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Abstract

We study the welfare effects of price discrimination in a duopoly market with

both captive and contested consumers. Using a unified information design ap-

proach, we characterize the best and worst market segmentations for producer

surplus, consumer surplus, and social surplus. The firm-optimal segmentation,

which divides the market into two nested segments, consistently harms consumers

compared to uniform pricing. The consumer-optimal segmentation, which di-

vides the market into a symmetric segment and a nested segment, sometimes

leads to a Pareto improvement. Social surplus, if monotone in firm profit, is

often maximized either by the firm-optimal or consumer-optimal segmentation.

1 Introduction

With the rapid advancement of information technology and the proliferation of social

media, the volume of consumer data available for market segmentation has grown

exponentially. Firms now have numerous ways to classify consumers into different

groups, leveraging data from social media platforms, mobile apps, and traditional offline
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sources. This increasingly detailed market segmentation facilitates third-degree price

discrimination, where firms charge different prices to different consumer groups.

This development raises several important and policy-relevant research questions:

What are the welfare effects of market segmentation? What segmentation generates the

maximal (or minimal) producer surplus, consumer surplus, or social surplus? How do

these welfare effects vary with different market structures and market configurations?

When can market segmentation lead to a Pareto-improving market segmentation over

uniform pricing?1

These questions are relevant in various contexts. For instance, data brokers like

Acxiom, Corelogic, or Datalogix sell consumer data to competing firms, and the max-

imum producer surplus achievable through market segmentation can serve as a bench-

mark for the prices these data brokers can charge. Industry associations that collect

consumer data might aim to maximize the aggregate welfare of their member firms.

Similarly, consumer associations, regulators advocating for consumer welfare, or plat-

forms seeking to enhance their appeal to consumers are interested in the segmentation

that maximizes consumer surplus. The analysis of the welfare effects of market seg-

mentation can also provide regulatory insights into how data brokers and third-party

platforms may influence market competition through information provision in product

markets, and whether consumers are necessarily harmed as firms pursue increasingly

intricate market segmentation to boost profits.

Our paper builds on the seminal work of Bergemann, Brooks and Morris (2015)

(BBM hereafter), who study the welfare effects of third-degree price discrimination in

a monopoly setting and characterize the set of all possible combinations of consumer

surplus and producer surplus achievable through market segmentation. One of the

main challenges to extend BBM’s analysis to oligopoly settings is to characterize all

possible equilibria in the baseline pricing model. As observed by Armstrong and Vickers

(2019), even for duopoly pricing models, “except in symmetric and other special cases

... the form of the equilibrium is not known.” Hence, a stylized baseline model is often

necessary for tractability.

We adopt the model of Armstrong and Vickers (2019) as our baseline model and

partially extend BBM’s analysis to a duopoly setting. In this model, two firms produce

a homogeneous product and compete in prices. Each firm has its own captive consumers

who can only buy from that firm.2 There are also contested consumers who are loyal

1We call a segmentation a Pareto improvement over another if the former increases both (expected)
consumer surplus and producer surplus relative to the latter.

2Consumers can become captive to firms due to market dynamics, psychological factors, and ex-
ternal barriers that hinder switching. For example, brand loyalty or brand-specific investments can
make it costly for consumers to switch, leading to captivity.
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to neither firm and will buy from the lower-priced firm. All consumers have the same

downward-sloping demand.3 A market segmentation, which divides the market into

segments with different proportions of captive and contested consumers, allows firms

to perform competitive (third-degree) price discrimination,4 and a designer selects a

segmentation to maximize welfare measures such as producer surplus, consumer surplus

or social surplus.

In a duopoly, the designer can reveal different segmentations to each firm (“private

segmentation”) or the same segmentation to both firms (“public segmentation”), a

distinction not present in the monopoly setting. In practice, data owners are often

legally required to disclose the same information to different firms. For instance, in

the credit market, credit bureaus provide standardized credit scores and histories to all

lenders, ensuring transparency and fairness in lending practices by preventing any single

lender from gaining an unfair advantage through exclusive data access. Similarly, in

the energy sector, smart meter data is often shared among utility providers to promote

competitive pricing and consumer choice. Another example comes from public records,

such as property ownership or tax data, which are made available to various firms like

real estate agents and insurers. These examples indicate that implementing private

segmentation can be challenging in certain applications. Furthermore, if the objective

of private segmentation does not align with firms’ incentives, firms may have incentive

to share their private information.5 Therefore, we will focus on public segmentations

to identify the best and worst market segmentations for producer surplus, consumer

surplus, and social surplus, respectively. This restriction not only improves tractability

but also allows for a more direct comparison to the existing literature (e.g., Armstrong

and Vickers (2019)), where firms share the same exogenous full information.

Rather than solving the six optimization problems separately, we introduce a unified

optimization problem with an objective that can be any monotone function of firm

profit. We develop a procedure to solve this unified problem and then adapt it to our

six specific optimization problems. Our analysis of the unified problem yields several

key insights. First, any market segment can be decomposed into a symmetric segment

and a nested segment, such that the decomposition replicates the welfare in the original

segment.6 Thus, we can focus on optimal market segmentation that consists only of

3This model framework was developed by Varian (1980) and Narasimhan (1988) for the case of
unit demand, and later generalized by Armstrong and Vickers (2019) to the case of downward-sloping
demand. This model has been a working horse in the marketing literature for studying promotional
strategies. See for example, Chen, Narasimhan and Zhang (2001) and references therein.

4Henceforth, we will use market segmentation and price discrimination interchangeably.
5There is extensive literature on information sharing in oligopoly. See Raith (1996) for a compre-

hensive survey and a unified approach to information sharing among firms.
6A symmetric segment contains equal fractions of captive consumers for both firms, while a nested
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symmetric and nested segments. Second, a more symmetric market fosters stronger

competition. Within segments with a fixed total fraction of captive consumers, a nested

segment maximizes producer surplus due to its maximal asymmetry, while a symmetric

segment maximizes consumer surplus and minimizes producer surplus. Third, since

consumers are risk averse due to downward-sloping demand, the consumer-optimal

segmentation must balance between the mean and variance of consumer payoff across

segments. If consumers are highly risk-averse, reducing the variability of consumer

payoff across segments may be prioritized over increasing the average payoff.

We find that the optimal market segmentation often takes a simple form for all three

welfare measures. Consider a prior (or aggregate) market (γ1, γ2) with a normalized

market size of one, where γi is the share of consumers captive to firm i and 1− γ1 − γ2

is the share of contested consumers. Let ℓ = γ1 + γ2 denote the total share of captive

consumers. Three types of market segmentation are of particular interest:

• Nested Segmentation: Divides the market into two nested segments (ℓ, 0) and

(0, ℓ) with sizes γ1/ℓ and γ2/ℓ, respectively.

• Field-Leveling Segmentation: Divides the market into a “maximal” symmetric

segment of (γ2/(1 − γ1 + γ2), γ2/(1 − γ1 + γ2)) with size 1 − γ1 + γ2 and the

remainder of (1, 0) with size γ1 − γ2.

• Perfect Segmentation: Divides the market into three perfect segments, each con-

taining only one type of consumers: (1, 0), (0, 1) and (0, 0), with sizes γ1, γ2 and

1− γ1 − γ2, respectively.

To illustrate nested segmentation and field-leveling segmentation, consider a toy

example with two firms competing for 36 consumers. Each consumer is a member of

an association and has an association email account. In the two figures below, each

consumer is represented by a colored email address—different colors indicate different

consumer types. The association collects members’ information and learns that 16

consumers are captive to firm 1 (yellow), 8 are captive to firm 2 (green), and the

remaining 12 are contested (red). The normalized prior market is (4/9, 2/9).

The association organizes the 36 email addresses into distinct email lists (i.e., sub-

markets), disclosing publicly the size and compositions of each list without revealing

the specific color of each consumer. It also manages the firms’ access to these lists.7

Each firm sends exactly one price offer per email list through the association.

The segmentation illustrated in the left panel of Figure 1 divides contested con-

sumers proportionally to captive consumers to form two submarkets. It represents a

segment contains only one firm’s captive consumers.
7If the association creates different lists for different firms, it is an example of private segmentation.
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Figure 1: Nested segmentation and its modification

nested segmentation because it can be normalized as 2/3(2/3, 0) + 1/3(0, 2/3). Start-

ing with the nested segmentation and extracting some of the contested consumers from

the two submarkets in proportion to their size to form a third submarket, we obtain a

“modified” nested segmentation, as illustrated in the right panel.

Figure 2: Field-leveling segmentation and its modification

The segmentation in the left panel of Figure 2 separates the market into a “maxi-

mal” symmetric submarket and the remainder. After normalization, this segmentation

can be written as 2/9(1, 0) + 7/9(2/7, 2/7), which represents a field-leveling segmen-

tation. The right panel’s segmentation is a “modified” version of the field-leveling

segmentation. It also consists of a symmetric segment and a nested segment, but the

symmetric segment is not maximal and the nested segment is not “extreme”.

Table 1 summarizes our main findings on optimal market segmentation. Producer

surplus is uniquely maximized by nested segmentation and minimized by either per-
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Nested Modified N Field-Leveling Modified FL Perfect

P-Max ✓

P-Min ✓ ✓

C-Max Low risk averse High risk averse

C-Min High γ1 + γ2 Low γ1 + γ2

S-Max s(π) ↑ π
s(π) ↓ π

Low risk averse

s(π) ↓ π
High risk averse

S-Min
s(π) ↓ π

High γ1 + γ2

s(π) ↓ π
Low γ1 + γ2

s(π) ↑ π

Table 1: The best and worst market segmentation

fect segmentation or field-leveling segmentation. Although nested segmentation does

not always minimize consumer surplus, it consistently harms consumers compared to

uniform pricing.

Consumer surplus is uniquely maximized by field-leveling segmentation if consumers

are not highly risk-averse. Otherwise, a modified field-leveling segmentation can be

optimal because the modification reduces the volatility of consumer payoffs, benefiting

risk averse consumers. This modified segmentation may also increase producer surplus

compared to uniform pricing, resulting in a Pareto improvement.

Consumer surplus is uniquely minimized by nested segmentation when the share

of captive consumers is high, and by a modified nested segmentation otherwise. In a

modified nested segmentation, the fraction of captive consumers in the nested segments

is higher, leading to a consumer loss that may outweigh the consumer gain from the

third segment of contested consumers.

The analysis of social surplus mirrors that of producer or consumer surplus. If social

surplus s(π) increases with firm profit π, it is also maximized by nested segmentation

and minimized by perfect segmentation. If social surplus decreases with firm profit, the

segmentation that maximizes (or minimizes) social surplus resembles that of consumer

surplus, though they may not coincide.

Now, we discuss how our results relate to and differ from those in the existing lit-

erature. Armstrong and Vickers (2019) compare consumer welfare under perfect seg-

mentation and uniform pricing, showing that perfect segmentation harms consumers

relative to uniform pricing if the market is sufficiently symmetric, but benefits con-

sumers if the market is sufficiently asymmetric. In contrast, we adopt an information

design approach similar to BBM and demonstrate that nested segmentation maximizes

producer surplus. Furthermore, we show that nested segmentation always reduces con-
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sumer surplus relative to uniform pricing for all prior market configurations, in contrast

to the ambiguous result in Armstrong and Vickers (2019).

The optimality of nested segmentation has been previously identified by Bergemann,

Brooks and Morris (2020) and Albrecht (2020), using the unit demand version of Arm-

strong and Vickers (2019) as their baseline model. With unit demand, consumers are

always served in every possible segmentation, resulting in constant total social sur-

plus across segmentations. Consequently, what benefits firms must harm consumers

and vice versa, making the analysis of consumer surplus a straightforward corollary of

producer surplus. However, with downward-sloping demand, the interaction between

firms and consumers is no longer zero-sum, and a Pareto-improving market segmenta-

tion over uniform pricing may be possible. Hence, our analysis of consumer welfare is

more nuanced.8

The BBM framework has been extended to various monopoly contexts, such as

multiproduct monopoly (Ichihashi (2020), Haghpanah and Siegel (2022), Haghpanah

and Siegel (2023), Hidir and Vellodi (2021)), lemons market with interdependent val-

ues (Kartik and Zhong (2023)), and revenue-maximizing data brokers (Yang (2022)).9

In a bilateral trade setting where a seller posts a price to a buyer who may or may

not be better informed, Kartik and Zhong (2023) characterize the set of payoff vectors

achievable across all information structures and find that the buyer-optimal information

structure must minimize the seller’s payoff, which generalizes the findings of both BBM

and Roesler and Szentes (2017). We also find that the consumer-optimal segmentation

minimizes producer surplus when consumers are not highly risk averse. However, when

consumers are highly risk averse, this is no longer the case, and the consumer-optimal

segmentation may strictly improve producer surplus over no segmentation, resulting in

a Pareto improvement. Our latter result is related to Haghpanah and Siegel (2023),

who show that a Pareto-improving segmentation exists whenever a firm-optimal seg-

mentation leads to inefficiency. However, our notion of Pareto improvement differs

from and is weaker than theirs.

All the aforementioned papers take consumer demand as given and focus on design-

ing information structures to influence firms’ learning. Alternatively, one can design

information structures to affect consumer learning. Roesler and Szentes (2017) consider

a monopoly model with privately informed consumers and derive consumer-optimal in-

formation structures. Armstrong and Zhou (2022) extend this analysis to a duopoly

8Elliott et al. (2024) extends the analysis of BBM to an oligopoly setting with unit demand. They
provide a necessary and sufficient condition for a firm-optimal segmentation to extract the full surplus
and characterize a consumer-optimal segmentation which induces an efficient allocation and delivers
minimal profit to each firm.

9See also Ali, Lewis and Vasserman (2023) for an analysis of how consumer data control can affect
consumer welfare by influencing the learning of and the competition between firms.

7



setting, characterizing firm-optimal and consumer-optimal information structures. As-

suming firms, rather than the designer, choose information structures, Ivanov (2013)

and Hwang, Kim and Boleslavsky (2023) derive equilibrium information structures in

games where firms compete in both pricing and advertising.

2 The Model

Our baseline model is taken from Armstrong and Vickers (2019). There are two firms

who can produce a homogeneous product at zero cost and compete for a unit mass of

consumers in prices. There are three types of consumers: consumers who are captive

to (and hence can only buy from) firm 1, consumers who are captive to firm 2, and

contested consumers who will buy from the firm that charges a lower price. Let γ1 and

γ2 denote the share of consumers captive to firm 1 and firm 2, respectively, and the

share of contested consumers is then 1−γ1−γ2. Without loss of generality, we assume

that γ2 ≤ γ1.

