
Contests for Status

Benny Moldovanu, Aner Sela and Xianwen Shi∗

This version: February 6, 2007

Abstract

We study the optimal design of organizations under the assumption that agents in a contest

care about their relative position. A judicious definition of status categories can be used by a

principal in order to influence the agents’ performance. We first consider a pure status case where

there are no tangible prizes. Our main results connect the optimal partition in status categories

to properties of the distribution of ability among contestants. The top status category always

contains a unique element. For distributions of abilities that have an increasing failure rate

(IFR), a proliferation of status classes is optimal, while the optimal partition involves only two

categories if the distribution of abilities is sufficiently concave. Moreover, for IFR distributions,

a coarse partition with only two status categories achieves at least half of the output obtained

in the optimal partition with a proliferation of classes. Finally, we modify the model to allow

for status categories that are endogenously determined by monetary prizes of different sizes. If

status is solely derived from monetary rewards, we show that the optimal partition in status

classes contains only two categories.

∗We wish to thank the editor and two anonymous referees for their many insightful remarks. Pradeep Dubey, John

Geanakoplos, Hans Haller, Heidrun Hoppe, Rongzhu Ke, Stephen Morris and Moshe Shaked made helpful comments.

Dana Moldovanu refreshed our memory about ancient Greece. Moldovanu and Sela are grateful to the Max Planck

Research Prize and to the German Science Foundation for financial support. Moldovanu wishes to thank Yale

University for its hospitality. Shi thanks the Cowles Foundation for financial support. Moldovanu: Department of

Economics, University of Bonn, Lennestr. 37, 53113 Bonn, Germany; e-mail: mold@uni-bonn.de. Sela: Department

of Economics, Ben Gurion University, Beer Sheva, Israel; e-mail: anersela@bgu.ac.il. Shi: Department of Economics,

Yale University, New Haven, CT 06511, USA; e-mail: xianwen.shi@yale.edu.

1



1 Introduction

One of the earliest designed society structures was that of Solon’s (ca. 638 BC - 558 BC) timokratia,

an oligarchy with a sliding scale of status determined by precisely defined ranges of measured output

(fruit, grain, oil, etc.). Solon divided the entire population of Attica into four status classes,1 and

attached various, more or less tangible rights, to each class. Higher classes had more rights but

were also expected to contribute more to the state.

The kings and queens of feudal states awarded titles of nobility such as duke (or duchess),

marquis, earl, count, viscount, baron, baronet in return for special services to the crown. Initially

there was a strong link between such titles and tangible assets, such as land and serfs, but this link

weakened over time.2

Today’s large corporations (such as large banks) have, besides a single president, several execu-

tive vice presidents, tens of senior vice-presidents, and several hundred “mere” vice-presidents. The

New York Metropolitan Museum of Art offers eight different donor categories3 for corporate mem-

bers (such as “Chairman’s Circle” for donations above $100,000, “Director’s Circle” for donations

between $60,000 and $100,000, and so on) and 10 similar categories for private members.

The common denominator to the above examples is that agents care about social status, and

that a self-interested principal is usually able to divert (or “manipulate” ) this concern to an avenue

that is beneficial to himself/herself. The general importance of status concerns for explaining

behavior has been long recognized by sociologists and economists.4 Recent happiness research

shows how wage rank affects workers’ well-being,5 and experimental studies pointed out that social

status may play a role also in market exchanges.6 Nevertheless, the literature focusing on the

direct implications of status concerns for the design of societies and organizations is relatively thin.
1These were the Pentakosiomedimnoi, the Hippeis, the Zeugitai and the Thetes.
2Even today’s citizens of the United Kingdom are eligible for more than 50 orders and decorations, awarded for

special services to the “queen”. These are structured in a strict precedence system, and play an important role in

public life. The police currently investigates allegations that close associates of prime minister Blair facilitated the

award of honors in exchange for large monetary contributions to the Labor party.
3See Amihai Glazer and Kai A. Konrad (1996) for some empirical evidence and a theoretical model that focuses

on conspicuous giving.
4See Max Weber (1978), James S. Coleman (1990), Thorstein Veblen (1934), James S. Duesenberry (1949), Milton

