief martingale possesses these kernels, the family of optimal strategies for

the sender takes an interval form; namely, in every period, the set of mar-

tingale realizations in which adoption occurs is an interval. Utilizing this,

we prove that if the sender is sufficiently impatient, then under a random

walk martingale, the optimal policy is fully transparent up to the moment

of adoption; namely, the sender reveals all the information she privately

holds in every period.

1 Introduction

In many practical applications of information design, the informed party (the

sender) is not always fully aware of the realized state of the world. This information

may be gradually revealed to her over time. For example, consider a government

during the COVID-19 pandemic who wants to maximize early vaccination rates

despite uncertainties about whether the vaccine is moderately effective or highly
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effective. The government prefers widespread vaccination for the collective benefit,

even if the vaccine is only moderately effective. However, individuals are willing

to be vaccinated only if their belief that the vaccine is highly effective exceeds

a certain threshold. The government periodically receives updates about vaccine

effectiveness from ongoing research and clinical trials, and must decide how to

share this sequentially arriving information with the public.

Similar scenarios include sellers introducing new products to potential buyers,

central banks releasing stress test results to prevent bank runs, or central banks

sharing foreign exchange market information to defend a currency peg. In all these

applications, the sender must decide how to reveal information to the receiver while

simultaneously learning about the underlying state, and the interests of the sender

and the receiver are not aligned.

If the sender can ex ante commit to a dynamic disclosure policy, how should the

sender reveal the information she privately learns over time? What is the central

tradeoff faced by the sender in deciding whether to reveal more information today

or withhold it until tomorrow? When is full transparency in every period optimal

for the sender?

To address these questions, we frame our dynamic persuasion model within the

context of product adoption. In this model, a long-lived sender commits in advance

to a dynamic disclosure policy to persuade a sequence of short-lived receivers to

adopt her new product. The quality of the product can be either high or low, and

is initially unknown to all parties. Each period, the sender receives a signal about

the product quality and follows the committed disclosure policy to partially reveal

what she has learned so far. In each period, a receiver (or a cohort of receivers)

arrives, observes both current and past revelations, and decides whether to adopt

the product. The sender aims to maximize early adoption rates regardless of the

product quality, while the receivers will adopt the product only if their belief that

the quality is high exceeds a certain threshold.1

The sender in our model faces a dilemma: prioritizing today’s adoption rate

may compromise tomorrow’s success rate. One approach is the greedy policy,

where the seller chooses information disclosure in each period to maximize the

probability of adoption for that period. Conversely, the sender can wait, revealing

no information initially, and then leverage the accumulated information later. As

1Equivalently, our model can be viewed as an interaction between a long-lived sender and a

single long-lived receiver; once the receiver’s posterior belief has exceeded the desired threshold

for adoption, the sender stops revealing information and the long-lived receiver adopts immedi-

ately.
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we will demonstrate, both policies can be optimal. More broadly, a significant

aspect of our analysis is the interplay between revealing information to persuade

today or waiting to learn more about the state and persuade tomorrow.

To gain insight for our analysis, it is useful to view our sender’s problem as

an optimal stopping problem. Note that the sender’s learning process can be fully

captured by a sequence of her posteriors or a belief martingale. Given that each

receiver’s action choice is binary, we can restrict the sender to issuing binary

recommendations: “adopt” or “do not adopt.” A disclosure policy specifies, for

each period and for every privately observed sender’s posterior, the probability of

sending an “adopt” recommendation. Since all current and past recommendations

are public, once a receiver follows an “adopt” recommendation, the sender will

stop releasing further information by issuing only “adopt” recommendations in all

future periods. All subsequent receivers have the same information as the receiver

who first adopts and hence will adopt as well. Therefore, if the sender is restricted

to use obedient disclosure policies where her recommendations are always followed,

then the game essentially stops as soon as the first “adopt” recommendation is

sent out.

Even though the sender’s problem can be viewed as a stopping problem, it is

more complex than the standard stopping problem with finite-dimensional state

variables. The complication arises because the state variables here are positive

measures which are generally infinite-dimensional. Without further restrictions to

the sender’s belief martingale, it is well known in the literature that such problems

become intractable as soon as the number of states exceeds three (see the literature

review below for a related discussion).

To provide a more tractable framework, we reformulate the sender’s optimiza-

tion problem so that the state variables are positive measures. This identification

is achieved by associating the state at any point in time with the remaining total

probability mass available to the sender for persuading the receiver. Our first

main contribution is the introduction of a new concept called Blackwell-preserving

kernels. This concept imposes a natural restriction on the sender’s belief martin-

gale, which is crucial to our analysis and may prove useful in other applications

involving martingales.

Recall that a probability kernel specifies the belief distribution for the next

period based on the sender’s current belief, defining a mapping between probability

measures. We call a probability kernel Blackwell order-preserving if it maintains

the Blackwell order on probability measures. Simply put, if one sender’s belief
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distribution today is Blackwell more informative than another sender’s and the

belief transition is governed by this kernel, the more informed sender will retain

this advantage tomorrow. Any belief martingale can be generated using a sequence

of probability kernels. A martingale is Blackwell-order preserving if each of its

probability kernels is Blackwell-order preserving. We demonstrate that several

standard martingales, such as those generated by conditionally independent signals

or those inducing a random walk, are Blackwell-order preserving.

Our second main contribution is to show that if the sender’s belief martingale

has Blackwell-preserving kernels, the class of optimal strategies for the sender has

a simple structure called interval policies (Theorem 1). Interval policies are a

class of policies in which the sender issues “adopt” recommendation if and only

if the posterior belief lies in a time-dependent closed interval around the desired

belief threshold for adoption.2 With this characterization, the sender only eeds to

choose the size of an interval around the adoption threshold for each period, which

essentially reduces the sender’s infinite-dimensional problem to a one-dimensional

one, making the problem much more tractable.

Our third contribution demonstrates how the characterization of interval poli-

cies can be used to derive optimal dynamic disclosure policies in various learning

environments. In particular, to approximate the motivating COVID-19 applica-

tion, we consider the case where the sender’s belief martingale is formed by a

random walk on the grid and the sender’s payoff is a discounted sum of her in-

stantaneous gains from adoption. We prove that as long as the sender’s discount

factor lies below a grid-dependent threshold, it is optimal for the sender to act

greedily in each period (Theorem 2). This provides a partial characterization of

conditions under which full transparency in every period is optimal for the sender.

1.1 Related Literature

This paper contributes to the growing literature on dynamic persuasion which ex-

tends the classical model of Bayesian persuasion ([Aumann et al., 1995, Kamenica

and Gentzkow, 2011]) to various dynamic settings.

One branch of literature focuses on a setting in which the state of the world

evolves as a Markov chain, and the sender privately observes the state in each pe-

2The optimality of interval policies has also been established in [Guo and Shmaya, 2019,

Guo et al., 2022b]. However, their models are very different from ours: their receiver is pri-

vately informed, their sender discloses information only once, and they need the likelihood ratio

dominance for the optimality of the interval policies.
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riod. [Renault et al., 2017] characterize cases in which the greedy policy (namely,

persuading optimally in each period) is optimal for a sender with discounted utili-

ties. This includes Markov chains with binary states and renewing Markov chains.

Our model is also a Markovian model once we identify the Markov chain’s states

with the posteriors of the sender. [Renault et al., 2017] demonstrate that the

problem becomes involved already for ternary states, while the above reduction

creates a Markov chain with as many states as the number of possible posteriors

of the sender along the learning process. This number is large (or even infinite) in

most of our applications and for this reason, their result is not directly applicable

in our setting. [Lehrer and Shaiderman, 2021] study, in the same setting, when is

the statically optimal value achievable in the dynamic setting. A continuous-time

analog of this setting, including some important binary-state examples has been

studied by [Ely, 2017].

Several papers such as [Henry and Ottaviani, 2019, Orlov et al., 2020, Bizzotto

et al., 2021, McClellan, 2022] study models in which, similarly to ours, the sender is

initially uninformed and dynamically learns the state. These models assume that

the information acquired by the sender is public to the sender and the receiver.

In contrast in our model, the sender receives costless information regardless of the

information he reveals to the receiver. Thus in contrast to these models, we allow

the sender to “accumulate” information.

A crucial aspect of our model is that the dynamically learned information is

exogenous and private to the sender. In particular, we assume that the learning

procedure is independent of the experiment that the information is revealed to the

receiver.3

Different sender’s objectives such as incentivizing exploration [Kremer et al.,

2014, Che and Hörner, 2018], maximizing suspense and surprise [Ely et al., 2015],

or maximizing effort [Ely and Szydlowski, 2020] have been studied in a dynamic

persuasion setting in the case where the sender is initially fully informed about

the state.

Several papers have developed models of dynamic persuasion to provide jus-

3We note that in the COVID example, one may argue that the number of vaccinated people

also affects the information available to the state. While this is true, we neglect this effect in our

analysis. Thus, we assume that information about the vaccine will be released (say, from other

sources) regardless of the number of vaccinated individuals. See [Guo et al., 2022a] for a two-

period model in which a seller uses dynamic pricing to affect a buyer’s learning based on their

first-period consumption. The feedback the buyer receives increases in the amount consumed in

the first period.
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tifications for the sender-optimal equilibrium outcome with commitment in the

model of static persuasion. For example, [Che et al., 2023] show in a model of

dynamic persuasion where information generation and processing are both costly

for the sender and the receiver that the sender-optimal outcomes in [Kamenica

and Gentzkow, 2011] can be approximated in a Markov perfect equilibrium as the

persuasion cost vanishes.4 [Best and Quigley, 2024] and [Mathevet et al., 2022]

show that, in a model where a long-lived sender plays a cheap-talk game against a

sequence of short-lived receivers, the sender-optimal equilibrium can be supported

by reputation.

Finally, besides the persuasion literature, there is also the literature on the

disclosure of verifiable information in dynamic settings. This includes [Au, 2015,

Knoepfle and Salmi, 2024]. Notice that the disclosure problem restricts the sender’s

strategies to the timing of revealing any evidence while the persuasion problem

allows for much richer policies for the sender which include a partial revelation of

these pieces of information and their timing.

2 The Model

In the section, we first set up the model. Then we provide two useful perspectives

of studying the model. In the first perspective, we view the persuasion problem

as an optimal stopping problem. This perspective is very useful conceptually, but

to solve our problem, we need the second perspective which is based on dynamic

programming with measures and sub-measures as state and control variables.

2.1 Model Setup

Consider a dynamic persuasion model where a long-lived sender (she) interacts

with a sequence of short-lived receivers (each, he) over T periods. The number of

periods can be either finite (T ∈ N) or infinite (T = ∞). There is an unknown

state ω ∈ {0, 1} which is randomly drawn according to a common prior π ∈ (0, 1)

with π = P(ω = 1).

In each period t = 1, 2, ..., T , the sender privately observes a noisy signal about

ω and chooses what to disclose to the receiver arriving in that period. The receiver

at time t must choose an action at from a binary action set A = {0, 1}, where
4See [Honryo, 2018] for an earlier contribution to dynamic persuasion with persuasion cost,

and [Escudé and Sinander, 2023] for a model of slow persuasion where the sender is restricted

to a graduality constraint.
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action at = 1 is called adoption. The utility of the receiver at time t depends on

his action at and the state ω:

u(ω, at) = ut(ω, at) =


0 if at = 0

1 if at = ω = 1

− l
1−l if at = 1, ω = 0.

Therefore, the receiver at time t prefers adoption if and only if his belief (of ω = 1)

lies in [l, 1]. To rule out the trivial case, we assume l > π.

Upon receiving each noisy signal, the sender updates her posterior belief about

the state. We will directly focus on the sequence of her posteriors rather than the

sequence of noisy signals that she receives. Let xt ∈ [0, 1] denote the probability

that the sender assigns to state ω = 1 at time t, and identify the set of the sender’s

beliefs with the interval [0, 1]. Specifically, we assume that the process according

to which the sender learns about the state is governed by a (commonly known)

martingale X = (Xt)t=0,1,...,T supported on the interval [0, 1] with X0 being the

Dirac measure on the common prior π.5 We restrict attention to cases in which

X is a Markovian martingale. That is, the behavior of the martingale from time

t+ 1 on depends only on the realization of Xt (rather than the realization of the

entire history (X1, ..., Xt)).