Consumers have quasilinear preferences and their demand D (p) is downward slop-

ing and twice-differentiable. If a consumer buys from a firm that charges a price p, this

consumer will buy D (p) units of the product, making a profit of π (p) ≡ pD (p) for the

firm. As in Armstrong and Vickers (2019), we impose the following assumption:

Assumption 1 The elasticity of demand η (p) ≡ −pD′ (p) /D (p) is strictly increasing.

Remark 1 The downward sloping demand model can nest a unit demand specification

with a random taste shock. Let i = 0, 1, 2, denote the types of consumers who are

contested, captive to firm 1, and captive to firm 2, respectively. Suppose that each

consumer has a unit demand and that a type i consumer’s valuation for product j is

uij = θij + εi

where θij is the normalized mean utility of type i consumers for firm j’s product (j =

1, 2), and εi is type i’s taste shock which is randomly drawn from a common distribution

Ψ with density ψ. The normalized utility θij takes the value of 0 if i = 0 or i = j and

the value of −∞ otherwise, so captive consumers (i = 1, 2) will only buy from their

favorite firms. Furthermore, the taste shock εi is common across products, so contested

consumers (i = 0) will buy from the firm that offers the lower price. The taste shock

is realized upon receiving product offers. If a type 1 consumer is offered product 1 at

price p, this consumer will buy if εi ≥ p, which happens with probability 1 − Ψ(p). If

we define the “demand function” as D(p) = 1−Ψ(p), then Assumption 1 is equivalent
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to the requirement that pψ(p)/[1−Ψ(p)] is strictly increasing in p.

Under Assumption 1, π (p) is single-peaked and hence is strictly increasing for all

p ∈ [0, p∗] where p∗ is the revenue-maximizing price p∗ = argmaxπ (p). Moreover, con-

sumer surplus v (π) as a function of profit π is strictly decreasing, twice-differentiable,

and strictly concave in [0, π∗], where π∗ ≡ p∗D (p∗) is the maximal profit. To rule out

triviality, we assume that π∗ > 0 and v (π∗) > 0.

The overall duopoly market, referred to as the prior market, can be segmented into

different submarkets or segments which may have different relative shares of captive

and contested consumers. We will use the terms of “submarket” and “segment” inter-

changeably. In a segment (q1, q2), q1 and q2 are the fraction of consumers captive to

firm 1 and firm 2, respectively, and 1− q1 − q2 is the fraction of contested consumers.

The set of possible segments is

M =
{
(q1, q2) ∈ [0, 1]2 : 0 ≤ q1 + q2 ≤ 1

}
.

A market segmentation can be represented as a probability distribution m (q1, q2) ∈
∆M of different segments such that

γi =
∑

(q1,q2)∈M

m(q1, q2)qi, i = 1, 2. (1)

Once the designer selects a market segmentation, both firms can use this information

to implement price discrimination. Given a market segmentation m, firms determine

what prices to charge for each submarket (q1, q2) within the support of m to maximize

their profit. It is clear that if a prior market (γ1, γ2) does not contain any contested

consumers (i.e., γ1 + γ2 = 1), both firms attain the maximal profit π∗ for every seg-

ment, and all market segmentations yield the same payoffs for firms and consumers.

Therefore, from now on, we assume that γ1 + γ2 < 1.

We first characterize the unique equilibrium for a generic segment (q1, q2) with

q1 ≥ q2 ≥ 0. Since profit π is strictly increasing in price p ∈ [0, p∗], it is without loss

to focus on profits in [0, π∗], for which there is one-to-one mapping between profit and

price. As in Armstrong and Vickers (2019), it is more convenient to consider firms

as choosing the per-consumer profit π rather than the price p they charge consumers.

Consumers then select the firm with the smallest π from the set of firms they consider.

Before stating the equilibrium characterization, we follow Armstrong and Vickers

(2019) and define firm 1’s captive-to-reach ratio ρ(q1, q2) as

ρ(q1, q2) =
q1

1− q2
∈ [0, 1], (2)
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where q1 is the fraction of consumers in segment (q1, q2) who are capped by firm 1, and

1− q2 is the fraction of consumers who can be reached by firm 1. When the underlying

segment (q1, q2) is clear, we often omit its dependence on (q1, q2) and write ρ directly.

Intuitively, a higher ρ indicates a lower incentive for firm 1 to undercut firm 2 in order

to attract contest consumers. The following equilibrium characterization is taken from

Narasimhan (1988) and Armstrong and Vickers (2019). We omit the proof.

Lemma 1 In the unique equilibrium for segment (q1, q2) with q1 ≥ q2 and q1 + q2 < 1,

both firm 1 and firm 2 play mixed strategies on a common support [ρπ∗, π∗]. Firm 1

chooses per-consumer profit according to distribution

F1 (π) =
1− q1

1− q1 − q2

(
1− ρπ∗

π

)
with an atom of size (q1 − q2) / (1− q2) at π = π∗, and firm 2 chooses per-consumer

profit according to distribution

F2 (π) =
1− q2

1− q1 − q2

(
1− ρπ∗

π

)
with no atom. The equilibrium profits are π1 = q1π

∗ and π2 = (1− q1) ρπ
∗.

In this game, the unique Nash equilibrium is in mixed strategy. Firms randomize

on a common support, and the firm with more captive consumer has a mass point at

the bottom. Note that the above lemma does not allow q1+ q2 = 1, in which case each

firm’s mixed strategy is reduced to a pure strategy of π∗ and operates as a monopoly.

Furthermore, if q2 > q1, we can simply swap the role of the two firms.

Now we can use the equilibrium characterization in Lemma 1 to compute three

welfare measures for the segment (q1, q2). Let G (π; q1, q2) denote the equilibrium prob-

ability that a consumer in segment (q1, q2) is offered a minimum profit weakly lower

than π. Since firm i’s profit offer is considered only by consumers captive to firm i and

contested consumers, we have

G (π; q1, q2) = (1− q2)F1 (π) + (1− q1)F2 (π)− (1− q1 − q2)F1 (π)F2 (π)

=
(1− q1) (1− q2)

1− q1 − q2

(
1− q21

(1− q2)
2

(
π∗

π

)2
)

(3)

with an atom of size q1 (q1 − q2) / (1− q2) at π = π∗. It follows from Lemma 1 that
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the equilibrium producer surplus obtained in segment (q1, q2) is

P (q1, q2) =

∫ π∗

ρπ∗
πdG (π; q1, q2) (4)

The corresponding equilibrium consumer surplus is

C (q1, q2) =

∫ π∗

ρπ∗
v (π) dG (π; q1, q2) , (5)

and the equilibrium social surplus is

S (q1, q2) =

∫ π∗

ρπ∗
s (π) dG (π; q1, q2) , (6)

where s (π) = v (π) + π is strictly concave due to the strict concavity of v (π).

The designer’s problem is to choose market segmentation m(q1, q2) ∈ ∆M to max-

imize (or minimize) the expected producer surplus∑
(q1,q2)∈M

m(q1, q2)P (q1, q2),

or the expected consumer surplus∑
(q1,q2)∈M

m(q1, q2)C(q1, q2),

or the expected social surplus ∑
(q1,q2)∈M

m(q1, q2)S(q1, q2),

subject to the consistency constraint (1). We call a market segmentation P-Max (P-

Min, respectively) if it maximizes (minimizes, respectively) the expected producer sur-

plus. The C-Max, C-Min, S-Max and S-Min segmentations are similarly defined.

The objective of the paper is to identify these six optimal market segmentations. To

achieve this objective, we need to solve six different optimization problems separately.

Instead of addressing each problem separately, we adopt a unified approach. Noting

the similarity in welfare measures (4)-(6), we introduce a unified optimization problem

that encompasses all six optimization problems.
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3 A Unified Approach

We begin this section by introducing the unified problem. We then demonstrate how

a key observation can significantly simplify the problem and improve its tractability.

Finally, we present a solution that can be applied to obtain the six optimal market

segmentations.

3.1 A unified optimization problem

Let a(π) be a twice continuously differentiable function a : [0, π∗] → R and define

A (q1, q2) =

∫ π∗

ρπ∗
a (π) dG (π; q1, q2) .

Now consider the following optimization problem:

max
m∈∆M

∑
(q1,q2)∈M

m(q1, q2)A(q1, q2) (OPT)

subject to the consistency constraint (1). Throughout of the paper, we will refer to

this problem as Problem (OPT). By choosing the function a (π) appropriately, Problem

(OPT) can nest the six optimization problems as special cases:

P-Max : a (π) = π

P-Min : a (π) = −π
C-Max : a (π) = v (π)

C-Min : a (π) = −v (π)
S-Max : a (π) = s (π)

S-Min : a (π) = −s (π)

We can use expression (3) for G(q1, q2) to rewrite A(q1, q2) as

A (q1, q2) =
q1 (q1 − q2)

1− q2
a (π∗) +

2q21 (1− q1)

(1− q2) (1− q1 − q2)
(π∗)2

∫ π∗

ρπ∗

a (π)

π3
dπ. (7)

The function A(q1, q2) will be central to our analysis. As discussed in Kamenica and

Gentzkow (2011) and Bergemann and Morris (2019), finding the optimal segmentation

is equivalent to finding the concave envelope of the function A(q1, q2), denoted as

A#(q1, q2). However, finding A#(q1, q2) can be quite challenging because A(q1, q2) is

defined on a two-dimensional space and because there are almost no restrictions on the

set of segments that can be included in the support of the segmentation m(q1, q2). Our
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strategy is to leverage the problem’s structure to significantly narrow down the types

of market segments that may be included in the solution to Problem (OPT).

3.2 Solution characterization

We first argue that it is sufficient to consider segmentations that consist of at most

three types of simple segments which are defined below.

Definition 1 An L-nested segment is a segment of the form (q1, 0). An R-nested

segment is a segment of the form (0, q2). A symmetric segment is a segment of the

form (q, q).

The key to our argument is the following simple observation: We can decompose

any segment (q1, q2) with q1 ≥ q2 into a symmetric segment and an L-nested segment

as follows:

(1 + q1 − q2) q2
q1

(
q1

1 + q1 − q2
,

q1
1 + q1 − q2

)
+

(q1 − q2)(1− q2)

q1

(
q1

1− q2
, 0

)
. (8)

There are many other ways of decomposing (q1, q2) into a symmetric segment and a

L-nested segment, but the above decomposition uniquely ensures that the two new

segments share the same captive-to-reach ratio ρ for firm 1, defined in (2), as the

original segment:

ρ (q1, q2) = ρ

(
q1

1 + q1 − q2
,

q1
1 + q1 − q2

)
= ρ

(
q1

1− q2
, 0

)
.

We illustrate this decomposition in Figure 3. All segments (q1, q2) with q1 ≥ q2

lie within the shaded lower triangle formed by points (0, 0), (1/2, 1/2) and (1, 0). The

symmetric segment (
q1

1 + q1 − q2
,

q1
1 + q1 − q2

)
=

(
ρ

1 + ρ
,

ρ

1 + ρ

)
lies on the edge linking (0, 0) with (1/2, 1/2), while the L-nested segment(

q1
1− q2

, 0

)
= (ρ, 0)

lies on the edge linking (0, 0) to (1, 0). It is easy to verify that all points on the

line segment linking (ρ, 0) and
(

ρ
1+ρ

, ρ
1+ρ

)
share the same captive-to-reach ratio ρ.

Moreover, an extension of this line segment passes the point (0, 1). An analogous
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q1

q2

q1 + q2 = 1

(0, 0)

(0, 1)

(12 ,
1
2)

(1, 0)(ρ, 0)

( ρ
1+ρ ,

ρ
1+ρ)

(q1, q2)

Figure 3: Decomposition into symmetric and nested segments

decomposition can divide a segment (q1, q2) with q1 ≤ q2 in the upper triangle into a

symmetric segment lying on the edge of (0,0)-(1/2,1/2) and an R-nested segment lying

on the edge of (0,0)-(0,1).

The significance of this decomposition is that it preserves the objective value of

Problem (OPT). Therefore, as stated in the following lemma, it is without loss of

generality to focus on optimal segmentation that consists only of symmetric and nested

segments. The proofs of this and subsequent lemmas and propositions are collected in

the appendix.

Lemma 2 Problem (OPT) admits an optimal segmentation that consists only of sym-

metric segments and nested segments.

Therefore, when solving Problem (OPT), we only need to consider the concave

envelopes of symmetric segments and nested segments, i.e., A#(q, q), A#(q1, 0) and

A#(0, q2). In fact, because all concave envelopes are concave, we need to select at most

one point from each of the three concave envelopes. Let mS denote the size of the

symmetric segment (x, x), mL the size of the L-nested segment (y, 0), and mR the size

of the R-nested segment (0, z). Problem (OPT) can be simplified as:

max
mS ,mL,mR∈[0,1]

x∈[0,1/2],y∈[0,1],z∈[0,1]

mSA
#(x, x) +mLA

#(y, 0) +mRA
#(0, z) (OPT-S)
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subject to

mS +mL +mR = 1,

mSx+mLy = γ1,

mSx+mRz = γ2.

So far, we have not imposed any restriction on the shape of the function a(π).

However, for all the six optimization problems that we are interested in, a(π) is strictly

monotone. For strictly monotone a(π), we can further simplify Problem (OPT-S) by

excluding one of the three segments in the optimal segmentation, as stated in the

following lemma.

Lemma 3 If a (π) is strictly increasing, Problem (OPT-S) has a solution with mS = 0.

If a (π) is strictly decreasing, Problem (OPT-S) has a solution with mR = 0.

This lemma is proved by construction. For a strictly increasing a(π), we decompose

a symmetric segment (q, q) with q ≤ 1/2 into two nested segments

(q, q) =
1

2
(2q, 0) +

1

2
(0, 2q)

and establish that A(q, q) ≤ A(2q, 0). Therefore, by replacing a symmetric segment

with an R-nested and an L-nested segment, we can weakly increase the objective value

of (OPT-S). For a strictly decreasing a(π), we can replace an R-nested segment and

an L-nested segment by a symmetric segment, leading to a weakly higher objective

value of (OPT-S). Formally, we prove the following inequality: for any x ∈ [0, 1/2], y ∈
[0, 1], z ∈ [0, 1],

A

(
yz

y + z
,
yz

y + z

)
≥ z

y + z
A(y, 0) +

y

y + z
A (0, z) .

If a(π) is strictly increasing, it follows from Lemma 3 that mS = 0, and therefore

Problem (OPT-S) can be rewritten as

max
mL∈[γ1,1−γ2]

mLA
#

(
γ1
mL

, 0

)
+ (1−mL)A

#

(
γ2

1−mL

, 0

)
.