Friedman and Leonard J. Savage (1948), and Milton Friedman (1953) for some early contributions. Robert H. Frank

(1985) offers an entertaining account of some of the issues.
5See Gorton Brown, Janathan Gardner, Andrew Oswald and Jian Qian (2004).
6See Sheryl Ball, Catherine Eckel, Philip J. Grossman and William Zame (2001).
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William Goode (1979), a leading sociologist, offers a broad study of “prestige” as an instrument of

social control. He notes that “individuals and groups give and withhold prestige and approval as a

way of rewarding or punishing others.”

In this paper we closely follow Goode’s perspective, and we study the optimal design of or-

ganizations under the assumption that agents care about their relative position. We show how a

judicious definition of the number and size of status classes based on performance rank can be used

by a principal in order to maximize the agents’ output in a contest situation. Our results offer

both explanations for commonly observed phenomena (such as having a unique individual at the

top) and suggestions for the design of the level structure in a hierarchy. As it will become clear

below, major factors affecting the structure of the optimal partition in status categories are: 1) the

distribution of abilities in the population, and 2) the relative weight of the monetary component

in the determination of status. If outstanding talent is relatively rare or if differences in wealth are

crucial for status perceptions, we find an optimal structure that distinguishes the top performer

while lumping together everyone else, irrespective of their performance. This insight yields a novel

potential explanation for the well-documented recent increase in the gap between CEO compensa-

tion and the compensation of other workers (or even other executives) within the firm. In contrast,

if talent is relatively abundant and if status is not too tightly linked to wealth, we find an optimal

structure where status categories proliferate and where relatively small differences in performance

are rewarded with different status prizes. In those cases, status can serve as a potent substitute for

money in order to drive performance.7

The tournament literature has shown how prizes based on rank-orders of performance can be

effectively used to provide incentives (see Edward Lazear and Sherwin Rosen, 1981, Jerry Green and

Nancy Stokey, 1983, and Barry Nalebuff and Joseph Stiglitz, 1983). Charles O’Reilly, Brian Main

and Graef Crystal (1988) have emphasized the important role of status in executive compensation,

and Donald Hambrick and Albert Cannela (1993) use relative standing as the main factor for

explaining departures rates of executives of acquired firms. Michael Bognanno (2001) studies the

empirical relation between the number of executive board members and the CEO’s compensation

in “corporate tournaments”.

Benny Moldovanu and Aner Sela (2001, 2006) developed a convenient contest model that can

easily accommodate several prizes of different size. Using their methodology, it is a natural step to
7For example, this seems to be the case in institutions devoted to scientific research and in many other not-for-profit

organizations.
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analyze the incentive effect of “status prizes,” and the interplay between such prizes and tangible

ones.

In our present model, several agents who are privately informed about their abilities engage in a

contest, and are then partitioned into status categories (or classes) according to their performance.

A status category consists of all contestants who have performances in a specified quantile, e.g., the

top status class may consist of the individual with the highest output, the second class of individuals

with the next three highest outputs, and so on... Each individual cares about the number of

contestants in classes above and below him. We choose a convenient functional formulation that

captures well the “zero-sum game” nature of concerns for relative position: if an individual gets

higher (lower) status, one or more individuals must get lower (higher) status.

A designer (or principal) determines the number of status classes and their size in order to

maximize total output. Since the contest equilibrium only depends on the structure of status

classes, and not directly on the designer’s goal, our type of analysis can, in principle, be performed

for a variety of other goals.

We first analyze the “pure status” case where there are no other tangible prizes to motivate the

contestants. We then extend our model to investigate a setting where the designer awards monetary

prizes, and where status is purely derived from the differences in monetary compensation, i.e.,

having a higher monetary prize per se implies higher status.8 These two models represent opposite

extremes, and reality is often somewhere in the middle. In most cases, we think that individuals

in organizations are, at least partly, motivated by status concerns, but that status is not solely

derived from the monetary payoffs attached to various activities.9

Since status is a “zero-sum game”, it seems, at first glance, that shifts in the allocation of

status among agents should not affect total output. The missing factor in this argument is the

heterogeneity in abilities. Since higher ability will be, in equilibrium, associated with higher perfor-

mance, modifications of classes at different levels in the hierarchy may have quite different effects.