The sender prefers the receivers to adopt regardless of the state realization. We

assume that the sender can ex ante commit to an information revelation policy

which specifies, in each period t, for each realization of the sender’s posteriors,

whether and how to reveal to the receiver what the sender has learned so far. In

each period t = 1, ..., T , the receiver observes both past and current revelations and

forms his posterior belief. The belief sequence of the receivers also forms a belief

martingale. The martingale property implies that, if the sender stops revealing

information from period t onwards, the receiver’s belief will remain constant in

all future periods. Therefore, if the sender successfully persuades the receiver at

time t to adopt, she can ensure adoption in all subsequent periods by withholding

information from period t onwards.

To complete the model description, we formally specify the sender’s payoff from

the receivers’ actions. The observation we have made in the previous paragraph

implies that, in defining the sender’s payoff, the only relevant sequences of actions

take the following form: (at)t=1,2,...,T = (0, ..., 0, 1, 1, 1, ...) ∈ {0, 1}T . Let wt be

5We follow the convention that bold upper case letters denote vectors of random variables,

upper case letters denote random variables, and low case letters denote their realizations.
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the sender’s “accrued” future payoffs when the first adoption occurs at time t.

We assume that the sequence {wt} is decreasing in t, capturing the idea that the

sender prefers an early first adoption to a late adoption. For example, we can

take wt = δt−1 for the case where the sender’s payoff is the δ-discounted utilities.

Alternatively, we may interpret wt − wt+1 as the mass of receivers who arrive at

time t (with wT+1 = 0), and thus the sender’s payoff equals the expectation of∑T
t=1(wt − wt+1)at.

Remark 1. The current model assumes that receivers are short-lived and they

arrive sequentially. Mathematically, it is isomorphic to an alternative model where

there is a single receiver who is long-lived but myopic. In fact, since the sender has

full commitment, our analysis remains valid if there is a single receiver who is long-

lived and strategic. The sender can commit to no further information revelation

as soon as the receiver’s posterior belief exceeds the adoption cutoff, and hence

once the sender stops revelation, the receiver has incentive to adopt in the current

and all future periods. □

2.2 Persuasion as a stopping problem

An information revelation policy is a sequence of mappings from realizations of

the martingale (x1, ..., xt) to distributions over abstract signals, t = 1, ..., T . Given

that the action choice of each receiver is binary, the standard direct revelation

argument implies that we can replace the abstract signals by a binary recommen-

dation: “adopt” or “do not adopt”. Moreover, as we have argued earlier, once the

first “adopt” recommendation is sent out and followed at time t, the sender will

reveal no further information by sending only the “adopt” recommendation in the

subsequent periods, and all future receivers will adopt. Therefore, an information

revelation policy is simply a stopping time τ on the martingale X, specifying when

to send out the first “adopt” recommendation and essentially stop the game.

Formally, we identify the sender’s policy with a randomized stopping rule de-

fined in terms of a random time τ and measurable mappings τt : [0, 1]
t → [0, 1],

t = 1, . . . , T , so that

P(τ = t|τ ≥ t,X1 = x1, . . . , Xt = xt) = τt(x1, . . . , xt) (1)

That is, conditional on no “adopt” recommendation being sent prior to t, the

probability of sending the first “adopt” recommendation (i.e., stopping) is deter-

mined by the τt function. Moreover, we require our stopping rule to satisfy an
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obedience constraint in the form of:

E[Xt|τ = t] ≥ l, ∀t = 1, ..., T. (2)

By Bayes rule, upon receiving an “adopt” recommendation at time t, the receiver’s

posterior belief is P(ω = 1|τ = t) = E[Xt|τ = t]. Therefore, constraint (2) requires

that the receiver is (weakly) better off by following an “adopt” recommendation.

Denote by T the set of all randomized stopping rules τ satisfying the obedience

constraint (2).

The obedience constraint (2) must bind in any optimal solution because, other-

wise, the sender can strictly increase the probability τt of sending the first “adopt”

recommendation while still meeting the obedience constraint. Our assumption of

π < l implies that E[Xt|τ > t] < l, and thus the first adoption occurs before time

t if and only if τ ≤ t. The sender’s optimization problem is thus6

V ∗ = sup
τ∈T

{
T∑
t=1

P[τ = t]wt

}
. (3)

Example 1 (Two Periods, Binary Signals). To demonstrate the subtleties in

the above persuasion problem, consider a two-period model where the sender is

sequentially exposed to two conditionally independent signals S1 and S2, each with

binary support {L,H}, with one signal in each period. The state is equally likely

ex ante, i.e., π = 1/2. For t = 1, 2, the distribution of signal St conditional on

state ω is P(St = H|ω = 1) = P(St = L|ω = 0) = qt with qt ∈ [1/2, 1]. Let

xs = P(ω = 1|S1 = s), s ∈ {L,H}

be the sender’s period-one posterior estimate of the state after receiving signal

S1 = s and

xss′ = P(ω = 1|S1 = s, S2 = s′), s, s′ ∈ {L,H}

be the period-two posterior estimate after receiving signals S1 = s and S2 = s′.

Then the martingale X = (X0, X1, X2) is given by supp(X0) = {π}, supp(X1) =

{xL, xH}, and supp(X2) = {xLL, xLH , xHL, xHH}. See Figure 1 for illustration.

We normalize the sender’s utility by setting w1 = 1.

Since there are only two periods, the optimal policy must be greedy at t = 2.

That is, in the second period the sender persuades the receiver with the maximal

possible probability.

6For the case T < ∞, the supremum can be replaced by a maximum using backward-induction

arguments. For the case T = ∞, we prove the existence of the maximum for all the specific

applications that we consider.
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Is greedy policy also optimal at t = 1? Suppose that l = 18/25, the information

at the first period is generated by a signal with precision q1 = 3/4 and in the

second period by a conditionally independent signal with precision q2 = 4/5.

Then for w2 ∈ [0, 0.618],7 the optimal policy is greedy with an adoption/stopping

probability of 25/47 in t = 1. If w2 ∈ [0.955, 1], the optimal policy stays mute

(i.e., with zero probability of adoption) at time t = 1. If w2 ∈ (0.618, 0.955), the

optimal policy induces adoption with probability 25/58 at time t = 1, which is

smaller than the adoption probability of 25/47 under the greedy policy.

t = 0

t = 1

t = 2

xL xH

xLL xHLxLH xHHl

π

Figure 1: Two period model with binary signals.

Another interesting phenomenon in this simple example is the non-monotonic

relationship between the optimality of the greedy policy and the precision of the

second signal. If we set q2 = 1/2 or q2 = 1, the greedy policy is optimal for all w2

in both cases. However, as shown above, this is not true for q2 = 4/5.

Solving these optimization problems can be done by observing that the only

free parameter of the optimization problem is the probability of adoption at time

t = 1. Once this parameter is set, the receiver’s belief conditional on adoption

being l uniquely defines the probability of adoption at xL and at xH . At time

t = 2, the policy is greedy with respect to the remaining mass. □
7The numerical cutoff is approximate.
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2.3 Measure Theoretic Formulation

The perspective of viewing persuasion as an optimal stopping problem is very

useful conceptually, but it is not quite enough to help us solve the problem. Next

we will provide a second perspective based on measures (and sub-measures) to

reformulate our problem as a dynamic programming problem. This equivalent

formulation relies on the kernel representation of Markovian martingales, with

positive measures on [0, 1] as its state variables and sub-measures as its control.

A probability kernel is a measurable function σ : [0, 1] → ∆([0, 1]) such that

EX∼σ(x)[X] = x for every x ∈ [0, 1]. That is, the expectation under the probability

measure σ(x) is x for any x ∈ [0, 1]. A probability kernel defines an operator from

∆([0, 1]) to itself where for every probability measure µ, σ ◦ µ ∈ ∆([0, 1]) is the

pushforward probability measure of µ by σ such that for every Borel measurable

set B ⊆ [0, 1] it holds that

σ ◦ µ (B) =

∫
[0,1]

σ(x)(B)dµ(x).

We note that a probability measure µ1 ∈ ∆([0, 1]) together with T probability

kernels σ1, . . . , σT−1 determines a martingale X = (Xt)t=0,1,...,T where X1 ∼ µ1

and for every 1 ≤ t < T

PXt+1( · |Xt = xt, . . . , X1 = x1) = PXt+1( · |Xt = xt) = σt(xt).

That is, the conditional distribution of Xt+1 given Xt = xt, . . . , X1 = x1 is deter-

mined by σt(xt). We note that for every t = 2, . . . , T − 1 the distribution µt of Xt

is given by σt−1 ◦ . . . ◦ σ1 ◦ µ1.

Conversely, for a given Markovian martingale X = (Xt)t=0,1,...,T supported

on [0, 1], there exist probability kernels σ1, . . . , σT−1 such that if X1 ∼ µ1 then

the martingale generated by the above procedure is X = (Xt)t=0,1,...,T . This can

be easily shown by taking σt(xt) = PXt+1( · |Xt = xt). Note that for every

1 ≤ t ≤ T − 1 the kernel σt is a.s. uniquely defined on the support of Xt and can

be arbitrarily defined outside of the support.

For any positive and finite measure ν over [0, 1] we let |ν| = ν([0, 1]) and ν be

the expectation of its normalization 1
|ν|ν. Given two positive measures ν, µ on [0, 1],

we denote ν ≤ µ if ν(B) ≤ µ(B) for all Borel measurable sets B ⊆ [0, 1]. Now we

are ready to present an alternative formulation to the optimization problem.

Lemma 1. The sender’s optimization problem given in equation (3) has the fol-
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lowing equivalent reformulation:

max
{νt}Tt=1

T∑
t=1

|νt|wt (4)

subject to the following recursively defined constraints: X1 ∼ µ1, νt ≤ µt for every

t = 1, . . . , T , νt ≥ l for every t = 1, . . . , T , and µt := σt−1 ◦ (µt−1 − νt−1) for every

t = 2, . . . , T .

In this formulation, we have a mass µt that evolves according to the probability

kernels σt, and in each step, we decide which parts of this mass, as described by

νt, to eliminate from the Markov process to induce an immediate adoption. The

proof of this lemma, as well as omitted proofs of other lemmas, are relegated to

Appendix A.

3 Blackwell Order Preserving Kernels

In this section, we will introduce the concept of “Blackwell order preserving ker-

nels,” which proves to be fundamental to our analysis. Simply put, a probabil-

ity kernel is Blackwell order preserving if a decision maker’s preference for one

probability measure of posteriors over another, in the Blackwell order, remains

unchanged after receiving additional information represented by the kernel.

Recall that a probability measure of posteriors ν ∈ ∆([0, 1]) dominates another

probability measure µ ∈ ∆([0, 1]) with respect to the Blackwell order [Blackwell,

1953], denoted as µ ⪯B ν, if ν is a mean preserving spread of µ, or equivalently, if

there exists a probability kernel σ such that σ ◦ µ = ν.8 We extend the Blackwell

order to (finite) positive measures on [0, 1]. For two positive measures µ, ν we

write µ ⪯B ν if |µ| = |ν| and µ
|µ| ⪯B

ν
|ν| . Now we are ready to introduce the central

notion of “Blackwell order preserving kernels.”

Definition 1. A probability kernel σ : [0, 1] → ∆([0, 1]) is called a Blackwell

order preserving kernel if, for any two probability measures µ, ν ∈ ∆([0, 1]), µ ⪯B

ν implies σ ◦ µ ⪯B σ ◦ ν. A Markovian martingale is called Blackwell order-

preserving if σt : [0, 1] → ∆([0, 1]) is Blackwell order-preserving for every time

8In terms of random variables one has µ ⪯B ν if and only if there exist random variables

X and Y , where X ∼ µ, Y ∼ ν and E[Y |X] = X. In functional form, the order µ ⪯B ν is

equivalent to requiring that ν(f) ≤ µ(f) for every non-decreasing concave f : R → R, where we

denote ρ(f) =
∫
R f(x)dρ(x) for a positive measure ρ defined on R.
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t = 1, . . . , T − 1.9

There is a simple interpretation of Blackwell order-preserving kernels. Consider

a decision maker with a utility function u : Ω×A→ R who observes a signal about

ω ∈ Ω and then takes an action a ∈ A to maximize their expected utility. By

the definition of the Blackwell order [Blackwell, 1953], µ ⪯B ν if and only if the

signal that induces the measure of posteriors ν generates a higher expected utility

than the signal inducing the measure µ for all decision problems (i.e., all utility

functions).