By concavity of A#(q1, 0), this objective is bounded above by A# (γ1 + γ2, 0). Further-

more, this upper-bound is attained by mL = γ1/(γ1 + γ2).

If a(π) is strictly decreasing, the exact solution to Problem (OPT-S) is not yet

attainable due to its dependence on the shape of a(π). Nevertheless, mR = 0 by
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Lemma 3, and thus Problem (OPT-S) is reduced to a single-variable maximization

problem. The following proposition summarizes the above discussion.

Proposition 1 If a (π) is strictly increasing,

(mS,mL,mR) =

(
0,

γ1
γ1 + γ2

,
γ2

γ1 + γ2

)
(OPT-I)

solves Problem (OPT-S) and attains an objective value of

γ1
γ1 + γ2

A#(γ1 + γ2, 0) +
γ2

γ1 + γ2
A#(0, γ1 + γ2).

If a (π) is strictly decreasing, Problem (OPT-S) is reduced to

max
mS∈[2γ2,1−γ1+γ2]

mSA
#

(
γ2
mS

,
γ2
mS

)
+ (1−mS)A

#

(
γ1 − γ2
1−mS

, 0

)
. (OPT-D)

Proposition 1 provides a partial characterization of the solution to Problem (OPT).

The only obstacle in applying Proposition 1 to solve our six design problems is comput-

ing envelope functions of the form A#(q, q), A#(q1, 0) and A
#(0, q2), i.e., the concave

envelopes for symmetric and nested segments. These will be derived in the next sub-

section.

3.3 Concave envelopes for symmetric and nested segments

We now characterize the concave envelopes for symmetric segments and nested seg-

ments. Since A(q, q), A(q1, 0) and A(0, q2) are functions of a single variable, finding

their concave envelopes is much easier than finding the concave envelope A# (q1, q2).

We will focus on the cases where a(π) is strictly monotone and is either concave or

convex. This gives us four possible cases: (i) a(π) is strictly decreasing and strictly

concave; (ii) a(π) is strictly decreasing and weakly convex; (iii) a(π) is strictly increas-

ing and weakly concave; and (iv) a(π) is strictly increasing and strictly convex. We will

label these cases as (d-scav), (d-wcvx), (i-wcav), and (i-scvx), respectively. Notably,

Case (d-wcvx) allows a(π) to be linearly decreasing, while Case (i-wcav) permits a(π)

to be linearly increasing.

For symmetric segments, we argue that the concavity/convexity of a(π) directly

translates into the concavity/convexity of A(q, q). The argument was first sketched

in Armstrong and Vickers (2019). We provide a formal proof in the Appendix for
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completeness. Given the concavity/convexity of A(q, q), the characterization of its

concave envelope A#(q, q) is then straightforward.

Lemma 4 A(q, q) is weakly concave (convex, respectively) if a(π) is weakly concave

(convex, respectively). Therefore, the concave envelope A#(q, q) is given by

A#(q, q) =

A(q, q) if a(π) is weakly concave

2qA(1
2
, 1
2
) + (1− 2q)A(0, 0) if a(π) is weakly convex

For nested segments, we will focus our analysis on A(q1, 0) since the analysis for

A(0, q2) is analogous. In contrast to A(q, q), A(q1, 0) can be neither concave nor convex.

Lemma 5 A(q1, 0) is strictly increasing (decreasing, respectively) if a(π) is strictly

increasing (decreasing, respectively). Moreover, A(q1, 0) has the following shape:

• It is first strictly concave and then strictly convex in Case (d-scav).

• It is strictly convex in Case (d-wcvx).

• It is strictly concave in Case (i-wcav).

• It is first strictly convex and then strictly concave in Case (i-scvx).

Using Lemma 5, we can quickly derive the concave envelope A#(q1, 0) for Case

(d-wcvx) and Case (i-wcav). In Case (d-wcvx), A(q1, 0) is strictly convex and thus

A#(q1, 0) = q1A(1, 0) + (1 − q1)A(0, 0). In Case (i-wcav), A(q1, 0) is strictly concave

and thus A#(q1, 0) = A(q1, 0).

For the remaining cases, (d-scav) and (i-scvx), deriving the concave envelopeA#(q1, 0)

requires a bit more work. Figure 4 illustrates the shape of A(q1, 0) in these two cases.

In Case (d-scav), A(q1, 0) is initially concave and then convex (left panel), whereas

in Case (i-scvx), it is initially convex and then concave (right panel). To derive the

concave envelope A#(q1, 0), we need to identify the tangent points l1 and l2.
10

To define l1 in Case (d-scav), we first define an auxiliary function Φ as

Φ (l) ≡ (1− l)2 a (π∗)− 2l (2− l) (π∗)2
∫ π∗

lπ∗

a (π)

π3
dπ +

2 (1− l) a (lπ∗)

l
. (9)

10At first glance, l1 and l2 may appear to be mirror images of each other because finding the concave
envelope in Case (d-scav) is similar to finding the convex envelope in Case (i-scvx), and vice versa.
However, they are not. The nested segment (q1, 0) is symmetric when q1 = 0, is asymmetric when
q1 > 0, and its level of asymmetry increases as q1 increases from 0 to 1. Therefore, the concave
envelope of A(q1, 0) differs from (the mirror image of) its convex envelope, especially in the location
of their respective tangent points. As shown in Lemma 6, l2 is always interior with l2 ∈ (0, 1), but l1
often takes the value of 0.
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A(q1, 0)
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q1

A(q1, 0)

l20 1

Figure 4: Definitions of l1 and l2

We can then use Φ to implicitly define l1 as

l1 = inf {l ∈ [0, 1) : Φ (l) ≥ 0} , (10)

where we exclude the value of 1 because Φ(1) = 0. For Case (i-scvx), we implicitly

define l2 as

l2 = sup{l ∈ (0, 1] : A(l, 0)− 2a(lπ∗) + a(0) ≥ 0}, (11)

where we exclude the value of 0 because A(0, 0)−2a(0)+a(0) = 0. It is straightforward

to verify that A#(q1, 0) is indeed tangent to A(q1, 0) at q1 = l1 if l1 is interior in Case

(d-wcav) and at q1 = l2 if l2 is interior in Case (i-wcvx):

∂A(q1, 0)

∂q1
|q1=l1 =

A(1, 0)− A(l1, 0)

1− l1
and

∂A(q1, 0)

∂q1
|q1=l2 =

A(l2, 0)− A(0, 0)

l2
.

It is important to note that both l1 and l2 depend only on the shape of a(π); in

particular, they are independent of the prior market configuration, γ1 and γ2.

The following lemma characterizes the concave envelope for nested segments. In

particular, it provides a necessary and sufficient condition for l1 = 0. We defer our

discussion of this condition to Section 4.2 where we derive optimal segmentation for

consumer surplus. In contrast, l2 is always interior, as shown in the lemma.

Lemma 6 The concave envelope A#(q1, 0) is given as follows.

• Case (d-scav): If a(π∗)− a(0)− 2π∗a′(0) ≥ 0, then l1 = 0 and

A#(q1, 0) = (1− q1)A(0, 0) + q1A(1, 0).
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If a(π∗)− a(0)− 2π∗a′(0) < 0, then l1 ∈ (0, 1) and

A#(q1, 0) =

{
A(q1, 0) if q1 ≤ l1

1−q1
1−l1

A (l1, 0) +
q1−l1
1−l1

A (1, 0) if q1 > l1
(12)

• Case (d-wcvx): A#(q1, 0) = q1A(1, 0) + (1− q1)A(0, 0).

• Case (i-wcav): A#(q1, 0) = A(q1, 0).

• Case (i-scvx): We have l2 ∈ (0, 1) and

A#(q1, 0) =

{
A(q1, 0) if q1 ≥ l2

q1
l2
A(l2, 0) +

l2−q1
l2
A(0, 0) if q1 < l2

(13)

Proposition 1, together with Lemmas 4 and 6, provides a procedure for solving

the unified problem (OPT). If a(π) is strictly increasing, we apply Lemma 6 to derive

the concave envelope A#(γ1 + γ2, 0) which is then combined with the preliminary

solution (OPT-I) to obtain the final solution to Problem (OPT). If a(π) is strictly

decreasing, we apply Lemmas 4 and 6 to derive the concave envelopes for symmetric

and nested segments and then solve the single variable maximization problem (OPT-

D). The next section will demonstrate how this procedure can be adapted to solve our

six optimization problems.

4 Best and Worst Market Segmentation

In this section, we will study the best and worst market segmentation for producer

surplus, consumer surplus, and social surplus, respectively. We will begin by defining

three types of market segmentation that will play an important role in the subsequent

analysis.

Definition 2 Fix a prior market (γ1, γ2). A market segmentation is called “nested

segmentation” if it decomposes (γ1, γ2) into two nested segments as follows:

γ1
γ1 + γ2

(γ1 + γ2, 0) +
γ2

γ1 + γ2
(0, γ1 + γ2) . (14)

A market segmentation is called “perfect segmentation” if it perfectly separates the three

types of consumers in the prior market (γ1, γ2):

γ1(1, 0) + γ2(0, 1) + (1− γ1 − γ2)(0, 0). (15)
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A market segmentation is called “field-leveling segmentation” if it decomposes (γ1, γ2)

into a symmetric segment and a nested segment as follows:

(1− γ1 + γ2)

(
γ2

1− γ1 + γ2
,

γ2
1− γ1 + γ2

)
+ (γ1 − γ2)(1, 0). (16)

The definitions of nested segmentation and perfect segmentation are straightfor-

ward. We will briefly comment on the definition of field-leveling segmentation. In the

prior market (γ1, γ2), firm 1 has an advantage since it has more captive consumers than

firm 2. To level the playing field, this segmentation removes a fraction (γ1−γ2) of firm
1’s captive consumers to form the L-nested segment (1, 0), while keeping all remaining

consumers to form the symmetric segment. This symmetric segment is “maximal” in

the sense that, after accounting for its size, it contains the largest fraction of the prior

market.

To derive the best and worst segmentation for different welfare measures, we ap-

propriately choose a(π) to apply the solution to Problem (OPT) obtained in Section 3.

While we sidestep the issue of uniqueness in solving Problem (OPT), we will address

uniqueness here whenever possible.

4.1 P-Max and P-Min segmentation

For producer surplus, we set a(π) = π and hence A(q1, q2) = P (q1, q2) in Problem

(OPT) with

P (q1, q2) =
(2− q1 − q2) q1

1− q2
π∗. (17)

Since a(π) = π is linearly increasing, the P-Max problem belongs to Case (i-wcav), and

the solution to Problem (OPT) is a P-Max segmentation. By Lemma 6, A#(q1, 0) =

A(q1, 0). By (OPT-I) in Proposition 1, nested segmentation (14) is a P-Max segmen-

tation.

The following proposition shows that nested segmentation is in fact uniquely opti-

mal for firms and consistently detrimental to consumers compared to uniform pricing.

Proposition 2 Nested segmentation uniquely maximizes producer surplus. Moreover,

it yields a lower consumer surplus than uniform pricing for any prior market.

We provide intuition underlying Proposition 2. For the first part, consider a market

segment (q1, q2) with q1 ≥ q2. Suppose that we keep the total share of captive consumers

ℓ = q1 + q2 fixed and increase the fraction of firm 1’s captive consumers q1. As q1

increases, the segment becomes more asymmetric, and firm 1’s incentive to offer lower

profit (i.e., cut price) to attract contested consumers decreases. Since profit (or price)
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offers are strategic complements, the equilibrium profit distribution shifts upward.

Formally, we can use equation (17) to write the total profit of segment (q1, q2) as

P (q1, q2) =
(2− ℓ)q1
1− ℓ+ q1

π∗,

which increases in q1 for fixed ℓ. Therefore, for a fixed ℓ, nested segments (ℓ, 0) and

(0, ℓ) exhibit maximal asymmetry and thus generate maximal profit.

For the second part, define ℓ = γ1+γ2 as the total share of captive consumers in the

prior market. Consumer surplus is C(ℓ, 0) under nested segmentation and C(γ1, γ2) =

C(γ1, ℓ−γ1) under uniform pricing. The second part claims that C(ℓ, 0) < C(γ1, ℓ−γ1).
To understand this inequality, note that, as we increase γ1 while keeping ℓ fixed, two

effects occur. First, as previously argued, when the market becomes more asymmetric,

the equilibrium profit distribution shifts upward, which tends to lower consumer sur-

plus. Second, the support of the equilibrium profit distribution, [ γ1
1+γ1−ℓ

π∗, π∗], shrinks

and the variability of profit may go down, which tends to benefit consumers who are

risk averse regarding offered profit π. It turns out that the first effect always dominates

and consumers are always worse off.

The second part has antitrust implications. It suggests that if data brokers or third-

party platforms are allowed to freely choose information structures for the product

markets through public information provision, consumers are likely worse off compared

to when no information is provided. To protect consumers, antitrust authorities may

need to intervene, for example, by banning price discrimination or the sale of personal

information.

Several remarks are in order regarding how Proposition 2 connects to and differs

from the existing literature. First, Bergemann, Brooks and Morris (2020) and Albrecht

(2020) have shown that nested segmentation is P-Max in the context of unit demand.

It is not surprising that this result extends to our setting of downward sloping demand

because there is one-to-one mapping between the price and the profit. By viewing

firms as competing in profits rather than in prices, the analysis of equilibrium profits

is identical to that with unit demand. Hence, the first part is known in the literature,

but the second part is new.

Second, unlike the analysis of producer surplus, which is identical in both demand

settings, the analysis of consumer welfare and social welfare differs. In the case of unit

demand, consumers are always served in every possible segmentation, making total

social surplus constant. This implies that what is best for firms must be worst for con-

sumers and vice versa. However, in the case of downward-sloping demand, consumers

are risk-averse to profit variation, and total welfare varies across different segmenta-
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tions. The reformulation of firms choosing profits rather than prices does not simplify

the analysis of consumer surplus. As a result, the analysis of price discrimination’s ef-

fects on consumer welfare and social welfare is more nuanced in the setting of downward

sloping demand, as we will demonstrate later in this section.

Third, we show that the P-Max segmentation unambiguously reduces consumer

welfare relative to uniform pricing (i.e., no segmentation). In contrast, most of the lit-

erature on third-degree price discrimination takes market segmentation as exogenously

given and finds the welfare consequences of price discrimination generally ambiguous.