In particular, because the expected benefit associated with a move upwards in the ranks (which is

given by the expected increase in status minus the expected cost of producing an output that is

sufficient for the upward move) depends on the bounds of the quantile defining the status class, a

manipulation of these bounds affects behavior, and hence total output.
8See Arthur J. Robson (1992) for another model where status is defined by wealth.
9For example, Chaim Fershtmann and Yoram Weiss (1993) relate status to the length of the education necessary

for a specific occupation (their motto is Adam Smith’s nicely circular: “Honour makes a great part of the reward of

all honourable professions”).

4



Our results relate the structural features of the optimal partition in status categories to prop-

erties of the distribution of abilities in the society:

1) We show that, for any distribution of abilities, the top category in any optimal partition

must contain a single agent.10 This agrees well with the ubiquitous structure of many human (or

animal) organizations and social structures, and brings to mind familiar roles such as “queen”,

“alpha-male”, “CEO”, etc....

2) Given a partition in status classes, adding a new element to an arbitrary class may, in fact,

reduce output. But, we show that the adoption of a policy that resembles “hiring at the lowest

level” (see George Baker, Michael Gibbs, and Bengt Holmstrom, 1994) always makes an increase

in the number of (ex-ante symmetric) contestants beneficial to the principal.

3) We then identify the main factors leading either to a proliferation of status classes (where

each individual is “in a class of his/her own”) or to coarse partitions where it is optimal to have

a wider range of performances bunched together in the same category. A proliferation of status

classes is optimal if the distribution of abilities has an increasing failure (or hazard) rate. This

finding points in the same direction as the well known empirical fact that job titles do proliferate,

but only in organizations with a relatively professional work-force (see James N. Baron and William

T. Bielby, 1986). In contrast, a coarse partition with only two status classes (where all individuals

except one belong to the lower class) is optimal if the distribution of abilities is sufficiently concave.

4) If the distribution of abilities has an increasing failure rate, we show that the optimal partition

in the class of partitions with only two status categories achieves at least half the performance of the

overall optimal partition. Thus, whenever there are transaction costs attached to finer partitions,

the coarsest possible non-trivial partition may be ultimately optimal.11 This is related to an

argument made by Preston McAfee (2002) in the context of “coarse matching” of two populations.

5) Finally, we introduce monetary prizes and consider status purely induced by these prizes.

In order to add realism, we assume that the designer is budget constrained, and that agents can

choose not to compete if the monetary prize is not enough to compensate them for a potential low

status. In this framework, we show that the optimal structure is to have exactly two status classes:

the top class consisting of the single most productive agent, while the lower class containing all

other agents that get paid just enough to keep them in the contest. Since, as illustrated above,
10This is of course reminiscent of the optimal taxation literature, pioneered by Mirrlees (1971), which has a unique

tax rate for the wealthiest individual.
11Think about the Econometric society, say, which has two status classes: members and fellows.
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there are many real-life examples where status classes proliferate, our results suggest that in those

situations status cannot be solely and entirely induced by monetary wealth.12. In contrast, the

growing gap between CEO compensation and the compensation of other agents within the firm can

be explained by an increase in the status value conferred by the monetary component.

Technically, our results are obtained by combining insights derived from the general analysis of

contests with multiple prizes developed by Moldovanu and Sela (2001, 2006) with a novel appli-

cation of statistical results about stochastic monotonicity properties of normalized spacings (i.e.,

differences) of order statistics (Richard Barlow and Frank Proschan, 1966). For large and interest-

ing classes of distribution functions it is possible to say, for example, whether normalized spacings

become stochastically more (less) compressed when we climb higher in the ability range, and we

show that such features determine the structure of the optimal partition in status classes.