Now suppose that the decision-maker receives information in two periods where

the second period’s information is governed by a kernel σ based on the information

received in the first period. Let ν and µ denote two possible distributions of the

posterior in the first period, and σ ◦ ν and σ ◦ µ denote the two corresponding

distributions of the posterior in the second period. The Blackwell order-preserving

condition over σ simply requires that if all decision-makers prefer ν to µ in the

first period then they will also prefer σ ◦ ν and σ ◦ µ in the second period. We

note that a probability kernel preserves the Blackwell ordering between probability

measures if and only if it preserves it between positive measures with equal mass.

The following lemma shows that, in order to verify that a kernel is Blackwell

order preserving, it is sufficient (and necessary) to verify that the push-forward of

every binary-supported distribution dominates the push-forward of its expectation

in the Blackwell order.

Lemma 2. A probability kernel σ : [0, 1] → ∆([0, 1]) is Blackwell order preserving

if and only if, for every binary supported µ ∈ ∆([0, 1]),

σ ◦ δµ ⪯B σ ◦ µ.

Similarly, a martingale (Xt)t=1,...,T is Blackwell preserving if and only if, for every

t ≤ T − 1, the kernel σt satisfies the above condition for every binary supported

measure µ such that the support of both µ and µ is contained in the support of Xt.

The Blackwell order preserving property is a rather mild restriction on the be-

lief martingales. We provide two classes of Blackwell order preserving martingales.

The first class of martingales are belief martingales generated by conditionally

independent signals. Formally, let S be some measurable signal space and let

G : {0, 1} → ∆(S) be a probability kernel. We note that a prior y ∈ [0, 1] over the

9For martingales where σt is not uniquely defined, we only require that σt satisfies that there

exists a version of σt that is Blackwell order preserving.

13



set Ω = {0, 1} together with G generate a probability distribution Py ∈ ∆(Ω×S).
Let py(s) = Py(ω = 1|s) be the conditional probability of {ω = 1} given s. Denote

σy the posterior distribution of py(s). That is, for every Borel subset A ⊆ [0, 1],

σy(A) = Py(py(s) ∈ A). Consider the probability kernel σ : [0, 1] → ∆({0, 1})
defined by σ : y 7→ σy. By the law of iterated expectation, this is indeed a proba-

bility kernel.10

Lemma 3. Consider a martingale X = (Xt)t=1,...,T that is generated by the kernels

(σt)t=1,...,T−1 such that for every t = 1, . . . , T − 1 the kernel σt represent condi-

tionally independent signal, then the martingale is a Blackwell order preserving

martingale.

The second class of martingales are belief martingales representing a random

walk. Consider a discrete set Γ = {zi}i∈Z ⊆ [0, 1] such that Z = Z ∩ [a, b] (where

a and b might be finite or equal −∞ and +∞ respectively) zi > zj for every

i > j ∈ Z. Let σ be a kernel that represents a random walk on Γ. That is,

σ(zi) = δzi if i ∈ {a, b} and σ(zi) = zi+1−zi
zi+1−zi−1

δzi−1
+ zi−zi−1

zi+1−zi−1
δzi+1

, otherwise. A

martingale X = (Xt)t=0,1,...,T is a random walk if X0 = zi with probability 1 for

some zi ∈ Γ and σt = σ for every t = 1, . . . , T − 1. Random walk on the grid

corresponds to the discrete version of the Brownian motion kernels considered in

[Henry and Ottaviani, 2019, Orlov et al., 2020, Bizzotto et al., 2021, McClellan,

2022]. In Section 5, we will characterize the sender’s optimal information policy

when the sender’s belief martingale is induced by a random walk.

Lemma 4. A martingale that is induced by a random walk on a grid is Blackwell

order-preserving.

Remark 2. The Blackwell-order preserving property is an intuitive and rather

mild restriction on belief martingales. Nevertheless, one can easily find a proba-

bility kernel that fails this property, if signals are allowed to be correlated across

periods. Consider, for example, measures µ = 1
2
δ 1

4
+ 1

2
δ 3

4
and ν = δ 1

2
, and prob-

ability kernel σ with σ
(
1
2

)
= 1

2
δ0 +

1
2
δ1, σ

(
1
4

)
= δ 1

4
, and σ

(
3
4

)
= δ 3

4
. It is clear

that ν ⪯B µ but σ ◦ µ ⪯B σ ◦ ν. In this example, the signal associated with σ is

no longer conditionally independent of the signal that induces µ or ν. □
10In a different context, Kosenko [2021] showed that the garbling operator preserves the Black-

well ordering.
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4 Main Characterization

In this section we introduce two classes of information policies, the “greedy policy”

and the “interval policy.” The optimality of the former policy is often the focus

of the existing literature, see for example [Renault et al., 2017] and [Ely, 2017],

while the latter policy is a generalization of the former and is crucial for our

analysis. Our main characterization is that, if the sender’s belief martingale is

Blackwell-order preserving, then the sender’s optimal strategy must be an interval

policy.

4.1 The greedy policy

Consider the sender’s optimization problem (3) with weights w1 = 1 and wt = 0

for t ≥ 2. Consider a randomized stopping rule τ defined by functions τt as in

(1), with τ1(x1) = 1 if x1 ∈ (y, 1] and τ1(x1) = 0 if x1 ∈ [0, y), where y is chosen

to satisfy E[X1|τ = 1] = l.11 This stopping rule solves the sender’s optimization

problem because it maximizes the probability P(τ = 1) across all stopping rules τ

for which E[X1|τ = 1] ≥ l.

With w1 = 1 and wt = 0 for t ≥ 2, the sender is myopic and greedy : she cares

only about the persuasion probability at t = 1. The above function τ1 solves the

greedy sender’s problem, and is thus referred to as the greedy policy with respect

to µ1. The measure ν1 = P( ·|τ = 1)P(τ = 1) in the equivalent reformulation (4),

which is eliminated from µ1 by the above stopping rule, is referred to as the greedy

measure.

The above greedy policy τ1 is identified with the point y and the probability

τ1(y), which can be computed as follows. Note that a greedy measure can be

obtained by taking the top q-quantile of the probability measure µ1 such that the

points above the quantile have a conditional expectation of l. More precisely, let F

be the CDF of µ1 and let F−1(x) = inf{x1|F (x1) ≥ x}. Then, for a [0, 1]-uniform

random variable U , it holds that the random variable X̃1 = F−1(U) ∼ µ1. The

corresponding q-quantile is the unique value p such that E[X̃1|U ≥ p] = l. If µ1

has no atoms, we define y := F−1(p) and allow τ1(y) to take any values in [0, 1].

If F−1(p) is an atom of µ1, we define y := F−1(p), and one can verify that τ1(y)

is given by

τ1(y) =
F (F−1(p))− p

µ1({F−1(p)})
.

11If µ1 is discrete, randomization may occur at the cutoff point y.
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For a martingale X = (Xt)t=1,...,T with general weights, the greedy policy τ is

defined recursively, where τ1 is the greedy policy with respect to X1 ∼ µ1, and

for every t ≥ 2, τt is taken to be the greedy policy with respect to the measure

µt = PXt(·|τ ≥ t)P(τ ≥ t).

Definition 2. Let X = (Xt)t=1,...,T be a martingale. A stopping rule τ is called

a greedy policy if there exists a sequence of numbers {yt}t=1,...,T with yt ∈ (0, 1)

such that for every t = 1, . . . , T , E[Xt|τ = t] = l and

τt(x1, . . . , xt) =

1 if xt ∈ (yt, 1]

0 if xt ∈ [0, yt).

4.2 The interval policy

Next, we define a class of policies that includes the greedy policy as a special case.

Definition 3. Let X = (Xt)t=1,...,T be a martingale. A stopping rule τ is called

an interval policy if there exists a sequence of intervals {[y
t
, yt]}t=1,...,T such that

for every t = 1, . . . , T , E[Xt|τ = t] = l and

τt(x1, . . . , xt) =

1 if xt ∈ (y
t
, yt)

0 if xt /∈ (y
t
, yt).

In terms of the mass elimination reformulation, one can induce an almost sure

unique interval policy τ by choosing the eliminated sequence of masses {νt}t=1,...,T

such that νt(yt, yt) = µt(yt, yt), νt([0, 1]\ [yt, yt]) = 0, and νt = l for some sequence

of intervals {[y
t
, yt]}t=1,...,T . Therefore, an interval policy τ can be characterized

by the interval [y
t
, yt] at which it stops at time t and the probabilities, τt(yt) and

τt(yt), that play a role only if µt has atoms on either y
t
or yt. Generalizing the top

quantile approach discussed for the greedy measure, we note that at each time t an

interval policy may be identified with the two top quantiles {q
t
, qt} of µt it induces.

Formally, if we let Fµt be the CDF of µt, then y
t
= F−1

µt (pt) and yt = F−1
µt (pt),

where EX̃t∼µt [X̃t|U ∈ (p
t
, pt)] = l, q

t
= EX̃t∼µt [X̃t|U ≥ p

t
], qt = EX̃t∼µt [X̃t|U ≥ pt],

τt(yt) =
Fµt(F

−1
µt (pt))− p

t

µt({F−1
µt (pt)})

,

and

τt(yt) =
Fµt(F

−1
µt (pt))− pt

µt({F−1
µt (pt)})

.
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For any given measure µt in period t, there is a unique greedy policy and

hence the persuasion probability. In contrast, there are many interval policies

and different interval policies may have different persuasion probabilities. For any

given persuasion probability (smaller than the one of the greedy policy), however,

there is a unique interval policy that attains this probability, which allows us to

view an interval policy as one dimensional object.

Lemma 5. Let α be the persuasion probability of the greedy policy with respect to

µ1. For any 0 < β ≤ α there exists an almost surely unique interval policy τ for

which P(τ = 1) = β.

The interval policy discloses “minimal information” necessary for adoption in

the sense that it minimizes the amount of information being disclosed among all

policies that attains a given persuasion probability in a given period.12 To formally

establish this, recall that for two positive measures µ, ν on [0, 1] with |µ| = |ν|, we
can extend the Blackwell ordering and write µ ⪯B ν if µ

|µ| ⪯B
ν
|ν| . The Blackwell

ordering relation forms a partial order in the class of all stopping rules {ν : ν ≤ µ1}
that yields a given persuasion probability. The following lemma establishes that

the interval policy is the minimal element with respect to this partial order.

Lemma 6. Let ν ′ ≤ µ1 be the measure that corresponds to the interval policy that

stops on [y, y] with ν ′ = l. Let ν ′′ with ν ′′ ≤ µ1 and ν ′′ = l be another stopping

rule that satisfies |ν ′′| = |ν ′|. Then ν ′ ⪯B ν
′′.

4.3 Optimality of interval policies

Now we are ready to state our main characterization of optimal information poli-

cies. It demonstrates a strong connection between interval policies and Blackwell

order-preserving martingales.

Theorem 1. If X = (Xt)t=1,...,T is a Blackwell order preserving martingale, then

there exists an interval policy that solves the sender’s optimization problem (3).

This characterization removes a major hurdle in solving the sender’s opti-

mization problem. In the equivalent formulation (4) of the sender’s optimization

problem (3), the choice variables are a sequence of measures {νj : j ≥ 1} which

12This is connected to but different from the “minimal information” property of the greedy

policy in [Renault et al., 2017]. Their greedy policy reveals nothing (“minimal information”)

if the receiver’s current belief lies in the region that supports the sender’s preferred action;

otherwise discloses to maximize the persuasion probability in the current period.
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are infinite dimensional. By Theorem 1, it is without loss to restrict attention

to interval policies. By Lemma 5, each interval policy can be identified with a

sequence of one-dimensional probability mass {|νj| : j ≥ 1} it eliminates in each

period. Therefore, the sender only needs to decide the size of probability mass in

each period she aims to persuade the receiver at that period. Once this decision

is made, the sequence of “interval” measures {νj : j ≥ 1} is defined uniquely.

Theorem 1 does not characterize the optimal sequence of stopping masses

{|νj| : j ≥ 1}. As shown in Example 1 (and Examples 2 below), these stopping

masses will depend on the sender’s payoff functions or the sequence of weights

{wj : j ≥ 1}. Instead, it uniquely specifies the optimal policy as a function of

these stopping masses. Furthermore, Theorem 1 implies that an optimal interval

policy exists for the case T = ∞. Thus the “sup” in the optimization problem (3)

can be replaced with “max” for Blackwell order-preserving martingales.