For example, Schmalensee (1981) and Varian (1985) show that the effect of monopolistic

price discrimination on social welfare, relative to uniform pricing, depends on whether

overall output increases.11 In a symmetric duopoly model, Holmes (1989) shows that

the effects of price discrimination on output and profit depend on cross-price elasticities

and concavities of demand functions in the two submarkets.12

Finally, in the same model framework as here, Armstrong and Vickers (2019) find

that, the effect of price discrimination (i.e., perfect segmentation) on consumer welfare

relative to uniform pricing (i.e., no segmentation) is ambiguous and depends on the

degree of asymmetry between firms. From the above proposition, we know that perfect

segmentation does not maximize producer surplus, so the second part of the proposi-

tion does not apply. In fact, as shown in the next proposition, perfect segmentation

minimizes producer surplus.

Proposition 3 Perfect segmentation minimizes producer surplus.

This result is intuitive because a firm’s profit cannot fall below the level it earns

from serving its own captive consumers, and perfect segmentation ensures that both

firms achieve precisely that. The P-Min segmentation is not unique, as both P (q, q)

and P (q, 1−q) are linear in q. In Figure 3, we can mix or split in various ways along the

45-degree line and the line connecting (0, 1) and (1, 0), without changing the objective

value of (OPT). In particular, field-leveling segmentation defined in (16) also minimizes

producer surplus.

11See also Aguirre, Cowan and Vickers (2010) and Cowan (2012). Aguirre, Cowan and Vickers
(2010) show that the effect of price discrimination depends on the relative curvature of the direct or
inverse demand functions in the two submarkets. Cowan (2012) shows that consumer surplus may
rise with discrimination if the ratio of pass-through to the elasticity at the uniform price is higher in
the high-elasticity submarket.

12See also Corts (1998) who shows that if firms disagree over which submarkets are strong or weak,
then price discrimination may lower profit and increase consumer surplus.

22



4.2 C-Max and C-Min segmentation

To find the C-Max segmentation, let a(π) = v(π) and thus a(π) is strictly decreasing

and strictly concave. Therefore, the C-Max problem falls under Case (d-scav). De-

pending on whether the tangent point l1 is interior, we can divide Case (d-scav) into

two subcases: l1 = 0 and l1 > 0.

Consider first the simpler subcase where l1 = 0 and thus A(q1, 0) is convex. By

Lemma 6, l1 = 0 if and only if

v(π∗)− v(0) ≥ 2π∗v′(0). (18)

Since v(π∗)− v(0) ≤ π∗v′(0) by concavity, condition (18) is satisfied if v(π) is not too

concave. For example, inequality (18) holds for all indirect utility functions generated

by a linear demand.

Remark 2 A sufficient condition for inequality (18) to hold is that D′(p)p is decreasing

for p ∈ [0, p∗]. To see this, let p(π) ∈ (0, p∗) be the price that generates profit π under

demand D(p). Let p be the choke price such that D(p)=0. Then v(π) =
∫ p

p(π)
D(t)dt,

which implies that

v′(π) = −D(p(π))p′(π) =
−D(p(π))

D(p(π)) +D′(p(π))p(π)
.

Hence, v′(0) = −1. Using π∗ = p∗D(p∗), we deduce that, with decreasing D′(p)p,

v(π∗)− v(0)− 2π∗v′(0) =

∫ p

p∗
D(t)dt−

∫ p

0

D(t)dt+ 2π∗

= D(p∗)p∗ +

∫ p∗

0

D′(t)tdt

= −D′(p∗)(p∗)2 +

∫ p∗

0

D′(t)tdt

=

∫ p∗

0

[D′(t)t−D′(p∗)(p∗)]dt

≥ 0,

where the second equality follows from integration by parts and the third follows from

the first-order condition for p∗. This sufficient condition implies Assumption 1, but the

reverse is not true.

By Proposition 1, the C-Max problem is equivalent to Problem (OPT-D) with
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A(q1, q2) = C(q1, q2):

max
mS∈[2γ2,1−γ1+γ2]

mSC
#

(
γ2
mS

,
γ2
mS

)
+ (1−mS)C

#

(
γ1 − γ2
1−mS

, 0

)
(19)

By Lemma 4, C(q, q) is concave and C#(q, q) = C(q, q). By Lemma 6, l1 = 0 and

C#(q1, 0) = q1C(1, 0) + (1− q1)C(0, 0). The objective function in (19) becomes

mSC

(
γ2
mS

,
γ2
mS

)
+ (1−mS − (γ1 − γ2))C(0, 0) + (γ1 − γ2)C(1, 0).

Since C(q, q) is concave, we have

mS

1− γ1 + γ2
C

(
γ2
mS

,
γ2
mS

)
+
1− γ1 + γ2 −mS

1− γ1 + γ2
C(0, 0) ≤ C

(
γ2

1− γ1 + γ2
,

γ2
1− γ1 + γ2

)
.

Therefore, the above objective is bounded above by

(1− γ1 + γ2)C

(
γ2

1− γ1 + γ2
,

γ2
1− γ1 + γ2

)
+ (γ1 − γ2)C(1, 0).

Moreover, this upper bound is attained by mS = 1 − γ1 + γ2. This implies that field-

leveling segmentation is a C-Max segmentation. In fact, as stated in the following

proposition, it uniquely maximizes consumer surplus.

Proposition 4 Suppose v(π∗)−v(0) ≥ 2π∗v′(0). Field-leveling segmentation uniquely

maximizes consumer surplus.

Intuitively, firms are more competitive in a more symmetric segment. Any fur-

ther division of a symmetric segment can only increase the variability of the profit

distribution, thereby lowering the expected consumer surplus, because by Lemma 4,

C(q, q) is concave. Therefore, the symmetric segment must be maximal in the C-Max

segmentation.

Why is condition (18) necessary? Field-leveling segmentation randomly assigns a

consumer captive to firm 1 to either the symmetric segment or the L-nested segment

(1, 0). Such consumers attain the lowest payoff in segment (1, 0) since firm 1 will offer

π∗ for sure, and they attain the highest possible payoff in the maximal symmetric

segment. That is, nested segmentation creates a maximal payoff disparity for such

consumers. Therefore, if consumers are highly risk averse so that condition (18) fails,

then field-leveling segmentation may not be a C-Max segmentation.

Next, consider the subcase where condition (18) fails. By Lemma 6, the tangent

point l1 is interior and A
#(q1, 0) is given by (12). The C-Max problem is again reduced
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to Problem (OPT-D) which is a single-variable maximization problem, but its solution

is less straightforward because A#(q1, 0) takes a more complex form. Rather than

presenting the full solution here (which can be found in an online appendix), we focus

on the case where the C-Max segmentation also increases producer surplus relative

to uniform pricing. That is, the C-Max segmentation is a Pareto improvement over

uniform pricing.13

Proposition 5 Suppose that v(π∗) − v(0) < 2π∗v′(0) and ρ(γ1, γ2) < lC1 where lC1 ∈
(0, 1) is implicitly defined by Φ(lC1 ) = 0. Then the following modified field-leveling

segmentation

m∗
S

(
γ2
m∗

S

,
γ2
m∗

S

)
+ (1−m∗

S)

(
γ1 − γ2
1−m∗

S

, 0

)
(20)

maximizes consumer surplus, where m∗
S is interior and is implicitly determined by

the first-order condition of Problem (OPT-D). Furthermore, the C-Max segmentation

yields a strictly higher producer surplus than uniform pricing.

Recall by Lemma 6 that the tangent point l1 = 0 if condition (18) holds and

l1 ∈ (0, 1) otherwise. When l1 is interior, it depends on the function a(π). Here we

write lC1 to indicate that it is tailored for the C-Max problem. For the same reason,

below we use lC2 to denote the tangent point l2 for the C-Min problem. Figure 5

provides a geometric illustration of the field-leveling segmentation (thick solid line)

and its modification (thick dotted line) for the prior market (γ1, γ2).

Since a symmetric segment remains beneficial to consumers, the C-Max segmenta-

tion should still include a symmetric segment and an L-nested segment. In the optimal

solution, m∗
S < 1− γ1 + γ2 and thus the captive-to-reach ratios are ordered:

ρ

(
γ1 − γ2
1−m∗

S

, 0

)
< ρ(1, 0) and ρ

(
γ2

1− γ1 + γ2
,

γ2
1− γ1 + γ2

)
< ρ

(
γ2
m∗

S

,
γ2
m∗

S

)
.

Note that if m∗
S = 1− γ1 + γ2, the modified field-leveling segmentation (20) is reduced

to the standard field-leveling segmentation (16). Therefore, compared to field-leveling

segmentation, the modified segmentation gives firm 1 a weaker incentive to cut price in

the symmetric segment and a stronger incentive in the nested segment. Consequently,

consumers receive a lower payoff in the symmetric segment but a higher payoff in the

nested segment. When condition (18) fails, consumers are highly risk averse, so the

reduced volatility in the profit distribution improves consumer welfare.

13The condition ρ(γ1, γ2) < lC1 in the following proposition is necessary for Pareto improvement. As
we shown in the online appendix, if ρ(γ1, γ2) = lC1 , uniform pricing (i.e., no segmentation) is consumer-
optimal, and any price discrimination that strictly increases firms’ profit must hurt consumers.
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γ1

γ2

(lC1 , 0)(0, 0)

(0, 1)

(
γ2
m∗

S
, γ2
m∗

S

)

(1, 0)
(

γ1−γ2
1−m∗

S
, 0
)
(ρ, 0)

(γ1, γ2)

( γ2
1−γ1+γ2

, γ2
1−γ1+γ2

)

Figure 5: Geometry of field-leveling segmentation and its modification

To understand the argument for Pareto improvement, we first note that by decom-

position (8) and Lemma 2, the producer surplus under uniform pricing is obtained by

setting mS = γ2(1 + γ1 − γ2)/γ1 in the segmentation (20). Next, we can use (17) to

compute the producer surplus generated by the symmetric segment

mSP

(
γ2
mS

,
γ2
mS

)
= 2γ2π

∗

and by the nested segment in the segmentation (20)

(1−mS)P

(
γ1 − γ2
1−mS

, 0

)
=

(
2− γ1 − γ2

1−mS

)
(γ1 − γ2)π

∗.

The former is constant in mS, but the latter strictly decreases in mS. Since m∗
S <

γ2(1+γ1−γ2)/γ1, the C-Max segmentation strictly increases producer surplus compared

to uniform pricing.14

We now turn to the C-Min problem. We set a(π) = −v(π). Then a(π) is strictly

increasing and strictly convex, and thus the C-Min problem belongs to Case (i-scvx).

14For a numerical example, consider the demand function D(p) = (p1.1 + 1)−1. We can verify that
Assumption 1 holds, but condition (18) fails. Further calculations yield p∗ = 8.1113, π∗ = 0.7374, and
lC1 = 0.2107. Let (γ1, γ2) = (0.1, 0.05) so that ρ(γ1, γ2) < lC1 . The C-Max segmentation is given by
0.503(0.0994, 0.0994)+0.497(0.1006, 0), which generates strictly higher consumer surplus and producer
surplus than uniform pricing.
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By Proposition 1, the objective value is given by

γ1
γ1 + γ2

C# (γ1 + γ2, 0) +
γ2

γ1 + γ2
C# (0, γ1 + γ2)

By Lemma 6, there is an interior lC2 ∈ (0, 1) such that

C#(γ1 + γ2, 0) =

{
C(γ1 + γ2, 0) if γ1 + γ2 ≥ lC2

γ1+γ2
lC2

C(lC2 , 0) +
(
1− γ1+γ2

lC2

)
C(0, 0) if γ1 + γ2 < lC2

Therefore, if γ1+γ2 ≥ lC2 consumer surplus is minimized by the “standard” nested seg-

mentation; otherwise it is minimized by the following “modified” nested segmentation:

γ1
lC2

(
lC2 , 0

)
+
γ2
lC2

(
0, lC2

)
+

(
1− γ1 + γ2

lC2

)
(0, 0). (21)

Figure 6 provides a geometric presentation of the nested segmentation for a prior market

(γ′1, γ
′
2) with γ

′
1 + γ′2 ≥ lC2 (thick solid line) and the modified nested segmentation for a

prior market (γ1, γ2) with γ1 + γ2 < lC2 (thick dotted line).

γ1

γ2

(0, 0)

(0, 1)

(0, γ′1 + γ′2)

(γ′1 + γ′2, 0) (1, 0)(lC2 , 0)

(0, lC2 )

(γ1, γ2)

(γ′1, γ
′
2)

Figure 6: Geometry of nested segmentation and its modification

Proposition 6 Let lC2 be the tangent point defined in (11) with a(π) = −v(π). If

γ1+γ2 ≥ lC2 , nested segmentation uniquely minimizes consumer surplus; otherwise, the

“modified” nested segmentation in (21) uniquely minimizes consumer surplus.
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As previously noted, a more asymmetric market leads to weaker competition be-

tween firms, resulting in lower consumer surplus. It is thus not surprising that a C-Min

segmentation should include nested segments. Furthermore, for nested segments, con-

sumer surplus can be further reduced by increasing the fraction of captive consumers.

Therefore, if the total share of captive consumers is sufficiently large, i.e., γ1+γ2 ≥ lC2 ,

then nested segmentation maximizes producer surplus and minimizes consumer sur-

plus simultaneously. However, when the total share of captive consumers is too small,

it is better to remove some contested consumers to form a third segment (0, 0), thus

increasing the fraction of captive consumers who remain in the nested segments. Under

the modified nested segmentation, consumers gain from having the new segment (0, 0),

but this gain is outweighed by the loss in the two nested segments, (lC2 , 0) and (0, lC2 ),

due to less intense competition between firms.

4.3 S-Max and S-Min segmentation

To find the segmentation that maximizes social surplus, we set a(π) = s(π) = π+ v(π)

and apply Proposition 1. By the concavity of v(π), s(π) is strictly concave. Therefore,

if s(π) is strictly increasing, the S-Max problem is similar to the P-Max problem and

belongs to Case (i-wcav); if s(π) is strictly decreasing, the S-Max problem is similar

to the C-Max problem and falls in Case (d-scav). The proof for the first (second,

respectively) part of the following proposition is similar to the proof for Proposition 2

(Proposition 4, respectively), and therefore we omit it.

Proposition 7 If s(π) is strictly increasing, then nested segmentation uniquely maxi-

mizes social surplus. If s(π) is strictly decreasing and v(π∗)−v(0)−2π∗v′(0)−π∗ ≥ 0,

then field-leveling segmentation uniquely maximizes social surplus.