While many authors put “status” directly into the utility function,13 the paper most closely

related to ours is Pradeep Dubey and John Geanakoplos (2005). These authors study optimal grad-

ing of exams in situations where students care about relative ranks. We have borrowed from that

paper the present specification of utility functions. Our determination of status categories based

on relative effort rank corresponds to what Dubey and Geanakoplos call in their respective con-

text “grading on a curve”. There are many substantial differences between their model, technique

and results and ours. For their main results, Dubey and Geanakoplos focus on absolute grading,

assuming that there is complete information, that students are either homogenous or have discrete

types, that effort choice is binary, and that the relation between effort and output is stochastic.

Moreover, the designer’s goal is to have all students choose the higher effort level out of the two

possible ones. Their main finding is that status-conscious students may be better motivated to

work hard by a professor who uses coarse grading (e.g., A,B,C,D rather than 100, 99,...). This

should be contrasted with our main result about the optimality of the finest partition for a very

large and ubiquitous class of distributions.
12On this topic see also Robert H. Frank (1999).
13Fershtman and Weiss (1993) construct a general equilibrium model where both status and wealth are determined

endogenously. In Gary S. Becker, Kevin M. Murphy and Ivan Werning’s (2005) model, status is bought in a market.

They assume that there are at least as many status classes as individuals and that status is a complement to other

consumption goods. Ed Hopkins and Tatiana Kornienko (2004) study the effect of an exogenous change of income

distribution in a model where agents care about their rank in the distribution of consumption. Rick Harbaugh and

Tatiana Kornienko (2001) draw a parallel between a decision model that assumes a concern for local status and

prospect theory.
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Another related paper is Rayo (2003). He analyzes the monopolistic design and pricing of

positional goods that consumers use to signal their types. A main result is that a monopolist will

restrict the variety of positional goods in order to extract surplus from consumers. In his model, a

consumer’s utility depends on the average type of consumers paying the same price. Thus (as in our

model), utility from being in a certain class is manipulable by the designer. But, in Rayo’s model,

utility depends on the characteristics of consumers in the same class, whereas in our model utility

depends on the number of agents in superior and inferior classes. Moreover, in Rayo’s model there

is a continuum of consumers who interact only indirectly (through the influence of perceptions on

utility) - it is this feature which allows the usage of tools from the literature on monopolistic non-

linear pricing. In contrast, we have here a finite number of agents who directly and strategically

compete for a scarce resource (i.e., places in superior status classes) and therefore we need to

use tools from the literature on contest design/statistics. In spite of these differences, several of

Rayo’s results resemble ours: the highest possible type should never be pooled with others; if a

“virtual valuation function” is monotonic, full separation is optimal, whereas some pooling (which

corresponds to coarseness in our model) is optimal if this condition is not satisfied.

Postlewaite (1998) presents an excellent discussion on the advantages/disadvantages of the

“direct” modeling approach versus the one where a concern for relative ranking is only implicit,

or “instrumental” for other goals that are made explicit (see also Cole et al., 1992). In a nutshell,

Postelwaite’s argument against a direct approach is that, by adjusting utility functions at will, one

can explain every phenomenon. For our purposes, the debate about the right way to model status

concerns is only of secondary importance. Our main focus is on the optimal design of status classes

(from an incentive point of view) given that agents care, for some direct or instrumental reason,

about relative position. We view the assumed utility function as a simplification, and we ask the

reader to judge the outcome by Hardy’s dictum whereby good science must, at least, provide some

“decent” distance between assumptions and results.

The rest of the paper is organized as follows: Section 2 presents the contest model with status

concerns, and some useful facts about order statistics. In Section 3 we derive results that connect

the form of the optimal partition in status categories to various properties of the distribution of

ability in the population. We first show that, by always adding new entrants to the lowest status

category, the designer can ensure that his payoff is monotonically increasing in the number of

contestants. Thus, potential contestants need not be excluded from competing. We next show that

the top status category in any optimal partition must contain a unique element. For distribution
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of abilities that have an increasing hazard rate, each status category in an optimal partition will

contain a unique element — thus, in this case a proliferation of status classes is optimal. We

also show that the optimal partition involves only two categories if the distribution of abilities is

sufficiently concave. Finally, we study the properties of optimal partitions with only two status

categories. In Section 4 we modify the model to allow for status categories that are endogenously

determined by monetary prizes of different sizes. If status is solely derived from monetary rewards,

we show that the optimal partition contains only two categories, with the top category being a

singleton. Section 5 concludes. Several proofs and examples are relegated to an Appendix.