Remark 3. As noted in Lemma 6, the interval policy is minimal with respect to

the Blackwell order among all stopping rules with the same size of the stopping

probability mass. This means that the interval policy reveals the least amount

of information necessary to achieve a given persuasion probability. Consequently,

it retains the maximum amount of information at the end of the current period

if the game continues. The Blackwell order preserving property ensures that this

information advantage is maintained at the beginning of the next period. This is

essentially the idea of the proof for Theorem 1. □

Before proving Theorem 1, we first uses an example to illustrate how our main

characterization can be used to solve the optimal information policy. Then we

present another example to show why the Blackwell order preserving property is

necessary for our characterization.

Example 2 (Two Periods, Continuous Signals). We demonstrate here how to

utilize Theorem 1 in an example with T = 2. We set w1 = 1. Suppose that the

sender receives two conditionally independent signals, S1 ∈ [0, 1] in period 1 and

S2 ∈ {0, 1, ϕ} in period 2. The common prior over the binary state is π = 1/2.

The distribution of the first period signal S1, conditional on the state, is given by

P(S1 ≤ s|ω = 1) = s2 and P(S1 ≤ s|ω = 0) = s(2− s).

It is easy to verify that signal S1 induces a uniform posterior over [0, 1]. The

second period signal S2 is either a perfect one or a white noise: with probability

q ∈ [0, 1], signal S2 perfectly reveals the state ω ∈ {0, 1}, and with probability

1− q, S2 is a null signal (denoted by ϕ) which does not contain any information.
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It is easy to verify that the martingale X = (X1, X2) must satisfy X1(S1) = S1

and

X2(S1, S2) =


1 if S2 = 1

0 if S2 = 0

S1 if S2 = ϕ

Therefore, X1 is uniformly distributed on [0, 1], and X2 is also uniformly dis-

tributed but with atoms at 0 and 1 splitting a total mass of q, as in Figure 2.

t = 0

t = 1

t = 2

S1 = s

q(1− s)

S2 = 0

(1− q)

S2 = ϕ

qs

S2 = 1

π

atom at 0 atom at 1

Figure 2: Two period model with continuous signals

What is the optimal persuasion policy in this example? Suppose that in the

optimal policy a probability mass of size α ≤ 2(1 − l) is persuaded in period 1.

That is, |ν1| = α and ν1 = l. By Theorem 1, this probability mass must be taken

from the interval [l − α/2, l + α/2]. Let x̂(α) denote the optimal cutoff such that

all probability mass remaining in period 2 with X2 ≥ x̂(α) will be persuaded in

period 2. With some algebra, one can show that x̂(α) is given by

x̂(α) = l −

√
(1− l)2 + (1− l)lq(1− 2α)

1− q

Again we normalize the sender’s utility by setting w1 = 1. Then we can write

the sender’s utility as a function of α:

Γ(α) = α + w2

[
(1− q)(1− α− x̂(α)) +

1

2
q(1− 2lα)

]
,
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where the first term in the bracket captures the uniform probability mass that

is truncated below by x̂(α) and is persuaded when S2 = ϕ, and the second term

represents the atom at X2 = 1 formed when S2 = 1. Both terms take into account

the fact that the probability mass of α is persuaded in period 1. It is easy to verify

that Γ(α) is concave in α for all feasible α ∈ [0, 2(1− l)].

Figure 3: Optimal α∗ as a function of the signal precision q in period two.

The optimal policy is characterized a pair of cutoff functions, wL(q, l) and

wH(q, l) with wL(q, l) < wH(q, l). If w2 ≤ wL(q, l), Γ(α) is increasing for all

α ∈ [0, 2(1 − l)] and hence the optimal policy is greedy in both periods with

α∗ = 2(1 − l). If w2 ≥ wH(q, l), Γ(α) is decreasing for all α ∈ [0, 2(1 − l)] and

hence the optimal policy persuades only in period 2 with α∗ = 0. Finally, if

w2 ∈ (wL(q, l), wH(q, l)), an interior α∗ ∈ (0, 2(1− l)) is optimal and varies with q.

Interestingly, for a typical fixed l, as q increases from 0, optimal α∗ is first 2(1− l),
then interior, then 0, then interior again, and finally 2(1− l) again as q approaches

1, as shown in the Figure 3 (where we take l = 3/4, w2 = 24/25). □

In our next example, the probability kernel is not Blackwell-order preserving

and the optimal policy is not an interval policy. Therefore, the Blackwell order

preserving property is necessary for Theorem 1.

Example 3 (Interval Policy Is Sub-optimal). Consider a two-period model with

weights w1 = 1 and w2 =
3
4
. Let µ1 =

1
7
δ 1

3
+ 2

7
δ 1

2
+ 4

7
δ 3

4
and l = 2

3
. The kernel σ is

defined as follows:

σ

(
1

2

)
=

1

2
δ1 +

1

2
δ0, σ

(
1

3

)
= δ 1

3
, and σ

(
3

4

)
= δ 3

4
.
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As we argued in Remark 2, this kernel is not Blackwell order preserving. The

greedy measure in period one is ν1 = 2
7
δ 1

2
+ 4

7
δ 3

4
with ν1 = l. Therefore, a policy

ν ′1 is an interval policy if and only if ν ′1 := νβ1 = (1− β)ν1 for some β ∈ [0, 1]. The

period-two measure after taking out probability measure ν ′1 in period one is

µβ2 := σ ◦ (µ1 − (1− β)ν1) = β
1

7
δ0 +

1

7
δ 1

3
+ β

4

7
δ 3

4
+ β

1

7
δ1.

Applying the greedy policy to µβ2 yields the greedy measure in period two:

νβ2 =

{
β(2

7
δ 1

3
+ 4

7
δ 3

4
+ 1

7
δ1) if β ≤ 1

2(
β − 1

2

)
1
7
δ0 +

1
7
δ 1

3
+ β 4

7
δ 3

4
+ β 1

7
δ1) if β > 1

2

Overall applying (νβ1 , ν
β
2 ) yields a utility:

w1 · |νβ1 |+ w2 · |νβ2 | =

{
(1− β)6

7
+ 3

4
β if β ≤ 1

2

(1− β)6
7
+ 3

4

(
6
7
β + 1

14

)
if β > 1

2

Therefore, β = 0 is optimal and the utility for the optimal interval policy is 6
7
.

Consider an alternative policy of ν̃1 = 1
7
δ 1

3
+ 4

7
δ 3

4
. This leaves the measure in

period two as µ̃2 := σ◦(µ1−ν̃1) = 1
7
δ0+

1
7
δ1 with the greedy measure ν̃2 =

1
14
δ0+

1
7
δ1.

The utility of this policy is

5

7
+

3

4
· 3

14
=

7

8
>

6

7
.

This implies that any interval policy is sub-optimal for this problem. □

4.4 Proof of Theorem 1

We start the proof by establishing the following simple claim. For any two mea-

sures with ν ≤ µ1, ν
′ ≤ µ1, ν = ν ′ and |ν| = |ν ′|, it holds that

ν ⪯B ν
′ =⇒ µ1 − ν ′ ⪯B µ1 − ν. (5)

This is immediate because, for every x ∈ [0, 1],∫ x

0

ν([0, y])dy ≥
∫ x

0

ν ′([0, y])dy =⇒
∫ x

0

(µ1−ν)([0, y])dy ≤
∫ x

0

(µ1−ν ′)([0, y])dy.

Now consider any sender strategy {ν ′t, µ′
t}t=1,...,T that satisfies the recursive

formulation of Lemma 1. We will show by an induction argument that there

exists an interval policy {νt, µt}t=1,...,T that has |νt| = |ν ′t| for t = 1, . . . , T and also

satisfies the conditions of Lemma 1.
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Specifically, we will prove by induction the hypothesis that for every t ≤ T , if

{νj, µj}j=1,...,t−1 satisfy |νj| = |ν ′j| for all j ≤ t− 1 and µ′
t ⪯B µt, then there exists

an interval policy νt with |νt| = |ν ′t| such that νt ⪯B µt and µ′
t+1 ⪯B µt+1. The

proof will repeatedly apply Lemmas 5 and 6, and claim (5).

For t = 1, the hypothesis follows from Lemma 5 that there exists an interval

measure ν1 with |ν1| = |ν ′1| and ν1 ≤ µ1. Lemma 6 implies that ν1 ⪯B ν ′1, and

hence µ′
1 − ν ′1 ⪯B µ1 − ν1 by claim (5) (note that µ1 = µ′

1). Since σ1 is Blackwell

order preserving it follows that µ′
2 = σ1 ◦ (µ′

1 − ν ′1) ⪯B σ1 ◦ (µ1 − ν1) = µ2 as

desired.

Now suppose the hypothesis holds for t− 1 ≤ T − 1, and we want to prove it

for t. Since µ′
t ⪯B µt by the induction hypothesis, there exists a probability kernel

κ : [0, 1] → ∆([0, 1]) such that κ◦µ′
t = µt. Let ψt = κ◦ ν ′t. It holds that |ψt| = |ν ′t|

and ψt = ν ′t = l. Since µt − ψt = κ ◦ (µ′
t − ν ′t) it holds that

µ′
t − ν ′t ⪯B µt − ψt. (6)

By Lemmas 5 and 6, there exists an interval policy νt ≤ µt such that |νt| = |ν ′t| =
|ψt|, νt ⪯B ψt, and νt = l. It follows from claim (5) that

µt − ψt ⪯B µt − νt. (7)

Conditions (6) and (7), together with the fact that σt is Blackwell order preserving,

yield that

µ′
t+1 = σt ◦ (µ′

t − ν ′t) ⪯B σt ◦ (µt − νt) = µt+1,

which concludes the induction step.

Therefore, we have shown that for every feasible policy there exists an internal

policy that achieves at least the same utility for the sender. This implies that the

“sup” in the sender’s problem (3) can be taken over interval policies to attain the

optimal utility for the sender. Proposition 2 in Appendix C shows that an optimal

interval policy always exists (even for T = ∞), and therefore the “sup” can be

further replaced by “max”.

5 Application to Random Walks

In this section, we assume that the sender’s belief martingale follows a random

walk on a discrete grid, introduced in Section 3. Recall that the set of grid points

is Γ = {zj}j∈Z with Z = Z ∩ [a, b] and zj < zj+1 for any j ∈ Z. It is without loss
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(by relabeling the indexes) to assume that l ∈ (z0, z1]. We define

δ = δ(Γ) := inf
j≤0

l − zj
l − zj−1

. (8)

Namely, δ ≤ 1 measures the “maximal scale” by which the random walk may

shrink the distance from the threshold l in a single upward jump from zj−1 to zj,

when the ending belief zj remains strictly below l.

We further assume that wt = δt−1 for some discount factor δ > 0 and the

common prior is distributed as the Dirac measure on zj for some grid point zj ∈ Γ

(i.e., X0 ∼ δzj). The horizon T can be either finite or infinite.

Theorem 2. If the sender’s belief martingale is a random walk on the grid Γ and

she discounts future with δ ≤ δ(Γ), then the greedy policy is optimal.

The theorem states that for a sufficiently impatient sender (i.e., with a discount

factor below δ), the greedy policy is optimal. We first discuss below the tight

connection between the greedy policy and transparency. We then calculate δ for

several examples in Section 5.1. In Section 5.3 we use an example to demonstrate

that the greedy policy can be sub-optimal for a sufficiently large discount factor

with T = ∞. Section 5.2 discusses the ideas of the proof for Theorem 2, while the

formal proof appears in Section 5.4.

As the greedy policy is defined (see Section 4.1), the sender stays mute until she

makes an “adopt” recommendation, while by transparency we mean the opposite

extreme in which the sender reveals her private information in each period. Despite

these seemingly two opposite extremes, the arguments below show that, when the

martingale is a random walk, there exists a policy that is equivalent (in terms of

adoption) to the greedy policy and is almost fully transparent.

Consider the policy that fully reveals the posterior xt (i.e., reveals the entire

private information) as long as xt = zj for j ≤ 0. Once her posterior reaches xt =

z0, at time t+1 she either reveals that xt+1 = z−1 (with a weakly lower probability

than it actually happens) or, alternatively, sends an “adopt” recommendation to

induce the posterior l. It is easy to see that the event of adoption under this

policy is identical to the event of adoption under the greedy policy. But unlike the

greedy policy, here the sender stays fully transparent about her private information

in all periods until it becomes very close to the threshold (i.e., at the moment her

posterior belief reaches xt = z0).
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5.1 Examples: Compute δ(Γ) for different grid Γ

We demonstrate how the threshold δ(Γ) in Theorem 2 can be computed in several

examples. In all these examples, the infimum in the definition (8) is often attained

at j = 0. That is,

δ =
l − z0
l − z−1

.