To find the S-Min segmentation, we set a(π) = −s(π) = −π − v(π) and thus a(v)

is strictly convex. If s(π) is strictly increasing, the S-Min problem is similar to the

P-Min problem and belongs to Case (d-wcvx). If s(π) is strictly decreasing, the S-Min

problem is similar to the C-Min problem and belongs to Case (i-scvx). Let lS2 be the

tangent point l2 defined in (11) with a(π) = −π − v(π). The following proposition is

then immediate. Its proof is similar to the proof for Proposition 3 and Proposition 6,

and thus is omitted.

Proposition 8 If s(π) is strictly increasing, then perfect segmentation minimizes so-

cial surplus. If s(π) is strictly decreasing and γ1 + γ2 ≥ lS2 , then nested segmentation

uniquely minimizes social surplus. If s(π) is strictly decreasing and γ1 + γ2 < lS2 , the
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following “modified” nested segmentation

γ1
lS2

(
lS2 , 0

)
+
γ2
lS2

(
0, lS2

)
+

(
1− γ1 + γ2

lS2

)
(0, 0)

uniquely minimizes social surplus.

If s(π) is strictly increasing, perfect segmentation minimizes both social surplus

and producer surplus.15 Neither the S-Min segmentation nor the P-Min segmentation

is unique. However, if s(π) is strictly decreasing, the S-Min segmentation may not

coincide with the C-Min segmentation. This discrepancy arises because lS2 and lC2 are

defined for different a(π) functions and thus different. One can show that lS2 ≤ lC2 , so

the S-Min segmentation and the C-Min segmentation coincide only if γ1 + γ2 ≥ lC2 .

5 Concluding Remarks

We develop a unified information design approach to study the welfare effects of third-

degree price discrimination in a duopoly market, considering all possible public market

segmentations. Our findings show that firm-optimal market segmentation always harms

consumers relative to uniform pricing, in contrast to the literature that assumes exoge-

nous market segmentation and often finds ambiguous effects of price discrimination on

consumer welfare. Additionally, we demonstrate that consumer-optimal segmentation

can sometimes constitute a Pareto improvement over uniform pricing.

In a recent paper, Rhodes and Zhou (2024) extend the classic random-utility model

by Perloff and Salop (1985) to a general oligopoly model with correlated product valu-

ations and partial market coverage. Their model encompasses monopoly and the linear

Hotelling model by Thisse and Vives (1998) as special cases. They find that the wel-

fare effects of personalized pricing (first-degree discrimination) versus uniform pricing

depend on market coverage. This raises the question of whether our information de-

sign exercise can be applied to their model and if our finding that firm-optimal price

discrimination always harms consumers holds. The challenge lies in characterizing all

possible equilibria for various market configurations, presenting an interesting direction

for future research.

Throughout the paper, we focus on market segmentations based on publicly ob-

servable signals. In some cases, firms may not share the same consumer information.

Allowing for multiple firms, Bergemann, Brooks and Morris (2021) identify an upper

bound for the equilibrium distribution of prices and construct a private segmentation

15It is worth noting that field-leveling segmentation, which minimizes producer surplus, does not
minimize social surplus even if social surplus is increasing in profit.
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that achieves this bound for any symmetric prior. Their construction is as follows: if

captive to firm 1, reveal s1 to firm 1 and s0 to firm 2; if captive to firm 2, reveal s0 to

firm 1 and s1 to firm 2; if contested, reveal s1 to firm 1 and s2 to firm 2 with probability

α, s2 to firm 1 and s1 to firm 2 with probability α, and s2 to both with probability

1− 2α. This private segmentation yields higher producer surplus than nested segmen-

tation with a symmetric prior. However, this advantage disappears with a strongly

asymmetric prior (e.g., γ1 = 0 or γ2 = 0). The optimal private segmentation for an

asymmetric prior remains an open question.

6 Appendix: Proofs

Proof of Lemma 2. Take any segment (q1, q2) with q1 ≥ q2 and decompose it into a

symmetric segment and a nested segment as in (8). By writing ρ = ρ(q1, q2), we note

that

q2 (1 + q1 − q2)

q1
A

(
q1

1 + q1 − q2
,

q1
1 + q1 − q2

)
+

(q1 − q2) (1− q2)

q1
A

(
q1

1− q2
, 0

)

=
q2 (1 + q1 − q2)

q1

2
(

q1
1+q1−q2

)2(
1− 2q1

1+q1−q2

) (π∗)2
∫ π∗

ρπ∗

a (π)

π3
dπ

+
(q1 − q2) (1− q2)

q1

((
q1

1− q2

)2

a (π∗) + 2

(
q1

1− q2

)2

(π∗)2
∫ π∗

ρπ∗

a (π)

π3
dπ

)

=
q1 (q1 − q2)

1− q2
a (π∗) +

2q21 (1− q1)

(1− q2) (1− q1 − q2)
(π∗)2

∫ π∗

ρπ∗

a (π)

π3
dπ

= A(q1, q2).

Therefore, any segment (q1, q2) with q1 ≥ q2 in an optimal segmentation can be replaced

by a symmetric segment and a nested segment without changing the objective value

in Problem (OPT). The argument is symmetric for segment (q1, q2) with q1 < q2.

Together, we conclude that Problem (OPT) has an optimal segmentation that consists

only of symmetric and nested segments.

Proof of Lemma 3. Consider first the case that a (π) is strictly increasing. We can

decompose any symmetric segment (q, q) with q ≤ 1/2 into two nested segments

(q, q) =
1

2
(2q, 0) +

1

2
(0, 2q).
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Therefore, to show the optimality of mS = 0, it is sufficient to show that

A(q, q) ≤ A(2q, 0) =
1

2
A(2q, 0) +

1

2
A(0, 2q).

It holds trivially with equality if q = 1/2. It remains to show that A(q, q) ≤ A(2q, 0)

for q < 1/2. Note that

A (2q, 0)− A (q, q)

= 4q2a (π∗) + 8q2 (π∗)2
∫ π∗

2qπ∗

a (π)

π3
dπ − 2q2

1− 2q
(π∗)2

∫ π∗

q
1−q

π∗

a (π)

π3
dπ

= 4q2a (π∗) +

(
8q2 − 2q2

1− 2q

)
(π∗)2

∫ π∗

2qπ∗

a (π)

π3
dπ − 2q2

1− 2q
(π∗)2

∫ 2qπ∗

q
1−q

π∗

a (π)

π3
dπ,

where the last integration is well-defined since q
1−q

< 2q. We consider two sub-cases.

(i) If 0 < q ≤ 3/8, then 8q2 − 2q2

1−2q
≥ 0. Since a(π) is increasing, we have

A (2q, 0)− A (q, q)

≥ 4q2a (π∗) +

(
8q2 − 2q2

1− 2q

)
(π∗)2

∫ π∗

2qπ∗

a (2qπ∗)

π3
dπ − 2q2

1− 2q
(π∗)2

∫ 2qπ∗

q
1−q

π∗

a (2qπ∗)

π3
dπ

= 4q2a (π∗) + a (2qπ∗)

(
8q2 − 2q2

1− 2q

)(
1− 4q2

8q2

)
− a (2qπ∗)

2q2

1− 2q

(1− 2q)(3− 2q)

8q2

= 4q2 [a (π∗)− a (2qπ∗)]

> 0.

(ii) If 3/8 < q < 1/2, then 8q2 − 2q2

1−2q
< 0. Again it follows from the monotonicity

of a (π) that

A (2q, 0)− A (q, q)

≥ 4q2a (π∗) +

(
8q2 − 2q2

1− 2q

)
(π∗)2

∫ π∗

2qπ∗

a (π∗)

π3
dπ − 2q2

1− 2q
(π∗)2

∫ 2qπ∗

q
1−q

π∗

a (2qπ∗)

π3
dπ

= 4q2a (π∗) + a (π∗)

(
8q2 − 2q2

1− 2q

)(
1− 4q2

8q2

)
− a (2qπ∗)

2q2

1− 2q

(1− 2q)(3− 2q)

8q2

=

(
3

4
− 1

2
q

)
[a (π∗)− a (2qπ∗)]

> 0.

In both sub-cases, we have 1
2
A (2q, 0) + 1

2
A (0, 2q) > A (q, q). Therefore, if a(π) is

strictly increasing, we can safely exclude the symmetric segment from the optimal
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segmentation.

Next consider the case that a(π) is strictly decreasing. Take any optimal segmen-

tation m that includes at least one R-nested segment. Since the prior market (γ1, γ2)

satisfies γ1 ≥ γ2, the optimal segmentation m must also involve at least one L-nested

segment. Note that, to find the concave closure of the function A(q1, 0) or A(0, q2),

we need to randomize over at most two points. Therefore, it is without loss to assume

that the segmentation m consists of at most two L-nested segments, (y, 0), (y′, 0) with

y, y′ ∈ (0, 1], and two R-nested segments, (0, z), (0, z′) with z, z′ ∈ (0, 1]. That is, we

can write the segmentation m as

(γ1, γ2) = β(y, 0) + β′ (y′, 0) + δ(0, z) + δ′(0, z′)

+ (1− β − β′ − δ − δ′)

(
γ1 − βy − β′y′

1− β − β′ − δ − δ′
,

γ2 − δz − δ′z′

1− β − β′ − δ − δ′

)
where β, β′, δ, δ′ denote the weights assigned to the segments (y, 0), (y′, 0), (0, z), (0, z′),

respectively, and the last segment is symmetric with

γ1 − γ2 = βy + β′y′ − δz − δ′z′ ≥ 0. (22)

We will construct an alternative segmentation m′ that excludes R-nested segments

and weakly improves the objective value of Problem (OPT). A key step of our con-

struction is to prove the following inequality:

A

(
yz

y + z
,
yz

y + z

)
− z

y + z
A(y, 0)− y

y + z
A (0, z) ≥ 0. (23)

To prove it, we first use the following observation

z

y + z

(
1− y2

)
+

y

y + z

(
1− z2

)
+ yz = 1
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to write the left-hand side of the inequality as

A

(
yz

y + z
,
yz

y + z

)
− z

y + z
A(y, 0)− y

y + z
A (0, z)

=
z

y + z

[
2y2z2 (1− y2)

(y + z) (y + z − 2yz)
(π∗)2

∫ π∗

yz
y+z−yz

π∗

a (π)

π3
dπ − 2y2 (π∗)2

∫ π∗

yπ∗

a (π)

π3
dπ

]

+
y

y + z

[
2y2z2 (1− z2)

(y + z) (y + z − 2yz)
(π∗)2

∫ π∗

yz
y+z−yz

π∗

a (π)

π3
dπ − 2z2 (π∗)2

∫ π∗

zπ∗

a (π)

π3
dπ

]

+yz

[
2y2z2

(y + z) (y + z − 2yz)
(π∗)2

∫ π∗

yz
y+z−yz

π∗

a (π)

π3
dπ − a (π∗)

]

We now argue that the value of the terms in each big bracket is non-negative. Since

2y2z2 (1− y2)

(y + z) (y + z − 2yz)
− 2y2 = −2y3 (1− z) (y + 2z − yz)

(y + z) (y + z − 2yz)
≤ 0

the value of the terms in the first big bracket is non-negative:

2y2z2 (1− y2)

(y + z) (y + z − 2yz)
(π∗)2

∫ π∗

yz
y+z−yz

π∗

a (π)

π3
dπ − 2y2 (π∗)2

∫ π∗

yπ∗

a (π)

π3
dπ

=
2y2z2 (1− y2)

(y + z) (y + z − 2yz)
(π∗)2

∫ yπ∗

yz
y+z−yz

π∗

a (π)

π3
dπ

−2y3 (1− z) (y + 2z − yz)

(y + z) (y + z − 2yz)
(π∗)2

∫ π∗

yπ∗

a (π)

π3
dπ

≥ 2y2z2 (1− y2)

(y + z) (y + z − 2yz)
(π∗)2

∫ yπ∗

yz
y+z−yz

π∗

a (yπ∗)

π3
dπ

−2y3 (1− z) (y + 2z − yz)

(y + z) (y + z − 2yz)
(π∗)2

∫ π∗

yπ∗

a (yπ∗)

π3
dπ

=
2y2z2 (1− y2) a (yπ∗)

(y + z) (y + z − 2yz)
(π∗)2

 1

2
(

yz
y+z−yz

π∗
)2 − 1

2 (yπ∗)2


−2y3 (1− z) (y + 2z − yz) a (yπ∗)

(y + z) (y + z − 2yz)
(π∗)2

(
1

2 (yπ∗)2
− 1

2 (π∗)2

)
= 0

The same algebra implies that the value of the terms in the second big bracket is also
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non-negative. Finally, the value of the last big bracket is non-negative because

2y2z2

(y + z) (y + z − 2yz)
(π∗)2

∫ π∗

yz
y+z−yz

π∗

a (π)

π3
dπ − a (π∗)

≥ 2y2z2

(y + z) (y + z − 2yz)
(π∗)2

∫ π∗

yz
y+z−yz

π∗

a (π∗)

π3
dπ − a (π∗)

=
2y2z2a (π∗)

(y + z) (y + z − 2yz)
(π∗)2

 1

2
(

yz
y+z−yz

π∗
)2 − 1

2 (π∗)2

− a (π∗)

= 0

This concludes the proof for inequality (23).

Inequality (23) says that we can weakly improve the objective value of Problem

(OPT) by merging a portion of an L-segment (y, 0) with a portion of a R-nested

segment (0, z) to form a symmetric segment. In particular, inequality (23) implies(
δ′′ +

δ′′z

y

)
A

(
yz

y + z
,
yz

y + z

)
≥ δ′′z

y
A(y, 0) + δ′′A (0, z) (24)(

δ′′′ +
δ′′′z′

y

)
A

(
yz′

y + z′
,
yz′

y + z′

)
≥ δ′′′z′

y
A(y, 0) + δ′′′A (0, z′) (25)

and (
δ − δ′′ +

(δ − δ′′) z

y′

)
A

(
y′z

y′ + z
,
y′z

y′ + z

)
≥ (δ − δ′′) z

y′
A(y′, 0) + (δ − δ′′)A (0, z) (26)(

δ′ − δ′′′ +
(δ′ − δ′′′) z

y′

)
A

(
y′z′

y′ + z′
,
y′z′

y′ + z′

)
≥ (δ′ − δ′′′) z′

y′
A(y′, 0) + (δ′ − δ′′′)A (0, z′) (27)

where δ′′ and δ′′′ are such that δ′′z
y

≤ β, δ′′ ≤ δ, δ′′′ ≤ δ′, δ′′′z′

y
≤ β, (δ−δ′′)z

y′
≤ β′ and

(δ′−δ′′′)z′

y′
≤ β′.