Standard grid. For every ϵ > 0 let Γ = {nϵ : n ∈ N0, nϵ ≤ 1} be the ϵ-grid,

where N0 denotes the set of natural numbers including 0. If the threshold is

located on the grid (l ∈ Γ), then δ = 1/2 and the minimum is obtained at j = 0.

However, if l /∈ Γ, say l = nϵ+ ϵ′ for ϵ′ < ϵ, the bound is given by δ = ϵ′

ϵ′+ϵ
, which

is smaller than 1/2 and again obtained at j = 0.

Conditionally i.i.d. binary symmetric signals. Consider a scenario in which

the sender observes in each period a signal that matches the state ω with prob-

ability p ∈ (1
2
, 1), independently across periods (conditional on the state). For

simplicity, assume that 1
2
∈ Γ. In this case, Γ takes the following simple form:

Γ =

{
pz

pz + (1− p)z
: z ∈ Z

}
.

Assume the prior π < 1
2
and l = z1 =

1
2
. Again, the infimum in (8) is obtained at

j = 0 and

δ =

1
2
− p−1

p−1+(1−p)−1

1
2
− p−2

p−2+(1−p)−2

= 2p2 − 2p+ 1.

As the signals of the sender become more accurate (p→ 1), the bound δ → 1, and

the greedy policy becomes optimal for an arbitrary patient sender.

A standard grid with a hole. The greedy policy is optimal for an arbitrary

patient sender under another class of grids. Start with the standard grid but

eliminate grid points that are close to and below l. Formally, let ϵ′ ≫ ϵ and

Γ = {nϵ : n ∈ N0, nϵ ≤ 1, nϵ /∈ (l − ϵ′, l)}. Namely, from the point xt = l − ϵ′ the

belief of the sender either jumps down to the nearby point xt+1 = l−ϵ′−ϵ or jumps

up to the far point (weakly) above l. In this case, δ = ϵ′

ϵ′+ϵ
, which approaches 1 as

ϵ/ϵ′ → 0.
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5.2 Idea of the proof of Theorem 2

We start with the case T < ∞ and prove the theorem using backward induction.

By the single deviation principle (or equivalently the backward induction hypoth-

esis), it is sufficient to prove that, for every state X0 ∈ ∆(Γ), if the sender acts

greedily starting from tomorrow, she will be better off acting greedily today as

well.

Theorem 1 allows us to restrict the set of possible policies significantly: the

decision in each state X1 is characterized by an interval [y, y] such that the condi-

tional mean of X1 over [y, y] is l. Namely, there is no need to consider the set of

all sub-measures whose mean is l but only those that are supported on an interval.

The proof that acting greedily today is indeed superior is conducted in two

steps. First, we demonstrate that the utility of acting greedily in the first two

days provides the best possible utility for the first two periods among all possible

interval policies (see Lemma 11 and Corollary 2). Here we rely on the assumption

that δ ≤ δ.13

In the second step, we prove that the remaining mass after two consecutive ap-

plications of the greedy action is superior to the remaining mass after any interval

action followed by a single greedy action (see Lemma 7). Here, we shall clarify the

sense in which it is superior. The second-order stochastic dominance partial order

is irrelevant because we compare two measures with different masses. Although

the first-order stochastic dominance (FOSD) is satisfied, there is a complication:

the FOSD order is not necessarily preserved under a random walk over a grid.

Therefore, a weaker (than FOSD) version of dominance is required for our argu-

ments (see Definition 4), which relates to the notion known in the literature as the

increasing convex order (see, e.g., [Shaked and Shanthikumar, 2007]). Our notion

of domination seems to extend this concept to general positive finite measures.

This order exactly serves our purpose. On one hand, it is preserved by a

random walk on a grid (see Lemma 9). On the other hand, it is sufficiently powerful

to deduce that the sender will be better off by remaining with the dominant

measure (see Lemma 10).

To summarize, we show that the greedy policy is superior to any other interval

policy in both aspects: it provides a better utility in the first two periods (the first

step above) and it leaves the sender with a measure that she can better utilize in

the future periods (the second step above).

A closer examination of our proof reveals that it does not rely entirely on the

13Without this assumption, this claim is false as shown in Proposition 1 below.
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assumption that the sender is initially uninformed (i.e., X0 = δπ). In fact, the

argument based on backward induction holds more generally. In Section 5.4, we

define the set of measures ∆∗(Γ), which consists of all positive measures supported

on either the even or odd points of the grid.

Our proof that the greedy policy is optimal remains valid under the weaker

assumption that X0 ∼ µ0 ∈ ∆∗(Γ) with E[X0] < l. Thus the proof of Theorem 2

implies the following corollary.

Corollary 1. Suppose that the sender’s belief martingale follows a random walk

on the grid Γ and she is initially partially informed with X0 ∼ ∆∗(Γ). If her

discount factor satisfies δ ≤ δ(Γ), then the greedy policy is optimal.

5.3 Sub-optimality of the greedy policy for a patient sender

It remains an open question whether the greedy policy is optimal for an initially

uninformed sender, whose belief martingale follows a random walk on a grid (ei-

ther the standard grid or one induced by conditionally i.i.d. binary signals). In

this subsection, however, we demonstrate that Corollary 1 fails if the sender is

sufficiently patient. This implies that, for the greedy policy to be optimal for any

initially partially informed sender, some constraints on the sender’s patience are

necessary. This observation highlights the challenges in addressing the aforemen-

tioned open problem. The single-deviation principle (or the Bellman equation) is

a central tool for proving results in such dynamic settings. Our negative finding

suggests that alternative methods will be required to prove the optimality of the

greedy policy, if it is indeed optimal.

Proposition 1. Suppose T = ∞ and consider the standard ϵ-grid with Γ = {nϵ :
n ∈ N0, nϵ < 1}. For every δ >

√
2/2, there exists ϵ′ such that, for all ϵ-grid Γ

with l ∈ Γ and ϵ < ϵ′, there is an initial prior X0 ∈ ∆(Γ) for which the greedy

policy is sub-optimal.

The formal proof is relegated to Appendix B. It consists of several steps. We

first assume by contradiction that the greedy policy is always optimal and denote

by v(jϵ) the sender’s value from the prior δjϵ for any grid point jϵ. Using coupling

considerations, we show that the optimality of the greedy policy implies that

v(l− 2ϵ) ≈ (v(l− ϵ))2, which is then used to approximate v(l− ϵ) as a function of

δ and ϵ.

We then consider a prior that is supported on the points l− 2ϵ and 1, and has

an expectation below l. Since using the greedy policy leaves, at the next stage,
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only mass on the point l − 2ϵ, we use the above approximation to estimate the

value of the greedy policy. We complete the proof by showing that the sender

can achieve a higher utility than the greedy policy by waiting for a single period

without using any mass and then pooling the mass obtained at l− ϵ together with
the mass at 1.

In light of Proposition 1 an interesting question that we leave open is whether

the bound in Theorem 2 is tight.

5.4 Proof of Theorem 2

Recall that given two positive measures ϕ, µ on [0, 1] we denote ϕ ≤ µ if ϕ(B) ≤
µ(B) for any Borel measurable set B ⊆ [0, 1]. We now introduce relations between

positive measures on [0, 1] that play a fundamental role in our analysis. The

first is the well-known first order stochastic domination. A measure µ first order

stochastic dominates (FOSD) a measure λ (λ ⪯F µ) if µ([x, 1]) ≥ λ([x, 1]) for any

x ∈ [0, 1]. A function ρ : [0, 1] → ∆([0, 1]) is called a FOSD kernel if φ(x)([x, 1]) =

1. It is easy to see that λ ⪯F µ iff there exists a FOSD kernel φ and a measure

ϕ ≤ µ such that φ ◦ λ = ϕ.

We first introduce a central notion for our analysis which we call domination.

Definition 4. Say that a measure µ dominates a measure λ (λ ⪯D µ) if there

exists a FOSD kernel φ : [0, 1] → ∆([0, 1]) and a probability kernel ρ : [0, 1] →
∆([0, 1]) such that there exists a measure ϕ ≤ µ such that ρ ◦ φ ◦ λ = ϕ.

It follows directly from the definition that the notion of domination extends

first and second-order stochastic domination. Namely, λ ⪯F µ ⇒ λ ⪯D µ and

λ ⪯B µ ⇒ λ ⪯D µ. In the special case where |λ| = |µ|, the domination order is

called in the increasing convex order in the literature; see [Shaked and Shanthiku-

mar, 2007].14

We start by showing that two consecutive applications of the greedy action

leaves a better probability mass than any interval action followed by a single

greedy action.

Lemma 7. Consider an infinite Blackwell-order preserving martingale X = (Xt)t≥1.

Consider two interval policies (ν1, ν2) and (ν ′1, ν
′
2) for the two first periods such that

(ν1, ν2) is the greedy policy and (ν ′1, ν
′
2) is any other policy where ν ′2 is greedy. Then

µ′
2 − ν ′2 ⪯F µ2 − ν2.

14We omit the proof of the observation that our notion of domination is equivalent to the

increasing convex order because our proof does not rely on this observation.
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Proof. By definition, µ2 = σ1 ◦ (µ1−ν1) and µ′
2 = σ1 ◦ (µ1−ν ′1). Since ν1 is greedy

and ν ′1 is an interval policy, ν ′1 ≤ ν1 and thus we can write ν1 = ν ′1 + ψ for some

positive measure ψ. Furthermore, since ν1 = ν ′1 = l, we have ψ = l. It follows

that

µ2 = σ1 ◦ (µ1 − ν1) = σ1 ◦ (µ1 − ν ′1 − ψ) = µ′
2 − σ1 ◦ ψ,

Therefore, there is a positive measure ϕ := σ1 ◦ ψ with ϕ = l such that

µ′
2 = µ2 + ϕ. (9)

Next, by introducing λ = µ2 − ν2 we may further decompose µ′
2 to

µ′
2 = λ+ ν2 + ϕ. (10)

As ν2 = l and ϕ = l, by the linearity of the integral operator, we have ν2 + ϕ =

l as well. Therefore, using decomposition (10), we infer that ν2 + ϕ defines a

stopping rule with respect to µ′
2. As ν ′2 is greedy with respect to µ′

2, we have

ν ′2([x, 1]) ≥ (ν2 + ϕ)([x, 1]) for every x ∈ [0, 1], because a greedy stopping rule

first-order stochastic dominates all other obedient stopping rules. Thus, for every

x ∈ [0, 1],

(µ′
2 − ν ′2)([x, 1]) = µ′

2([x, 1])− ν ′2([x, 1])

≤ µ′
2([x, 1])− (ν2 + ϕ)([x, 1])

= (µ2 − ν2)([x, 1]),

where the last equality follows from (9). This indeed shows that µ2−ν2 first-order
stochastically dominates µ′

2 − ν ′2, as desired.

The domination relation defined above is closed under addition, as is estab-

lished in the following lemma.

Lemma 8. Assume that ψ ⪯D µ and that ψ′ ⪯D µ′ for some positive measure

µ, µ′, ψ, ψ′ on a discrete grid Γ. Then it holds that ψ + ψ′ ⪯D µ+ µ′.

Proof. By definition, there exists φ, ρ and φ′, ρ′ such that ρ ◦ φ ◦ ψ := ϕ ≤ µ and

ρ′ ◦ φ′ ◦ ψ′ := ϕ′ ≤ µ′. Define a kernel φ̃ as follows:

φ̃(x) =

{
ψ(x)

(ψ+ψ′)(x)
φ(x) + ψ′(x)

(ψ+ψ′)(x)
φ′(x) if (ψ + ψ′)x) > 0

δx if (ψ + ψ′)(x) = 0
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Both ψ and ψ′ are FOSD kernels, so φ̃ is also a FOSD kernel. Moreover,

φ̃ ◦ (ψ + ψ′)(y) =
∑

x∈Γ, (ψ+ψ′)(x)>0

(ψ + ψ′)(x)φ̃(x)(y)

=
∑

x∈Γ, (ψ+ψ′)(x)>0

(ψ + ψ′)(x)
( ψ(x)

(ψ + ψ′)(x)
φ(x)(y) +

ψ′(x)

(ψ + ψ′)(x)
φ′(x)(y)

)
=

∑
x∈Γ, (ψ+ψ′)(x)>0

ψ(x)φ(x)(y) + ψ′(x)φ′(x)(y)

= φ ◦ ψ(y) + φ′ ◦ ψ′(y).

Therefore, φ̃ is a FOSD kernel and satisfies φ̃ ◦ (ψ + ψ′) = φ ◦ ψ + φ′ ◦ ψ′.

Next, similarly define a probability kernel ρ̃ as

ρ̃(x) =

{
φ◦ψ(x)

(φ◦ψ+φ′◦ψ′)(x)
ρ(x) + φ′◦ψ′(x)

(φ◦ψ+φ′◦ψ′)(x)
ρ′(x) if (φ ◦ ψ + φ′ ◦ ψ′)(x) > 0

δx if (φ ◦ ψ + φ′ ◦ ψ′)(x) = 0

A similar calculation as above shows that ρ̃ satisfies ρ̃ ◦ (φ ◦ ψ + φ′ ◦ ψ′) = ρ ◦ φ ◦
ψ + ρ′ ◦ φ′ ◦ ψ.

To summarize, we have shown that there exist a FOSD kernel φ̃ and a proba-

bility kernel ρ̃ that satisfy

ρ̃ ◦ φ̃ ◦ (ψ + ψ′) = ρ ◦ φ ◦ ψ + ρ′ ◦ φ′ ◦ ψ′ = ϕ+ ϕ′ ≤ µ+ µ′.

It follows that ψ + ψ′ ⪯D µ+ µ′, as desired.

The next lemma shows that the random walk kernel also preserves domination.

Lemma 9. Let σ be a random walk kernel and µ, ψ ∈ ∆(Γ) be two positive mea-

sures on Γ such that ψ ⪯D µ. Then σ ◦ ψ ⪯D σ ◦ µ.

Proof. We first show that if x, y ∈ Γ and x ≤ y, then

σ ◦ δx ⪯D σ ◦ ρ ◦ δy. (11)

If x = y, condition (11) is equivalent to σ ◦ δx ⪯D σ ◦ ρ ◦ δx. Since ρ is a

probability kernel, δx ⪯B ρ ◦ δx. Since σ is Blackwell order-preserving, we have

σ ◦ δx ⪯B σ ◦ ρ ◦ δx. Condition (11) follows because domination is implied by

Blackwell order dominance.

If x < y, define a FOSD kernel φ̃ as φ̃(x′) = δy for all x′ ≤ y and φ̃(x′) = δx′

for x′ > y. Define a probability kernel ρ̃ as ρ̃ = σ ◦ ρ. Since x < y and σ is

a random walk kernel, the realizations of σ ◦ δx lie weakly below y. Therefore,
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φ̃ ◦ (σ ◦ δx) = δy, and thus ρ̃ ◦ φ̃ ◦ (σ ◦ δx) = ρ̃ ◦ δy = σ ◦ ρ ◦ δy. Condition (11)

follows from the definition of domination.

We are now in position to prove the Lemma. Since φ(x)([x, 1]) = 1, there exists

βy ≥ 0 for all y ∈ Γ with y ≥ x such that
∑

y≥x βy = 1 and φ(x) =
∑

y≥x βyδy.

Note that σ ◦ ρ ◦ φ ◦ δx =
∑

y≥x βyσ ◦ ρ ◦ δy and σ ◦ δx =
∑

y≥x βyσ ◦ δx. It follows
from condition (11) and Lemma 8 that

σ ◦ δx ⪯D σ ◦ ρ ◦ φ ◦ δx. (12)

Since ψ ⪯D µ, there exist φ and ρ such that ρ ◦ φ ◦ ψ ≤ µ. Let ψ =
∑

x αxδx,

and hence σ ◦ ψ =
∑

x αxσ ◦ δx. Let ϕ ≤ µ such that ρ ◦ φ ◦ ψ = ϕ. Then we can

write σ ◦ ϕ =
∑

x αxσ ◦ ρ ◦ φ ◦ δx. It follows from (12) and Lemma 8 that

σ ◦ ψ ⪯D σ ◦ ϕ,

which, together with the fact that σ ◦ ϕ ≤ σ ◦ µ, implies that σ ◦ ψ ⪯D σ ◦ µ.

The following lemma shows that domination plays in favor of the sender.

Lemma 10. Let X = (Xt)t=1,... and X′ = (X ′
t)t=1,... be two random walks on Γ

with the same kernel σ. If µ′
1 ⪯D µ1, then the optimal policy under X yields a

higher payoff for the sender than the optimal policy under X′.

Proof. The proof uses similar considerations as the proof of Theorem 1. Let

{ν ′t, µ′
t} be an optimal interval strategy of the sender for X′. We will show that, if

µ′
t ⪯D µt, then there exists νt such that |νt| = |ν ′t|, νt ≥ l and µ′

t − ν ′t ⪯D µt − νt.

To see this, note that if µ′
t ⪯D µt, then there exists φ, ρ, and ϕ ≤ µt such that

φ ◦ ρ ◦ µ′
t = ϕ ≤ µt. Consider νt = φ ◦ ρ ◦ ν ′t. Since φ is a FOSD kernel and ρ

is a probability kernel, we have νt ≤ ϕ ≤ µt, νt ≥ l and |νt| = |ν ′t|. Finally, by

construction,

φ ◦ ρ ◦ (µ′
t − ν ′t) = φ ◦ ρ ◦ µ′

t − φ ◦ ρ ◦ ν ′t = ϕ− νt ≤ µt − νt,

which implies µ′
t − ν ′t ⪯D µt − νt. By Lemma 9, µt+1 = σ ◦ (µt − νt) dominates

µ′
t+1 = σ ◦ (µ′

t− ν ′t). Therefore, if µ
′
1 ⪯D µ1, then for any policy {ν ′t, µ′

t} under X′,

we can construct a policy {µt, νt}t=1,... under X such that |νt| = |ν ′t| and νt ≥ l.

This concludes the proof.

We call a grid point zj for a < j < b odd (even) if j is odd (even). For j ∈ {a, b}
such that j ̸= ∞,−∞, the point zj will be defined to be both odd and even. We

denote by ∆∗(Γ) the set of positive finite measures that are supported on either

the even or odd points of the grid. Note that if µ ∈ ∆∗(Γ), then σ ◦ µ ∈ ∆∗(Γ).
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The following lemma provides an upper bound on how much the sender can

improve her persuasion mass by waiting one additional period. For any measure

µ ∈ ∆(Γ), let ν be the greedy policy with respect to µ, and define g(µ) := |ν|.

Lemma 11. For any measure µ ∈ ∆∗(Γ), if δ ≤ δ where δ is defined in (8), then

δg(σ ◦ µ) ≤ g(µ) + δg(σ ◦ (µ− ν)).

This essentially says that, in a two-period model, if δ ≤ δ, then the greedy

policy is better than waiting and not revealing any information at the first period

and then applying the greedy in the second.

Proof. Since by assumption l ∈ (z0, z1], the lowest point in the support of the

greedy measure ν of µ is either z0 or some zj < z0. We treat these two cases

separately.

Case 1. The lowest point in the support of ν is zj < z0. In this case,

g(σ ◦ (µ− ν)) = 0, and thus it is sufficient to show δ ≤ g(µ)/g(σ ◦ µ).
Let ν ′ be the greedy measure for σ ◦µ. Then the lowest point in the support of

ν ′ cannot lie strictly below zj−1 (above zj+1, respectively), because the conditional

expectation of ν ′ will be strictly below (above, respectively) l. Therefore, the

lowest point in the support of ν ′ is either zj−1 or zj+1. We consider these two

sub-cases separately.

(i) If the lowest point in the support of ν ′ is zj−1, then all the mass of ν ′ that lies

strictly above zj−1 is contained in σ ◦ ν. Since σ ◦ ν = l, we must have ν ′ = σ ◦ ν,
and hence |ν|/|ν ′| = 1. Therefore, we have δ ≤ 1 = |ν|/|ν ′| = g(µ)/g(σ ◦ µ), as
desired.

(ii) If the lowest point in the support of ν ′ is zj+1, the proof is more involved.

Let λ be the submeasure of ν that contains all mass of points lying strictly above

zj. Then we can write ν = αδzj + λ, where α > 0 is the mass that ν assigns to zj.

It follows from ν = l that

α =
λ− l

l − zj
|λ|.

Since λ contains all mass of points in ν lying strictly above zj, the lowest point

in the support of σ ◦ λ lies (weakly) above zj+1 and σ ◦ λ = λ > l. Therefore,

σ ◦ λ ≤ ν ′. Furthermore, by assumption, the lowest point in the support of ν ′ is

zj+1, so we can write ν ′ = βδzj+1
+ σ ◦ λ, where β > 0 is the mass that ν ′ assigns

to zj+1. Again it follows from ν ′ = l that

β =
σ ◦ λ− l

l − zj+1

|σ ◦ λ| = λ− l

l − zj+1

|λ|.
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Combining the expressions for α and β, we obtain

g(µ)

g(σ ◦ µ)
=

|ν|
|ν ′|

=
α + |λ|
β + |λ|

=
l − zj+1

l − zj

λ− zj

λ− zj+1

≥ l − zj+1

l − zj
≥ δ.

Case 2. The lowest point in the support of ν is z0. For this case, we prove a

stronger claim that g(µ) + g(σ ◦ (µ − ν)) ≥ g(σ ◦ µ). Again let ν ′ be the greedy

measure for σ ◦ µ, and let λ be the submeasure that contains all points that lie

strictly above z0 in µ. It must hold that σ ◦ λ ≤ ν ′. Moreover, since z0 is the

right-most mass of σ ◦ (µ − λ), ν ′ must contain all mass that arrives from z0.

Therefore, σ ◦ ν ≤ ν ′. Hence, we have σ ◦ µ ≥ ν ′ = σ ◦ ν + (ν ′ − σ ◦ ν), where
ν ′ − σ ◦ ν ≥ 0 is positive and ν ′ − σ ◦ ν = l. Rearranging yields

σ ◦ (µ− ν) = σ ◦ µ− σ ◦ ν ≥ ν ′ − σ ◦ ν.

This implies that g(σ ◦ (µ− ν)) ≥ |ν ′ − σ ◦ ν| = |ν ′| − |σ ◦ ν| and therefore

g(µ) + g(σ ◦ (µ− ν)) ≥ |ν|+ |ν ′| − |σ ◦ ν| = |ν ′| = g(σ ◦ µ),

where we use the fact that |ν| = |σ ◦ ν|. This completes the proof.

The following corollary essentially shows that the greedy policy is optimal for

the case where T = 2.

Corollary 2. For any measure µ ∈ ∆∗(Γ), any α ≤ g(µ), and every δ ≤ δ, we

have

α + δg(σ ◦ (µ− να)) ≤ g(µ) + δg(σ ◦ (µ− ν)),

where να ≤ µ is the measure associated with the unique interval policy for µ of

mass α.

Proof. Let µ′ = µ − να and denote ν ′ to be the greedy measure for µ′. By the

interval property of να we have ν = να + ν ′. Therefore, g(µ′) = |ν ′| = g(µ) − α,

and µ′ − ν ′ = µ− ν. Using Lemma 11 for the measure µ′, together with the latter

two properties we obtain

δg(σ ◦ µ′) ≤ g(µ′) + δg(σ ◦ (µ′ − ν ′))

= g(µ)− α + δg(σ ◦ (µ− ν)),

thus giving the desired result.

We are now ready to prove Theorem 2.
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Proof of Theorem 2. Fix a discount factor δ ≤ δ and let µ denote the (pos-

terior) distribution of the starting period (i.e., X1 ∼ µ). We prove Theorem 2

first for T < ∞ under the assumption that the posterior µ ∈ ∆∗(Γ). Denote by

vt(µ) the value of the sender’s problem as a function of the posterior µ and the

number of (remaining) periods t. Denote by γt(µ) the sender’s payoff obtained by

following the greedy policy for all t periods, starting with the posterior µ.

We prove by induction on T that vT (µ) = γT (µ). The proof requires the

induction hypothesis to hold for preceding two consecutive periods. Therefore, to

start the induction, we need to verify the claim for both T = 1 and T = 2. But

the claim holds for T = 1 trivially and for T = 2 by Corollary 2.