By (22), we can find δ′′ ∈ [0, δ] and δ′′′ ∈ [0, δ′] such that

δ′′z + δ′′′z′ ≤ βy, (δ − δ′′)z + (δ′ − δ′′′) z′ ≤ β′y′.
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Then consider an alternative segmentation m′:

(γ1, γ2) =

(
β − δ′′z

y
− δ′′′z′

y

)
(y, 0) +

(
β′ − (δ − δ′′)z

y′
− (δ′ − δ′′′)z′

y′

)
(y′, 0)

+

(
δ′′ +

δ′′z

y

)(
yz

y + z
,
yz

y + z

)
+

(
δ′′′ +

δ′′′z′

y

)(
yz′

y + z′
,
yz′

y + z′

)
+

(
δ − δ′′ +

(δ − δ′′)z

y′

)(
y′z

y′ + z
,
y′z

y′ + z

)
+

(
δ′ − δ′′′ +

(δ′ − δ′′′)z′

y′

)(
y′z′

y′ + z′
,
y′z′

y′ + z′

)
+ (1− β − β′ − δ − δ′)

(
γ1 − βy − β′y′

1− β − β′ − δ − δ′
,

γ2 − δz − δ′z′

1− β − β′ − δ − δ′

)
.

Combining (25)-(27), we conclude that segmentation m′ weakly improves upon the

original segmentation m. Therefore, if a(π) is decreasing, it is without loss to exclude

R-nested segments from the optimal segmentation, i.e., mR = 0.

Proof of Lemma 4. We focus on the case of weakly concave a(π); the proof for the

case of weakly convex a(π) is symmetric. To show that A(q, q) is weakly concave, we

need to show that, for any λ ∈ (0, 1), any 0 < qL < qH < 1/2 and q = λqL+(1−λ)qH ,

A(q, q) ≥ λA(qL, qL) + (1− λ)A(qH , qH).

Since by definition

A(q, q) =

∫ π∗

ρπ∗
a(π)dG(π; q, q),

it is sufficient to show that the distribution of the minimum of the profits in the two

submarkets (qL, qL) and (qH , qH) is a mean-preserving spread of the minimum profit

distribution in the single prior market (q, q).

Let G (π; q) ≡ G (π; q, q) denote the probability that a consumer in market segment

(q, q) is offered a minimum profit weakly lower than π. Then we must have

G (π; q) =
(1− q)2

1− 2q
− q2

1− 2q

(
π∗

π

)2

.

G (π; q) is strictly concave in q for all π < π∗ because

∂2G (π; q)

∂q2
= − 2

(1− 2q)3

((
π∗

π

)2

− 1

)
< 0.
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Consider qL < qH , λ ∈ (0, 1) and q = λqL + (1− λ) qH . Then for all π ∈
[

qH
1−qH

π∗, π∗
]
,

G (π; q) ≡ λG (π; qL) + (1− λ)G (π; qH) < G (π; q) .

Since q > qL, the support of G (π; q) contains the support of G (π; q). Furthermore, for

π ∈
[

q
1−q

π∗, qH
1−qH

π∗
]
,

G′ (π; q)

G
′
(π; q)

=
1

λ

q2

1− 2q

(
q2L

1− 2qL

)−1

> 1

because function f (x) = x2/ (1− 2x) is strictly increasing and q > qL. It follows

that G (π; q) crosses G (π; q) only once and from below. Finally, the two submarkets

yield the same producer surplus of 2qπ∗ as the prior single symmetric market (q, q).

Therefore, G (π; q) is a mean-preserving spread of G (π; q).

Now if a(π) is weakly concave, A(q, q) is weakly concave and thus A#(q, q) = A(q, q).

If a(π) is weakly convex, A(q, q) is weakly convex and A#(q, q) is the line segment

linking A(1
2
, 1
2
) and A(0, 0). That is, A#(q, q) = 2qA(1

2
, 1
2
) + (1− 2q)A(0, 0).

Proof of Lemma 5. We first prove the monotonicity of A(q1, 0). If a(π) is strictly

increasing, then A(q1, 0) is also strictly increasing because

∂A(q1, 0)

∂q1
= 2q1a (π

∗) + 4q1 (π
∗)2
∫ π∗

q1π∗

a (π)

π3
dπ − 2

a (q1π
∗)

q1

> 2q1a (π
∗) + 4q1 (π

∗)2
∫ π∗

q1π∗

a (q1π
∗)

π3
dπ − 2

a (q1π
∗)

q1

= 2q1a (π
∗) + 4q1 (π

∗)2
1− q21

2q21 (π
∗)2

a (q1π
∗)− 2

a (q1π
∗)

q1

= 2q1 (a (π
∗)− a (q1π

∗))

> 0.

The proof for the case with strictly decreasing a(π) is symmetric.

Next, we prove the shape of A(q1, 0). Consider first Case (d-scav) where a(π) is

strictly decreasing and strictly concave. The second and third derivatives of A(q1, 0)

are

∂2A(q1, 0)

∂q21
= 2a (π∗) + 4 (π∗)2

∫ π∗

q1π∗

a (π)

π3
dπ − 2

q21
a (q1π

∗)− 2π∗

q1
a′ (q1π

∗)

∂3A(q1, 0)

∂q31
= −2 (π∗)2

q1
a′′ (q1π

∗)
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It is immediate that

∂3A(q1, 0)

∂q31
> 0 and lim

q1→1

∂2A(q1, 0)

∂q21
= −2π∗a′ (π∗) > 0.

To establish the claim that A(q1, 0) is first strictly concave and then strictly convex,

it is sufficient to show that limq1→0+
∂2A(q1,0)

∂q21
= −∞. Suppose by contradiction that

limq1→0+
∂2A(q1,0)

∂q21
= y ∈ (−∞,∞). Then we can repeatedly apply the L’Hôpital’s rule

to rewrite y as

2a (π∗) + lim
q1→0+

4 (π∗)2 q21
∫ π∗

q1π∗
a(π)
π3 dπ − 2a (q1π

∗)− 2π∗q1a
′ (q1π

∗)

q21
= 2a (π∗)

+ lim
q1→0+

8 (π∗)2 q1
∫ π∗

q1π∗
a(π)
π3 dπ − 4 (π∗)3 q21

a(q1π∗)

(q1π∗)3
− 4π∗a′ (q1π

∗)− 2 (π∗)2 q1a
′′ (q1π

∗)

2q1

= 2a (π∗) + lim
q1→0+

4 (π∗)2 q21
∫ π∗

q1π∗
a(π)
π3 dπ − 2a (q1π

∗)− 2π∗q1a
′ (q1π

∗)

q21
− (π∗)2 a′′ (0)

= y − (π∗)2 a′′ (0) ,

which leads to a contradiction. Therefore, limq1→0+
∂2A(q1,0)

∂q21
does not have a finite limit.

But since ∂2A(q1,0)

∂q21
is continuous and striclty increasing in q1 for all q1 ∈ (0, 1), we must

have limq1→0+
∂2A(q1,0)

∂q21
= −∞.

In Case (d-wcvx), a(π) is strictly decreasing and weakly convex, and

∂3A(q1, 0)

∂q31
≤ 0 and lim

q1→1

∂2A(q1, 0)

∂q21
= −2π∗a′ (π∗) > 0.

It follows that
∂2A(q1, 0)

∂q21
> 0 for all q1 ∈ [0, 1],

and therefore A(q1, 0) is strictly convex in q1 for all q1 ∈ [0, 1].

In Case (i-wcav), a(π) is strictly increasing and weakly concave, and

∂3A(q1, 0)

∂q31
≥ 0 and lim

q1→1

∂2A(q1, 0)

∂q21
= −2π∗a′ (π∗) < 0.

This implies that
∂2A(q1, 0)

∂q21
< 0 for all q1 ∈ [0, 1],

which means that A(q1, 0) is strictly concave.
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Finally, for Case (i-scvx), since a(π) is strictly increasing and strictly convex, it is

immediate that

∂3A(q1, 0)

∂q31
< 0 and lim

q1→1

∂2A(q1, 0)

∂q21
= −2π∗a′ (π∗) < 0.

As we have shown in the proof of Case (d-scav), ∂2A(q1,0)

∂q21
does not have a finite limit

as q1 → 0+. We must have

lim
q1→0+

∂2A(q1, 0)

∂q21
= +∞.

Therefore, A(q1, 0) must be initially convex and then concave.

Proof of Lemma 6. For Case (d-scav), it remains to show that l1 = 0, or equivalently

Φ(0) ≥ 0, if and only if a(π∗)− a(0)− 2π∗a′(0) ≥ 0. This is true because

Φ (0) = a (π∗)− 2 lim
l→0+

(π∗)2
∫ π∗

lπ∗
a(π)
π3 dπ −

(
1−l

l2(2−l)

)
a (lπ∗)

1
l(2−l)

= a (π∗)− 2 lim
l→0+

−a(lπ∗)
l3

− 1−l
l2(2−l)

π∗a′ (lπ∗) +
(2l2−5l+4)
l3(2−l)2

a (lπ∗)

− 2−2l
l2(2−l)2

= a (π∗)− 2 lim
l→0+

− 1−l
l2(2−l)2

a (lπ∗)− 1−l
l2(2−l)

π∗a′ (lπ∗)

− 2−2l
l2(2−l)2

= a (π∗)− lim
l→0+

(a (lπ∗) + (2− l) π∗a′ (lπ∗))

= a (π∗)− a (0)− 2π∗a′ (0) .

When l1 is interior, the expression of concave envelope A#(q1, 0) directly follows from

the definition of l1 (see Figure 4).

The claims for Case (d-wcvx) and Case (i-wcav) directly follow from Lemma 5.

For Case (i-scvx), we first establish that l2 is interior. In the proof of Lemma 5, we

have shown that in Case (i-scvx)

∂3A(q1, 0)

∂q31
< 0 and lim

q1→1

∂2A(q1, 0)

∂q21
= −2π∗a′ (π∗) < 0.

and that

lim
q1→0+

∂2A(q1, 0)

∂q21
= +∞.
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Therefore, there must exist some l∗ ∈ (0, 1) such that ∂2A(q1,0)

∂q21
> 0 if and only if q1 < l∗.

We can use the expressions for A(q1, 0) and ∂A(q1, 0)/∂q1 to show that

A (l∗, 0)− 2a (lπ∗) + a (0)

= l∗
∂A(l∗1, 0)

∂q1
− A(l∗, 0) + A(0, 0)

= l∗
∂A(l∗1, 0)

∂q1
−
∫ l∗

0

∂A(q1, 0)

∂q1
dq1

=

∫ l∗

0

(
∂A(l∗, 0)

∂q1
− ∂A(q1, 0)

∂q1

)
dq1

> 0,

where the inequality follows from the convexity of A(q1, 0) for q1 < l∗.

Since A (l, 0)− 2a (lπ∗) + a (0) is continuous in l and

A (1, 0)− 2a (π∗) + a (0) = −a (π∗) + a (0) < 0,

l2 exists and l2 ∈ (0, 1). Then the expression of concave envelope A#(q1, 0) directly

follows from the definition of l2 (see Figure 4).

Proof of Proposition 2. For the first part, we only need to show uniqueness,

which consists of three steps. First, a P-Max segmentation cannot contain any interior

segment (q1, q2) with 0 < q2 < min{q1, 1 − q1} or 0 < q1 < min{q2, 1 − q2}. To see

this, take an interior segment (q1, q2) and decompose it into an L-nested segment and

an R-nested segment as in (14). This decomposition strictly improves the objective in

(OPT) because

q1
q1 + q2

P (q1 + q2, 0) +
q2

q1 + q2
P (0, q1 + q2)− P (q1, q2)

= (2− q1 − q2) (q1 + q2) π
∗ − (2− q1 − q2) q1

1− q2
π∗

=
(2− q1 − q2) (1− q1 − q2) q2

1− q2
π∗

> 0,

where the first equality uses equation (17). It follows that a P-Max segmentation can

use only symmetric segments, nested segments, and segments of form (q1, 1− q1).

Second, nested segmentation is uniquely optimal among segmentations that use

only symmetric and nested segments, because the objective in Problem (OPT-S) is

strictly concave. To see this, note that mS = 0 when a(π) = π and hence the objective
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of Problem (OPT-S) becomes

mLP
#

(
γ1
mL

, 0

)
+ (1−mL)P

#

(
0,

γ2
1−mL

)
= mL

(
2− q1

mL

)
q1
mL

π∗ + (1−mL)

(
2− q2

1−mL

)
q2

1−mL

π∗

=

[(
2− q1

mL

)
q1 +

(
2− q2

1−mL

)
q2

]
π∗

where the first equality follows from Lemma 6 that P#(q1, 0) = P (q1, 0) = (2−q1)q1π∗.

It is easy to verify that the objective is strictly concave in mL.

Third, a P-Max segmentation will never use a segment of the form (q1, 1− q1). We

can decompose (q1, 1 − q1) into q1(1, 0) + (1 − q1)(0, 1). By step two, this segment

(q1, 1−q1) is strictly dominated by nested segmentation (14). This concludes the proof

of uniqueness.

For the second part of the proposition, note that consumer surplus under nested

segmentation is C (γ1 + γ2, 0), so we need to show C (γ1, γ2) ≥ C (γ1 + γ2, 0). Define

ℓ = γ1 + γ2 and rewrite

C (γ1, γ2) = C (γ1, ℓ− γ1) .

We prove that C (γ1, ℓ− γ1) is decreasing in γ1 for fixed ℓ. That is, for a fixed total

share of captive consumers, consumer surplus decreases as the distribution of captive

consumers becomes more uneven between the two firms. Note that

C (γ1, ℓ− γ1) =
γ1 (2γ1 − ℓ)

1− ℓ+ γ1
v (π∗) +

2γ21 (1− γ1) (π
∗)2

(1− ℓ) (1− ℓ+ γ1)

∫ π∗

γ1
1−ℓ+γ1

π∗

v (π)

π3
dπ.