Now assume that the claim vt(µ) = γt(µ) holds for t = T − 1, T − 2. We need

to show that vT (µ) = γT (µ). By Theorem 1, we may restrict attention to interval

policies. Using the induction hypothesis, we can rewrite the Bellman equation for

vT (µ) as

vT (µ) = max
β≤g(µ)

{β + δγT−1(σ ◦ (µ− νβ))}, (13)

where νβ is the measure associated with the unique interval policy for µ of mass

β ≤ g(µ).

Let α ≤ g(µ) be the maximizer in (13). We write µ′
2 = σ ◦ (µ− να) and let ν ′2

be the greedy measure with respect to µ′
2. Let µ2 = σ ◦ (µ − ν), where we recall

that ν is the greedy measure for µ, and let ν2 be the greedy measure for µ2. By

Lemma 7, µ′
2 − ν ′2 ⪯D µ2 − ν2. By Lemma 9, σ preserves the order of domination,

so we have σ ◦ (µ′
2 − ν ′2) ⪯D σ ◦ (µ2 − ν2). By Lemma 10, the domination plays in

the favor of the sender, so vT−2(σ ◦ (µ′
2−ν ′2)) ≤ vT−2(σ ◦ (µ2−ν2)), or equivalently

by the induction hypothesis, γT−2(σ◦(µ′
2−ν ′2)) ≤ γT−2(σ◦(µ2−ν2)). This implies

that, for any δ ≤ δ,

vT (µ) = α + δγT−1(σ ◦ (µ− να))

= α + δg(µ′
2) + δ2γT−2(σ ◦ (µ′

2 − ν ′2))

≤ g(µ) + δg(σ ◦ (µ− ν)) + δ2γT−2(σ ◦ (µ2 − ν2))

= γT (µ), (14)

where the first equality follows from the induction hypothesis, the inequality uses

Corollary 2, and the second and the last equality follow from the definition of the

greedy policy. As the reverse inequality vT (µ) ≥ γT (µ) holds by definition, (14)

implies that vT (µ) = γT (µ). This completes the induction step and thus also the

proof for the case T <∞.
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As for the case T = ∞, we let v∞(µ) and γ∞(µ) denote the value and the greedy

payoff for T = ∞. Note that vt(µ) ↑ v∞(µ) and γt(µ) ↑ γ∞(µ) as t ↑ ∞. Therefore

it must hold that γ∞(µ) = v∞(µ) as otherwise we would get that γt(µ) < vt(µ)

for some t <∞, arriving at a contradiction.
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A Ommited Proofs from Sections 2-4

This appendix collects the proofs (for lemmas) omitted in the body of the paper.

Lemma 1. The sender’s optimization problem given in equation (3) has the fol-

lowing equivalent reformulation:

max
{νt}Tt=1

T∑
t=1

|νt|wt (4)

subject to the following recursively defined constraints: X1 ∼ µ1, νt ≤ µt for every

t = 1, . . . , T , νt ≥ l for every t = 1, . . . , T , and µt := σt−1 ◦ (µt−1 − νt−1) for every

t = 2, . . . , T .

Proof. We first show that the above sequences of measures are well defined for any

given stopping rule. Given a stopping rule τ , we define, for every t = 1, . . . , T , the

positive measure µt = PXt( · |τ ≥ t)P(τ ≥ t) corresponding to the unconditional

distribution of Xt on the event {τ ≥ t}. Also, let νt = PXt( · |τ = t)PXt(τ = t) be

the measure corresponding to the unconditional distribution of Xt on the event

{τ = t}. Clearly, νt ≥ l. Moreover, by definition, µt = σt−1◦(µt−1−νt−1) and νt ≤
µt for every t ≥ 1, and hence {µt}t≥1 and {νt}t≥1 meet the required constraints.

Lastly, note that as P(τ = t) = |νt| we have
∑T

t=1 P(τ = t)wt =
∑T

t=1 |νt|wt, as
desired.

Conversely, for every two sequences of positive measures {µt}t≥1, {νt}t≥1 that

satisfy the above relations, we will show that there exists a stopping rule τ such

that µt = PXt( · |τ ≥ t)P(τ ≥ t) and νt = PXt( · |τ = t)P(τ = t).

To see this, we define the stopping rule recursively such that τt depends only

on the realization xt of Xt. Since ν1 ≤ µ1, the Radon Nikodym derivative dν1
dµ1

:

[0, 1] → R satisfies dν1
dµ1

(x) ≤ 1 for µ1 almost every x ∈ [0, 1]. By setting τ1 :=
dν1
dµ1

,

we have ν1 = PX1( · |τ = 1)P(τ = 1) as required. We proceed inductively.

Assume that we have defined {τj}j=1,...,t−1 such that µj = PXj
( · |τ ≥ j)P(τ ≥

j) = PXj
( · |τ > j − 1)P(τ > j − 1) and νj = P(τ = j)PXj

( · |τ = j) for every

j < t. Again we can set τt(xt) := dνt
dµt

so that νt(B) =
∫
B
τt(x)dµt(x) for every

Borel set B ⊆ [0, 1]. We have for any Borel set B,

νt(B) = P(τ = t,Xt ∈ B) = P(τ = t)PXt(Xt ∈ B|τ = t). (15)

The recursive relations between {µt}t≥1 and {νt}t≥1, coupled with Eq. (15) and
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the induction assumption yield

µt+1 = σt ◦ (µt − νt)

= σt ◦ (µt − PXt( · |τ = t)P(τ = t))

= σt ◦ (PXt( · |τ ≥ t)P(τ ≥ t)− PXt( · |τ = t)P(τ = t)) (16)

= σt ◦ PXt( · |τ > t)P(τ > t)

= PXt+1( · |τ ≥ t+ 1)P(τ ≥ t+ 1).

The combination of Eqs. (15) and (16) completes the induction step.

Lemma 2. A probability kernel σ : [0, 1] → ∆([0, 1]) is Blackwell order preserving

if and only if, for every binary supported µ ∈ ∆([0, 1]),

σ ◦ δµ ⪯B σ ◦ µ.

Similarly, a martingale (Xt)t=1,...,T is Blackwell preserving if and only if, for every

t ≤ T − 1, the kernel σt satisfies the above condition for every binary supported

measure µ such that the support of both µ and µ is contained in the support of Xt.

Proof of Lemma 2. The condition in the lemma asserts that, for every 0 ≤ y′ ≤
y ≤ y′′ ≤ 1, and for every measure µ = αδy′ + (1− α)δy′′ with expectation µ = y,

it holds that σ ◦δy ⪯B σ ◦µ. We need to show that this condition implies σ having

the Blackwell-order preserving property.

Consider a measure ν ⪯B µ. Then there exists a probability kernel ρ : [0, 1] →
∆([0, 1]) such that ρ ◦ ν = µ. First, suppose that the kernel ρ(x) has a binary

support for any x. That is, ρ(x) = αxδx′ + (1 − αx)δx′′ for 0 ≤ x′ ≤ x ≤ x′′ ≤ 1

such that αxx
′ + (1−αx)x

′′ = x. Thus we can write, for any Borel measurable set

B ⊆ [0, 1],

µ(B) =

∫
[0,1]

αxδx′(B) + (1− αx)δx′′(B)dν(x).

In particular, σ◦ν =
∫
[0,1]

σ◦δxdν(x) and σ◦µ =
∫
[0,1]

σ◦(αxδx′+(1−αx)δx′′)dν(x).
The result follows since σ ◦ δx ⪯B σ ◦ (αxδx′ + (1− αx)δx′′) for every x.

Next suppose that the kernel ρ has a general support. By definition, ρ(x) ∈
∆([0, 1]) is a probability distribution on [0, 1] with expectation x ∈ [0, 1]. The

extreme points of all measures on [0, 1] with expectation x is the set of all measures

with binary support. Therefore, it follows from Choquet’s Theorem (see Phelps

[2001]) that ρ(x) can be represented as a probability measure over binary support

measures for every x. That is, if we let Bx ⊂ ∆([0, 1]) be the set of all binary

support measures with expectation x, then there exists λx ∈ ∆(Bx) such that

ρ(x) =

∫
Bx

αxδx′ + (1− αx)δx′′dλx(x
′, x′′).
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Therefore, we can write µ =
∫
[0,1]

( ∫
Bx
αxδx′ + (1 − αx)δx′′dλx(x

′, x′′, αx)
)
dν(x).

Since σ ◦ ν =
∫
[0,1]

σ ◦ δxdν(x), we can write

σ ◦ µ =

∫
[0,1]

σ ◦ ρ(x) =
∫
[0,1]

(∫
Bx

σ ◦ (αxδx′ + (1− αx)δx′′)dλx(x
′, x′′, αx)

)
dν(x).

The result follows since for every x and every αxδx′ + (1 − αx)δx′′ ∈ Bx it holds

that δx ⪯B σ ◦ (αxδx′ + (1− αx)δx′′).

Lemma 3. Consider a martingale X = (Xt)t=1,...,T that is generated by the kernels

(σt)t=1,...,T−1 such that for every t = 1, . . . , T − 1 the kernel σt represent condi-

tionally independent signal, then the martingale is a Blackwell order preserving

martingale.

Proof. We will show that if σ is a probability kernel that represents a conditionally

independent signal, then σ is a Blackwell preserving kernel. Consider first the case

where µ = δx for some x ∈ (0, 1) and ν is some mean-preserving spread of µ. In

random variable form, there exists a random variable Y such that E(Y |x) = x,

where x is the constant random variable supported on {x}. By Aumann et al.

[1995], there exists a probability kernel Fν : {0, 1} → [0, 1] (referred to as a state

dependent lottery in Aumann and Maschler) so that Y = px(m) := Px(ω = 1 |m),

wherem ∈ [0, 1] is the signal whose distribution is generated by x and Fν . Consider

the random variables X ′ = Px(ω = 1 | s) and Y ′ = Px(ω = 1 |m, s), where s
is the signal generated by x and the probability kernel G corresponding to σ.

By definition, X ′ ∼ σ ◦ µ. Also, as the signals m and s may be chosen to be

conditionally independent given the state ω ∈ {0, 1}, we have for any Borel set

B ⊂ [0, 1]:

Px[Y ′ ∈ B] =

∫
[0,1]

Ppx(m)

[
Ppx(m)[ω = 1 | s] ∈ B

]
dν(px(m))

= σ ◦ ν(B),

so that Y ′ ∼ σ ◦ ν. As the tower property for conditional expectations implies

E[Y ′|X ′] = X ′, we deduce that σ ◦ ν is a mean-preserving spread of σ ◦ δx, as
required.

We move on to the general case. Assume that µ ⪯B ν and let τ : [0, 1] →
∆([0, 1]) be a probability kernel with ν = τ ◦ µ. Then, for every non-decreasing
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and concave f : [0, 1] → R it holds:

(σ ◦ µ)(f) =
∫
[0,1]

(∫
[0,1]

f(t)d(σ ◦ δx)(t)
)
dµ(x)

≥
∫
[0,1]

(∫
[0,1]

f(t)d(σ ◦ τ(x))(t)
)
dµ(x) (17)

= (σ ◦ ν)(f),

where the first and last equality follow from disintegration formulas, whereas the

inequality follows from the fact that δx ⪯B τ(x) together with the first part of the

proof which implies σ ◦ δx ⪯B σ ◦ τ(x) for every x. As Eq. (17) is equivalent to

σ ◦ µ ⪯B σ ◦ ν, the proof is complete.

Lemma 4. A martingale that is induced by a random walk on a grid is Blackwell

order-preserving.

Proof. Consider the case where y′ = zj, y = zi, and y′′ = zl for some j < i < l

and i, j, l ∈ Z. As j ≤ i− 1 and l ≥ i+ 1 we may write:

δzi−1
⪯B

zl − zi−1

zl − zj
δzj +

zi−1 − zj
zl − zj

δzl

and

δzi+1
⪯B

zl − zi+1

zl − zj
δzj +

zi+1 − zj
zl − zj

δzl .

The above relations, coupled with the definition of σ and simple algebraic manip-

ulations suffice to deduce:

σ ◦ δzi ⪯B
zl − zi
zl − zj

δzj +
zi − zj
zl − zj

δzl

As µ ⪯B σ ◦µ for every probability measure µ, we deduce from the above relation

and the fact that ⪯B is transitive that

σ ◦ δzi ⪯B σ ◦

{
zl − zi
zl − zj

δzj +
zi − zj
zl − zj

δzl

}

thus showing that σ preserves Blackwell’s order on binary-supported measures,

which by Lemma 2 is sufficient to deduce the σ is Blackwell preserving.