The total derivative of C (γ1, ℓ− γ1) with respect to γ1 is given by

2γ21 + (4γ1 − ℓ) (1− ℓ)

(1− ℓ+ γ1)
2 v (π∗)− 2 (1− γ1)

γ1
v

(
γ1

1− ℓ+ γ1
π∗
)

+
2 (2γ1 − 3γ21) (1− ℓ+ γ1)− 2γ21 (1− γ1)

(1− ℓ+ γ1)
2 (1− ℓ)

(π∗)2
∫ π∗

γ1
1−ℓ+γ1

π∗

v (π)

π3
dπ
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It is non-positive because we can rewrite it as

2γ1 − ℓ

1− ℓ

[
v (π∗)− v

(
γ1

1− ℓ+ γ1
π∗
)]

+
(2γ1 − 3γ21) (1− ℓ+ γ1)− γ21 (1− γ1)

(1− ℓ+ γ1)
2 (1− ℓ)

(π∗)2
∫ π∗

γ1
1−ℓ+γ1

π∗

v′ (π)

π2
dπ

=
2γ1 − ℓ

1− ℓ

∫ π∗

γ1
1−ℓ+γ1

π∗
v′ (π) dπ +

(2γ1 − 3γ21) (1− ℓ+ γ1)− γ21 (1− γ1)

(1− ℓ+ γ1)
2 (1− ℓ)

(π∗)2
∫ π∗

γ1
1−ℓ+γ1

π∗

v′ (π)

π2
dπ

≤
(
2γ1 − ℓ

1− ℓ
+

(2γ1 − 3γ21) (1− ℓ+ γ1)− γ21 (1− γ1)

(1− ℓ) γ21

)(
γ1

1− ℓ+ γ1
π∗
)2 ∫ π∗

γ1
1−ℓ+γ1

π∗

v′(π)

π2
dπ

=
2γ1(1− γ1)(π

∗)2

(1− ℓ+ γ1)2

∫ π∗

γ1
1−ℓ+γ1

π∗

v′(π)

π2
dπ

≤ 0,

where the first equality follows from integration by part, the first inequality follows

because 1 ≥ 2γ1 ≥ ℓ, π ≥ γ1
1−ℓ+γ1

π∗ and v′ (π) ≤ 0, and the last inequality follows

because v′ (π) ≤ 0. Therefore, C (γ1, γ2) ≥ C (γ1 + γ2, 0).

Proof of Proposition 3. To minimize producer surplus, we take a(π) = −π and thus

A(q1, q2) = −P (q1, q2). By Proposition 1, the P-minimization problem is equivalent to

Problem (OPT-D):

max
mS∈[2γ2,1−γ1+γ2]

mSA
#

(
γ2
mS

,
γ2
mS

)
+ (1−mS)A

#

(
γ1 − γ2
1−mS

, 0

)
= max

mS∈[2γ2,1−γ1+γ2]
2γ2A

(
1

2
,
1

2

)
+ (1− γ1 − γ2)A(0, 0) + (γ1 − γ2)A (1, 0)

= −γ2(P (1, 0) + P (0, 1))− (1− γ1 − γ2)P (0, 0)− (γ1 − γ2)P (1, 0)

= −γ1P (1, 0)− γ2P (0, 1)− (1− γ1 − γ2)P (0, 0),

where the first equality follows because by Lemmas 4 and 6

A#(q, q) = 2qA(1/2, 1/2) + (1− 2q)A(0, 0)

A#(q1, 0) = q1A(1, 0) + (1− q1)A(0, 0)

and the second equality follows because the objective is independent of mS, A(q1, q2) =

−P (q1, q2), and P (1
2
, 1
2
) = 1

2
P (1, 0) + 1

2
P (0, 1). It is clear that perfect segmentation

attains the optimum.
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Proof of Proposition 4. It remains to show uniqueness. We proceeds with two steps.

First, from the proof of Lemma 4, we can see that C(q, q) is strictly concave because

v(π) is strictly concave. Therefore, field-leveling segmentation strictly dominates any

other segmentation that consists of symmetric and L-nested segments.

Second, suppose by contradiction that there is another C-Max segmentation that

assigns a positive weight to an interior segment (q1, q2). Without loss of generality,

assume q2 < q1. Then by Lemma 2, we can replace it with a symmetric segment and a

L-nested segment that generates the same consumer surplus. By step one, this can be

strictly improved by applying field-leveling segmentation to (q1, q2). A contradiction.

Third, we can rule out R-nested segments in a C-Max segmentation, because when-

ever it includes an R-nested segment, given γ1 ≥ γ2, it must also include an L-nested

segment, and these two segments can be partly combined to form a symmetric segment

and strictly improve consumer surplus.

Finally, suppose by contradiction that there is another C-Max segmentation that

assigns a positive weight to a segment of the form (q1, 1− q1). Then we can replace it

with a segmentation consisting of (1, 0) and (0, 1) that generates the same consumer

surplus. By step 3, this can be strictly improved by applying the field-leveling segmen-

tation. This completes the proof.

Proof of Proposition 5. The proof for the first part involves some tedious algebra,

so we only provide a sketch here. The full details of the proof can be found in an online

appendix. Since v(π∗)− v(0) < 2π∗v′(0), the tangent point l1 = lC1 is interior. We can

use Case (d-scav) of Lemma 6 to rewrite the objective of Problem (OPT-D) as
mSC

(
γ2
mS
, γ2
mS

)
+ (1−mS)C

(
γ1−γ2
1−mS

, 0
)

if γ1−γ2
1−mS

≤ lC1

mSC
(

γ2
mS
, γ2
mS

)
+ (1−mS)

(
1− γ1−γ2

1−mS

1−lC1
C
(
lC1 , 0

)
+

γ1−γ2
1−mS

−lC1

1−lC1
C (1, 0)

)
if γ1−γ2

1−mS
> lC1

First, one can verify that the objective is continuous and weakly concave in mS,

so the optimal m∗
S is either corner with m∗

S ∈ {2γ2, 1 − γ1 + γ2} or interior with m∗
S

implicitly determined by the first-order condition.

Second, by assumption γ1
1−γ2

≤ lC1 , so the solution m∗
S belongs to the case of γ1−γ2

1−mS
>

lC1 only if m∗
S ≥ γ2(1+γ1−γ2)

γ1
. One can check that the objective in the case of γ1−γ2

1−mS
> lC1

is strictly decreasing in mS at mS = γ2(1+γ1−γ2)
γ1

. Therefore, m∗
S <

γ2(1+γ1−γ2)
γ1

and the

case of γ1−γ2
1−mS

> lC1 is ruled out.

Finally, we can also verify that the objective is strictly increasing inmS atmS = 2γ2

and thus m∗
S > 2γ2. Since l

C
1 ∈ (0, 1), it follows from γ1−γ2

1−mS
≤ lC1 that mS < 1−γ1+γ2.

Therefore, we must have m∗
S ∈ (2γ2, 1− γ1 + γ2) and it is implicitly determined by the
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first-order condition.

For the second part, recall from Lemma 2 that any prior market (γ1, γ2) with γ1 ≥ γ2

can be decomposed into a symmetric segment and an L-nested segment:

(1 + γ1 − γ2) γ2
γ1

(
γ1

1 + γ1 − γ2
,

γ1
1 + γ1 − γ2

)
+

(γ1 − γ2)(1− γ2)

γ1

(
γ1

1− γ2
, 0

)
without changing the aggregate producer surplus that is generated. Now consider the

following segmentation:

mS

(
γ2
mS

,
γ2
mS

)
+ (1−mS)

(
γ1 − γ2
1−mS

, 0

)
.

IfmS = γ2(1+γ1−γ2)
γ1

, this segmentation coincides with the above decomposition and thus

generates the same producer surplus as under uniform pricing. The producer surplus

of this segmentation is

mSP

(
γ2
mS

,
γ2
mS

)
+ (1−mS)P

(
γ1 − γ2
1−mS

, 0

)
= 2γ2π

∗ +

(
2− γ1 − γ2

1−mS

)
(γ1 − γ2)π

∗,

which is strictly decreasing in mS. As we have shown earlier that m∗
S <

γ2(1+γ1−γ2)
γ1

, the

producer surplus under the C-Max segmentation must be strictly higher than under

uniform pricing.

Proof of Proposition 6. It remains to show uniqueness. By Lemma 6 and the def-

inition of lC2 , any other segmentation that consists of L-nested and R-nested segments

generates a strictly higher consumer surplus. Using an argument similar to the one

used to prove uniqueness in Proposition 4, we can show that a C-Min segmentation

cannot contain an interior segment, a symmetric segment, or a segment of the form

(q1, 1− q1).
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Online Appendix: Not for Publication

This online appendix contains omitted results of consumer-optimal segmentations when

v (π∗)−v (0)−2π∗v′ (0) < 0. Proposition A1 characterizes a consumer-optimal segmen-

tation and subsumes the first part of Proposition 5 in the paper as a subcase. Although

we do not have uniqueness in general, all these optimal segmentations yield the same

producer surplus, and therefore we can compare them with uniform pricing in terms

of producer surplus in Proposition A2. Proposition A2 shows that there is a Pareto

improvement if and only if the captive-to-reach ratio is not too high and is a stronger

statement than the second part of Proposition 5 in the paper.

By Proposition 1, the C-Max problem is equivalent to Problem (OPT-D) with

A (q1, q2) = C (q1, q1) :

max
mS∈[2γ2,1−γ1+γ2]

mSC
#

(
γ2
mS

,
γ2
mS

)
+ (1−mS)C

#

(
γ1 − γ2
1−mS

, 0

)
.

By Lemma 4, C# (q, q) = C (q, q). By Lemma 6,

C# (q1, 0) =

{
C (q1, 0) if q1 ≤ lC1

1−q1
1−lC1

C
(
lC1 , 0

)
+

q1−lC1
1−lC1

C (1, 0) if q1 > lC1

where lC1 ∈ (0, 1) is implicitly defined by Φ
(
lC1
)
= 0 with

Φ (l) = (1− l)2 v (π∗)− 2l (2− l) (π∗)2
∫ π∗

lπ∗

v (π)

π3
dπ +

2 (1− l) v (lπ∗)

l
.

By solving this problem, we can characterize an optimal segmentation in the following

proposition. There are four cases and Proposition 5 belongs to Case (1).

Proposition A1 If v (π∗)−v (0)−2π∗v′ (0) < 0, the following segmentation maximizes

consumer surplus among all possible market segmentations:

(1) If γ1
1−γ2

< lC1 ,

m∗
S

(
γ2
m∗

S

,
γ2
m∗

S

)
+ (1−m∗

S)

(
γ1 − γ2
1−m∗

S

, 0

)
where m∗

S is implicitly determined by the first-order condition of Problem (OPT-D)

such that 2γ2 < m∗
S <

γ2(1+γ1−γ2)
γ1

;

(2) If γ1
1−γ2

= lC1 , (γ1, γ2);
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(3) If γ1
1−γ2

> lC1 and
γ2(1+lC1 )

lC1
< 1− γ1 + γ2,

1− γ1 − γ2l
C
1

1− lC1

(
lC1 (1− γ1 − γ2)

1− γ1 − γ2lC1
,
γ2(1− lC1 )

1− γ1 − γ2lC1

)
+
γ1 + γ2l

C
1 − lC1

1− lC1
(1, 0) ;

(4) If γ1
1−γ2

> lC1 and
γ2(1+lC1 )

lC1
≥ 1− γ1 + γ2,

(1− γ1 + γ2)

(
γ2

1− γ1 + γ2
,

γ2
1− γ1 + γ2

)
+ (γ1 − γ2) (1, 0) .

Proof. Take second-order derivatives with respect to mS, we have

∂2C
(

γ2
mS
, γ2
mS

)
∂
(

γ2
mS

)2 γ22
m3

S

+
∂2C#

(
γ1−γ2
1−mS

, 0
)

∂
(

γ1−γ2
1−mS

)2 (γ1 − γ2)
2

(1−mS)
3 < 0

because C
(

γ2
mS
, γ2
mS

)
is strictly concave and C#

(
γ1−γ2
1−mS

, 0
)
is weakly concave. Thus m∗

S

is either corner with m∗
S ∈ {2γ2, 1− γ1 + γ2}, or interior with m∗

S uniquely implicitly

determined by the first-order condition. We will prove four cases separately.

Case (1): There are two steps. In Step 1, we will show that m∗
S <

γ2(1+γ1−γ2)
γ1

. For

m∗
S ≤ γ2(1+γ1−γ2)

γ1
, because γ1

1−γ2
< lC1 ,

γ1−γ2
1−mS

< lC1 and therefore the objective function

of Problem (OPT-D) is

mSC

(
γ2
mS

,
γ2
mS

)
+ (1−mS)C

(
γ1 − γ2
1−mS

, 0

)
. (28)

Then the first-order derivative is

− 2γ22
(mS − 2γ2)

2 (π
∗)2
∫ π∗

γ2
mS−γ2

π∗

v (π)

π3
dπ +

2 (mS − γ2)

mS − 2γ2
v

(
γ2

mS − γ2
π∗
)

+
(γ1 − γ2)

2

(1−mS)
2v (π

∗) +
2 (γ1 − γ2)

2

(1−mS)
2 (π∗)2

∫ π∗

γ1−γ2
1−mS

π∗

v (π)

π3
dπ − 2v

(
γ1 − γ2
1−mS

π∗
)
.

We will show that the first-order derivative is negative at m∗
S = γ2(1+γ1−γ2)

γ1
. Substitute
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mS = γ2(1+γ1−γ2)
γ1

into the first-order derivative, we have

−2
γ21

(γ1 + γ2 − 1)2
(π∗)2

∫ π∗

γ1
1−γ2

π∗

v (π)

π3
dπ +

2− 2γ2
1− γ1 − γ2

v

(
γ1

1− γ2
π∗
)

+
γ21

(γ2 − 1)2
v (π∗) +

2γ21
(γ2 − 1)2

(π∗)2
∫ π∗

γ1
1−γ2

π∗

v (π)

π3
dπ − 2v

(
γ1

1− γ2
π∗
)

=
γ21

(γ2 − 1)2
v (π∗)− 2γ31 (2− γ1 − 2γ2)

(γ2 − 1)2 (γ1 + γ2 − 1)2
(π∗)2

∫ π∗

γ1
1−γ2

π∗

v (π)

π3
dπ +

2γ1v
(

γ1
1−γ2

π∗
)

1− γ1 − γ2

=
γ21

(γ1 + γ2 − 1)2
Φ

(
γ1

1− γ2

)
< 0

where the last equality follows from the definition of lC1 and that γ1
1−γ2

< lC1 . Thus,

m∗
S <

γ2(1+γ1−γ2)
γ1

and γ1−γ2
1−mS

< lC1 .

In Step 2, we will show that m∗
S > 2γ2 by showing the first-order derivative is

strictly positive at mS = 2γ2. Because
γ1−γ2
1−mS

< lC1 , the objective function of Problem

(OPT-D) is (28). Then at mS = 2γ2, the first-order derivative is

lim
mS→ 2γ2

(
− 2γ22 (π

∗)2

(mS − 2γ2)
2

∫ π∗

γ2
mS−γ2

π∗

v (π)

π3
dπ +

2mS − 2γ2
mS − 2γ2

v

(
γ2

mS − γ2
π∗
))

+
(γ1 − γ2)

2

(1−mS)
2v (π

∗) +
2 (γ1 − γ2)

2

(1−mS)
2 (π∗)2

∫ π∗

γ1−γ2
1−mS

π∗

v (π)

π3
dπ − 2v

(
γ1 − γ2
1−mS

π∗
)
.

First, by L’Hospital’s rule,

lim
mS→ 2γ2

(
− 2γ22 (π

∗)2

(mS − 2γ2)
2

∫ π∗

γ2
mS−γ2

π∗

v (π)

π3
dπ +

2mS − 2γ2
mS − 2γ2

v

(
γ2

mS − γ2
π∗
))

= lim
mS→ 2γ2

(2mS − 2γ2) (mS − 2γ2) v
(

γ2
mS−γ2

π∗
)
− 2γ22 (π

∗)2
∫ π∗

γ2
mS−γ2

π∗
v(π)
π3 dπ

(mS − 2γ2)
2


= lim

mS→ 2γ2

2 (mS − 2γ2) v
(

γ2
mS−γ2

π∗
)
− 2γ2(mS−2γ2)

mS−γ2
v′
(

γ2
mS−γ2

π∗
)
π∗

2 (mS − 2γ2)


= v (π∗)− v′ (π∗) π∗. (29)
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Second,

(γ1 − γ2)
2

(1− 2γ2)
2v (π

∗) +
2 (γ1 − γ2)

2

(1− 2γ2)
2 (π∗)2

∫ π∗

γ1−γ2
1−2γ2

π∗

v (π)

π3
dπ − 2v

(
γ1 − γ2
1− 2γ2

π∗
)

=
(γ1 − γ2)

2

(1− 2γ2)
2 (π

∗)2
∫ π∗

γ1−γ2
1−2γ2

π∗

v′ (π)

π2
dπ − v

(
γ1 − γ2
1− 2γ2

π∗
)
. (30)

Combining (29) and (30), the first-order derivative at mS = 2γ2 equals

(γ1 − γ2)
2

(1− 2γ2)
2 (π

∗)2
∫ π∗

γ1−γ2
1−2γ2

π∗

v′ (π)

π2
dπ − v

(
γ1 − γ2
1− 2γ2

π∗
)
+ v (π∗)− v′ (π∗) π∗

=
(γ1 − γ2)

2

(1− 2γ2)
2 (π

∗)2
∫ π∗

γ1−γ2
1−2γ2

π∗

v′ (π)

π2
dπ +

∫ π∗

γ1−γ2
1−2γ2

π∗
v′ (π) dπ − v′ (π∗) π∗

≥ (γ1 − γ2)
2

(1− 2γ2)
2 (π

∗)2
∫ π∗

γ1−γ2
1−2γ2

π∗

v′ (π∗)

π2
dπ +

∫ π∗

γ1−γ2
1−2γ2

π∗
v′ (π∗) dπ − v′ (π∗) π∗

= − (γ1 − γ2)
2

(2γ2 − 1)2
v′ (π∗) π∗ > 0

where the first inequality follows because v (π) is strictly concave. Because lC1 < 1,
γ1−γ2
1−mS

< lC1 implies thatm∗
S < 1−γ1+γ2. Therefore, we must havem∗

S ∈ (2γ2, 1−γ1+γ2)
and it is implicitly determined by the first-order condition.

Case (2): Similarly to Case (1), because γ1
1−γ2

= lC1 , the first-order derivative at

mS = γ2(1+γ1−γ2)
γ1

equals

γ21
(γ1 + γ2 − 1)2

Φ

(
γ1

1− γ2

)
=

γ21
(γ1 + γ2 − 1)2

Φ
(
lC1
)
= 0.

Thus, the optimal solution m∗
S = γ2(1+γ1−γ2)

γ1
and an optimal segmentation is

γ2 (1 + γ1 − γ2)

γ1

(
lC1

1 + lC1
,

lC1
1 + lC1

)
+

(γ1 − γ2) (1− γ2)

γ1

(
lC1 , 0

)
.

By Lemma 2, this segmentation generates the same consumer surplus as the prior

market and this completes the proof.

Case (3): We will first show that the optimal solution to Problem (OPT-D) is

m∗
S =

γ2(1+lC1 )
lC1

. At mS =
γ2(1+lC1 )

lC1
, the objective function is

mSC

(
γ2
mS

,
γ2
mS

)
+ (1−mS)

(
1− γ1−γ2

1−mS

1− lC1
C
(
lC1 , 0

)
+

γ1−γ2
1−mS

− lC1

1− lC1
C (1, 0)

)
.
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Substituting mS =
γ2(1+lC1 )

lC1
into the first-order derivative, we have

− 2γ22
(mS − 2γ2)

2 (π
∗)2
∫ π∗

γ2
mS−γ2

π∗

v (π)

π3
dπ +

2 (mS − γ2)

mS − 2γ2
v

(
γ2

mS − γ2
π∗
)

+
lC1 C (1, 0)− C

(
lC1 , 0

)
1− lC1

= −2
(lC1 )

2

(lC1 − 1)
2 (π

∗)2
∫ π∗

lC1 π∗

v (π)

π3
dπ +

2

1− lC1
v
(
lC1 π

∗)+ lC1 C (1, 0)− C
(
lC1 , 0

)
1− lC1

= −2
(lC1 )

2

(lC1 − 1)
2 (π

∗)2
∫ π∗

lC1 π∗

v (π)

π3
dπ +

2

1− lC1
v
(
lC1 π

∗)
+(lC1 )

2v (π∗) + 2(lC1 )
2 (π∗)2

∫ π∗

lC1 π∗

v (π)

π3
dπ − 2v

(
lC1 π

∗)
= (lC1 )

2v (π∗)− 2
(lC1 )

3
(
2− lC1

)
(lC1 − 1)

2 (π∗)2
∫ π∗

lC1 π∗

v (π)

π3
dπ +

2lC1
1− lC1

v
(
lC1 π

∗)
=

(lC1 )
2

(1− lC1 )
2Φ
(
lC1
)
= 0.

Because
γ2(1+lC1 )

lC1
< 1 − γ1 + γ2, the optimal solution is m∗

S =
γ2(1+lC1 )

lC1
and an optimal

segmentation is

γ2(1 + lC1 )

lC1

(
lC1

1 + lC1
,

lC1
1 + lC1

)
+
lC1 − γ2(1 + lC1 )− lC1 (γ1 − γ2)

lC1 (1− lC1 )

(
lC1 , 0

)
+
γ1 − γ2 − lC1 + γ2(1 + lC1 )

1− lC1
(1, 0) .

By Lemma 2, we can replace the first two components in this segmentation with
1−γ1−γ2lC1

1−lC1

(
lC1 (1−γ1−γ2)

1−γ1−γ2lC1
,

γ2(1−lC1 )

1−γ1−γ2lC1

)
. This completes the proof.

Case (4): Similarly to case (3), the first-order derivative equals 0 at mS =
γ2(1+lC1 )

lC1
.

Because
γ2(1+lC1 )

lC1
≥ 1− γ1 + γ2, for mS ∈ [2γ2, 1− γ1 + γ2) , the first-order derivative is

strictly positive. Thus, the optimal solution to Problem (OPT-D) is m∗
S = 1− γ1 + γ2

and an optimal segmentation is as specified in the proposition.

We have explicit solution except for Case (1). In Case (1), because γ1
1−γ2

< lC1 and

m∗
S < γ2(1+γ1−γ2)

γ1
, the symmetric segment in the optimal segmentation ( γ2

m∗
S
, γ2
m∗

S
) has

a higher captive-to-reach ratio than the prior segment (which equals γ1
1−γ2

) and the

nested segment has a lower captive-to-reach ratio than the prior segment. Similarly,

becausem∗
S < 1−γ1+γ2, compared with the field-leveling segmentation, in the optimal

segmentation, the symmetric segment has a higher captive-to-reach ratio and the nested
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segment has a lower captive-to-reach ratio.

We do not have uniqueness for Case (2) and (3) because we can replace any segment

whose captive-to-reach ratio equals lC1 with infinite combinations of segments that

have the same captive-to-reach ratio. By Lemma 2, all these combinations yield the

same producer surplus. Indeed, all consumer-optimal segmentations generate the same

producer and consumer surplus. Thus, we can compare the producer surplus between

an optimal segmentation and uniform pricing.

Proposition A2 Suppose v (π∗) − v (0) − 2π∗v′ (0) < 0. A consumer-optimal seg-

mentation yields strictly higher producer surplus than uniform pricing if and only if
γ1

1−γ2
< lC1 .

Proof. By Lemma 2, we can replace a segment with a symmetric segment and a nested

segment with the same captive-to-reach ratio without changing the consumer surplus.

Thus, we have the following corollary of Proposition A1.

Corollary A1 If v (π∗)− v (0)− 2π∗v′ (0) < 0, the following segmentation maximizes

cosumer surplus among all possible market segmentations:

(1) If γ1
1−γ2

< lC1 ,

m∗
S

(
γ2
m∗

S

,
γ2
m∗

S

)
+ (1−m∗

S)

(
γ1 − γ2
1−m∗

S

, 0

)
where m∗

S is implicitly determined by the first-order condition of Problem (OPT-D)

such that 2γ2 < m∗
S <

γ2(1+γ1−γ2)
γ1

;

(2) If γ1
1−γ2

= lC1 ,

γ2 (1 + γ1 − γ2)

γ1

(
lC1

1 + lC1
,

lC1
1 + lC1

)
+

(γ1 − γ2) (1− γ2)

γ1

(
lC1 , 0

)
;

(3) If γ1
1−γ2

> lC1 , and
γ2(1+lC1 )

lC1
< 1− γ1 + γ2,

γ2(1 + lC1 )

lC1

(
lC1

1 + lC1
,

lC1
1 + lC1

)
+
lC1 − γ2(1 + lC1 )− lC1 (γ1 − γ2)

lC1 (1− lC1 )

(
lC1 , 0

)
+
γ1 − γ2 − lC1 + γ2(1 + lC1 )

1− lC1
(1, 0) ;

(4) If γ1
1−γ2

> lC1 , and
γ2(1+lC1 )

lC1
≥ 1− γ1 + γ2,

(1− γ1 + γ2)

(
γ2

1− γ1 + γ2
,

γ2
1− γ1 + γ2

)
+ (γ1 − γ2) (1, 0) .
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As is shown in the proof for Proposition A1, any other segmentations that con-

sist of symmetric and L-nested segments than the one specified in Corollary A1 are

suboptimal. Then as in Lemma 2, consumer-optimal segmentations specified in Corol-

lary A1 yield strictly higher consumer surplus than uniform pricing if γ1
1−γ2

̸= lC1 and

otherwise the same consumer surplus. This also implies if a consumer-optimal seg-

mentation contains an interior segment (q1, q2) with 0 < q2 < min{1 − q1, q1} or

0 < q1 < min{1 − q2, q2}, q1
1−q2

= lC1 . Then again as in Lemma 2, we can replace it

with q2(1+q1−q2)
q1

(
lC1

1+lC1
,

lC1
1+lC1

)
+ (q1−q2)(1−q2)

q1

(
lC1 , 0

)
which yields the same producer and

consumer surplus. Similarly, for captive segments (q1, q2), we can also replace it with

q1 (1, 0) + q2 (0, 1) which yields the same producer and consumer surplus. Thus it

is sufficient to show that the consumer-optimal segmentation which consists of only

symmetric and L-nested segments yields strictly higher producer surplus than uniform

pricing if and only if γ1
1−γ2

< lC1 , which is equivalent to show that the consumer-optimal

segmentation characterized in Corollary A1 yields strictly higher producer surplus than

uniform pricing if and only if γ1
1−γ2

< lC1 .

If γ1
1−γ2

= lC1 , as in Lemma 2, the consumer-optimal segmentation in Corollary A1

yields the same producer surplus as uniform pricing. Then we consider the case of
γ1

1−γ2
< lC1 and γ1

1−γ2
> lC1 separately. Note that in both cases, as in Lemma 2, the

segmentation

γ2 (1 + γ1 − γ2)

γ1

(
γ1

1 + γ1 − γ2
,

γ1
1 + γ1 − γ2

)
+

(γ1 − γ2) (1− γ2)

γ1

(
γ1

1− γ2
, 0

)
(31)

yields the same producer surplus as uniform pricing. It is thus sufficient to compare

this segmentation with the segmentation characterized in Corollary A1.

In case 1, γ1
1−γ2

< lC1 , which corresponds to Case (1) in Corollary A1. Since m∗
S <

γ2(1+γ1−γ2)
γ1

, it is sufficient to show that the following problem is strictly decreasing in

mS:

max
mS∈

[
2γ2,

γ2(1+γ1−γ2)
γ1

]mSP

(
γ2
mS

,
γ2
mS

)
+ (1−mS)P

(
γ1 − γ2
1−mS

, 0

)
.

Because P (γ1, γ2) =
(2−γ1−γ2)γ1

1−γ2
π∗, the objective function is

2γ2π
∗ +

(
2− γ1 − γ2

1−mS

)
(γ1 − γ2) π

∗

which is clearly strictly decreasing in mS. This completes the proof.

In case 2, γ1
1−γ2

> lC1 . First, if
γ2(1+lC1 )

lC1
< 1− γ1 + γ2, because P (q, q) is linear in q,

the consumer-optimal segmentation in Corollary A1 yields the same producer surplus
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as the segmentation

γ2 (1 + γ1 − γ2)

γ1

(
γ1

1 + γ1 − γ2
,

γ1
1 + γ1 − γ2

)
+

(
γ2(1 + lC1 )

lC1
− γ2 (1 + γ1 − γ2)

γ1

)
(0, 0)

+
lC1 − γ2(1 + lC1 )− lC1 (γ1 − γ2)

lC1 (1− lC1 )

(
lC1 , 0

)
+
γ1 − γ2 − lC1 + γ2(1 + lC1 )

1− lC1
(1, 0) .

Because P (q1, 0) is strictly concave in q1, we can increase the producer surplus by

replacing the last three components of this segmentation with (γ1−γ2)(1−γ2)
γ1

(
γ1

1−γ2
, 0
)
,

which leads to the segmentation in (31). This completes the proof.

Second, similarly, if
γ2(1+lC1 )

lC1
≥ 1− γ1 + γ2, the optimal segmentation in Case (4) of

Corollary A1 yields a strictly lower producer surplus than the segmentation in (31).
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