Lemma 5. Let α be the persuasion probability of the greedy policy with respect to

µ1. For any 0 < β ≤ α there exists an almost surely unique interval policy τ for

which P(τ = 1) = β.
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Proof. Let p0 be the quantile that defines the greedy policy. As mentioned in

the text, if we let F be the CDF of µ1 and U is a uniformly distributed random

variable on [0, 1], then for X = F−1(U) it holds that X ∼ µ1. It follows that

E[X|U ≥ p0] = l. Consider the function f(p, x) = E[X|U ∈ (p, x)]. Note that over

the domain 0 ≤ p < x ≤ 1, the function f(· , ·) is continuous and strictly increasing

in both p and x. Let p1 satisfy F−1(p1) = l. It follows from the properties of f

that for every p0 < p < p1 there exists a unique x(p) such that f(p, x(p)) = l.

Moreover, x(p) is a continuous function of p. Therefore, the function x(p) − p is

continuous, it attained the value α at p0, and has a left limit 0 at p1. By the

intermediate value theorem, for every 0 < β ≤ α, there exists (p, x(p)) such that

E[X|U ∈ (p, x(p))] = l and x(p) − p = β. Since x(p) − p is strictly decreasing in

p, there exists a unique such p for every β. Denote it by pβ. The two quantiles

determined by pβ and x(pβ) define a unique stopping rule τ (up to measure zero)

with P(τ = 1) = β. This concludes the proof.

Lemma 6. Let ν ′ ≤ µ1 be the measure that corresponds to the interval policy that

stops on [y, y] with ν ′ = l. Let ν ′′ with ν ′′ ≤ µ1 and ν ′′ = l be another stopping

rule that satisfies |ν ′′| = |ν ′|. Then ν ′ ⪯B ν
′′.

Proof. Let F ′ and F ′′ be the CDFs of 1
|ν′|ν

′ and 1
|ν′′|ν

′′, respectively. To show

ν ′ ⪯B ν ′′ it is necessary and sufficient to show that
∫ x
0
F ′(y)dy ≤

∫ x
0
F ′′(y)dy for

every x ∈ [0, 1]. Assume by way of contradiction that
∫ x
0
F ′(y)dy >

∫ x
0
F ′′(y)dy

for some x ∈ [0, 1]. Since
∫ y
0
F ′(y)dy = 0, we have x > y.

Next, we argue that x < y. First, we note that F ′(z) = 1 for every z ≥ y.

Thus, assuming to the contrary that x ≥ y, we obtain∫ 1

0

F ′(y)dy =

∫ x

0

F ′(y)dy +

∫ 1

x

1dy

>

∫ x

0

F ′′(y)dy +

∫ 1

x

F ′′(y)dy =

∫ 1

0

F ′′(y)dy.

This contradicts the fact that
∫ 1

0
F ′(y)dy = 1 − ν ′ = 1 − ν ′′ =

∫ 1

0
F ′′(y)dy, thus

establishing x ∈ (y, y).

We can further assume that F ′(x) ≥ F ′′(x) because otherwise we can just

decrease the point x until we reach such a point without violating the strict integral

inequality. Let F be the CDF of the probability measure µ1. On the one hand,

since ν ′′ ≤ µ1 it holds that F
′′(x′)−F ′′(x′′) ≤ F (x′)−F (x′′) for every x′, x′′ ∈ (y, y)

such that x′ > x′′. On the other hand, by construction F (x′)− F (x′′) = F ′(x′)−
F ′(x′′) for every x′, x′′ ∈ (y, y) such that x′ > x′′. Therefore, for every x′ ∈ (y, y)
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such that x′ > x it holds that

F ′′(x′) = F ′′(x)+F ′′(x′)−F ′′(x) ≤ F ′(x)+F (x′)−F (x) = F ′(x)+F ′(x′)−F ′(x) = F ′(x′).

Thus F ′′(x′) ≤ F ′(x′) for every x′ ∈ (y, y) such that x′ > x. This result, together

with our assumption of
∫ x
0
F ′(y)dy >

∫ x
0
F ′′(y)dy, implies that

∫ y
0
F ′(y)dy >∫ y

0
F ′′(y)dy. Since F ′(x) = 1 for every x ≥ y, we infer that

∫ 1

0
F ′(y)dy >∫ 1

0
F ′′(y)dy, a contradiction. This concludes the proof.

B Proof of Proposition 1

Proposition 1. Suppose T = ∞ and consider the standard ϵ-grid with Γ = {nϵ :
n ∈ N0, nϵ < 1}. For every δ >

√
2/2, there exists ϵ′ such that, for all ϵ-grid Γ

with l ∈ Γ and ϵ < ϵ′, there is an initial prior X0 ∈ ∆(Γ) for which the greedy

policy is sub-optimal.

Proof. Assume by way of contradiction that the greedy policy is optimal for the

ϵ-grid (for sufficiently small ϵ, which will be specified later). For every grid point

g ∈ Γ and g < l we denote by v(g) the value of the sender (for the entire process)

that initiates at g under the greedy policy.

We denote c = v(l − ϵ) < 1. We argue that

v(l − 2ϵ) = c2 ±O(ϵ2). (18)

To see it, we notice that if the random walk that starts at l − 2ϵ reaches l − ϵ

we can refer to it as if the game terminates and she receives a utility of c. We

know that jumping to the next point above l − ϵ → l takes an expected discount

time c. So, jumping to the next point above l − 2ϵ → l − ϵ should also take an

expected discount time of approximately c. Indeed we can couple the two random

walks: The one that starts at l− ϵ and reaches l and the one that starts at l− 2ϵ

and reaches l − ϵ. Failing of this coupling happens with probability O(ϵ2); this

failure occurs only if the realization of the random walk goes l−ϵ→ ϵ→ l without

visiting l or 0 in the middle. The coupled process will fail to do the same trajectory

because it will move l − ϵ→ 0 and 0 is an observing state.

Using similar arguments one can show that v(l − 3ϵ) = c3 +O(ϵ2).

By the definition of value, we know that

v(l − ϵ) =
δ

2
(1 + v(l − 2ϵ)) (19)
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because with probability 1
2
we will reach l tomorrow and the discounted value

would be δ and with probability 1
2
we will reach l−2ϵ tomorrow and the discounted

value would be δv(l − 2ϵ). By combining equations (18) with (19) we get c =
δ
2
(1 + c2)±O(ϵ2) which implies that

c =
1−

√
1− δ2

δ
±O(ϵ2). (20)

Consider the initial belief X0 which is distributed as follows: With probability

p = 1− ϵ
2−2l+ϵ

the belief is l − 2ϵ and with probability 1− p = ϵ
2−2l+ϵ

the belief is

1.

If the sender uses the greedy policy at time t = 1, she pools together p
4
of the

mass located at l − 2ϵ with the 1− p mass located at 1 and her utility is

1− 3p

4
+

3p

4
c2 ±O(ϵ2),

where the term 3p
4
c2 captures the 3p

4
mass that remains at l − 2ϵ.

If, instead the sender stays mute at time t = 1 and for time t ≥ 2 she behaves

greedily the following will happen. At time t = 2 she pools together the p
2
mass

at l − ϵ with the 1 − p mass at 1. This leaves a mass of p
2
at l − 3ϵ for future

utilization of adoption. In total, her value is

δ(1− p

2
) + δ

p

2
c3 ±O(ϵ2).

In order for such a deviation from the greedy policy to be profitable we should

have

δ(1− p

2
) + δ

p

2
c3 > 1− 3p

4
+

3p

4
c2 ±O(ϵ2)

Since p = 1−O(ϵ) it is sufficient to have

δ
1

2
+ δ

1

2
c3 >

1

4
+

3

4
c2 ±O(ϵ)

Using Equation (20) and neglecting the O(ϵ2) and O(ϵ) error terms the inequal-

ity above becomes an inequality of δ only. One can verify that for δ > 1√
2
we have

δ 1
2
+ δ 1

2
c3 > 1

4
+ 3

4
c2. Finally, we set ϵ′ such that the total sum of all the O(ϵ2) and

O(ϵ) error terms along the proof will not exceed the gap δ 1
2
+δ 1

2
c3− 1

4
− 3

4
c2 > 0 for

every ϵ ≤ ϵ′. In such cases the deviation from the greedy policy is profitable.

C Existence of a Maximum for Interval Policies

Proposition 2. Every martingale X = (Xt)t=1,...,T for the sender has an optimal

interval policy.
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Proof. We consider the case where T = ∞. Led µ be a positive measure on [0, 1]

with µ([0, 1]) = r and let D = {(x, y) ∈ [0, r]2 : x ≤ y}. Define a mapping Tµ from

D to the set of positive measures over [0, 1] by letting Tµ(x, y) be the measure ν

that contains all mass in µ that lies between the quantiles x and y of ν. That is

for any measurable function f :∫
[0,1]

f(z)dν(z) =

∫ y

x

f(F−1(z))dz,

where F−1 is the inverse of the CDF of µ. Note that, as in the proof of Lemma 5,

it follows that for any interval measure ν ≤ µ it holds that ν = Tµ(q, q) for some

0 ≤ q ≤ q ≤ r.

It readily follows that Tµ is a continuous mapping from D to the set of positive

measures that are endowed with the total variation norm. To see this note that if

|x−x′| ≤ ϵ, |y−y′| ≤ ϵ, and f : [0, 1] → [−1, 1], then ∥Tµ(x, y)−Tµ(x′, y′)∥TV ≤ 2ϵ.

As in Lemma 5 we can identify an interval policy {(µt, νt)}t=1,... with a sequence

of quantiles {q
t
, qt}t=1,... such that the interval measure νt ≤ µt equals Tµt(qt, qt).

Let {(µt,n, νt,n)t=1,...}n=1,...,∞ be a sequence of interval policies that attains the

supremum in the limit across all interval policies. Let {{q
t,n
, qt,n}t=1,...}n=1,... be the

corresponding quantile representation. We assume first that for every t it holds

that limn→∞ q
t,n

= p
t
and limn→∞ qt,n = qt. Let {(µt, νt)}t=1,... be the measure

representation of the limit policy. We claim that the policy {p
t
, pt}t=1,... achieves

the optimal payoff.

To see this we prove by induction on t that limn→∞ µt,n = µt, that limn→∞ νt,n =

νt, and that νt = l.

Note that µ1,n = µ1 is the same measure for any n. The fact that limn→∞ ν1,n =

ν1 follows from the above observation since limn→∞ q
1,n

= p
1
and limn→∞ q1,n = q1.

Since limn→∞ ν1,n = ν1 it must hold that either ν1 is the zero measure or else ν1 = l.

Assume that the claim holds for t−1. That is limn→∞ µt−1,n = µt−1, limn→∞ νt−1,n =

νt−1, and νt−1 = l. Since µt,n = σt−1◦(µt−1,n−νt−1,n) it follows that limn→∞ µt,n =

limn→∞ σt−1 ◦ (µt−1,n−νt−1,n) = σt−1 ◦ (µt−1−νt−1) = µt. It therefore follows from

the fact that limn→∞ q
t,n

= p
t
and limn→∞ qt,n = qt that

lim
n→∞

νn,t = lim
n→∞

Tµn,t(qt,n, qt,n) = Tµt(qt, qt) = νt.

In addition since νt,n = l we have that either νt = 0 or νt = l as desired. Since

the utility of the sender from each policy is

∞∑
t=1

wt|νt,n|
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we have that the utility converges to the utility of the limit policy
∑∞

t=1wt|νt|.
The claim that the limit policy achieves the optimum now readily follows.

We next show that the quantile converges assumption holds without loss. We

can take the original sequence of policies {(µt,n, νt,n)t=1,...}n=1,... and take a subse-

quence {(µt,ni1
, νt,ni1

)t=1,...}i1=1,... such that limi1→∞ q
1,ni1

= p
1
and limi1→∞ q1,ni1

=

q1.

We proceed inductively to get a sequence of refinements such that

{(µt,nik
, νt,nik

)t=1,...}ik=1,... is a refinement of {(µt,nik−1
, νt,nik−1

)t=1,...}i2=1,... and

limi2→∞ q
k,nik

= p
k
and limik→∞ qk,ni2

= qk. It is now easy to see that the diagonal

subsequence has the desired properties.
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