2 The Model

We consider a contest with n players where each player j makes an effort ej . For simplicity, we

postulate a deterministic relation between effort and output, and assume these to be equal. Efforts

are submitted simultaneously. An effort ej causes a cost denoted by ej/aj , where aj > 0 is an

ability parameter.

The ability (or type) of contestant j is private information to j. Abilities are drawn indepen-

dently of each other from the interval [0, 1] according to a distribution function F that is common

knowledge. We assume that F has a continuous density f = dF > 0.

Contestants are ranked according to efforts. Let {(0, r1], (r1, r2], ...(ri−1, ri], ..., (rk−1, n] } be a

partition of the integers in the interval (0, n] in k ≥ 1 status categories, where ri−1 < ri. Define

also for convenience: r0 ≡ 0 and rk ≡ n. Given such a partition and the ordered list of efforts,

contestants are divided into the k categories: a player is included in category i, if his effort is

between the ri−1-th and ri-th highest ones.

Each player cares about the number of players in categories both below and above him, and we

assume that the “pure status” prize of being in status category i is given by

vi = ri−1 − (n− ri).

Thus, a contestant is happier when he has more [less] people below [above] him. Note this formu-

lation well captures the zero-sum nature of status: for any partition in status categories, the total

value derived from status is given by :

k∑
i=1

(ri − ri−1)vi =
k∑

i=1

(ri − ri−1)(ri + ri−1 − n) = 0
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To summarize, the timing of the game is as follows: The designer chooses a partition {ri}k
i=0 and

commits to it. Each contestant then gets privately informed about his/her ability. The contestants

simultaneously choose effort level according to their ability types. Finally, agents are partitioned

into different status categories according to their efforts and the chosen partition.

We assume that each player maximizes the value of the expected status prize minus the expected

effort cost, and that the designer maximizes the value of expected total effort by adjusting the

partition in status classes.

We use the following notation: 1) Ak,n denotes k-th order statistic out of n independent variables

independently distributed according to F (note that An,n is the highest order statistic, and so on..);

2) Fk,n denotes the distribution of Ak,n , and fk,n denotes its density; 3) E(k, n) denotes the expected

value of Ak,n. (Note that E(n, n) is the expectation of the maximum, or highest order statistic,

and so on..)

3 The Optimal Partition in Status Categories

This section contains our main results about the structure of the optimal partition in status cat-

egories. We focus on a symmetric equilibrium where all agents use the same, strictly monotonic

equilibrium effort function β. In such an equilibrium, the output rank of player j will be the same

as his ability rank among the n contestants.

Let Pi(a) be the probability of a player with ability a being ranked in category i, i.e., her ability

is between the ri-th and ri−1-th highest. These probabilities involve the order statistics of the

distribution of abilities in the population. Applying the revelation principle, agent j with ability a

chooses to behave as an agent with ability s to solve the following optimization problem:

max
s

k∑
i=1

Pi (s) [ri−1 − (n− ri)]−
β (s)

a

In equilibrium, the above maximization problem must be solved by s = a. The calculation of

equilibrium effort functions and total expected effort yields:

Theorem 1 Assume that contestants are partitioned in k status categories according to the family

{ri}k
i=0. Then, total expected effort in a symmetric equilibrium is given by

E
(k)
total =

k−1∑
i=1

(ri+1 − ri−1)(n− ri)E(ri, n)
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Proof. See Appendix.

Given the above result, we can now formulate the designer’s problem: she needs to deter-

mine the number of contestants (m) and status categories (k), and the size of each category

(ri, i = 1, .., k − 1). Explicitly, we obtain the following discrete optimization problem:

max
m,k,{ri}k

i=0

[
k−1∑
i=1

(ri+1 − ri−1)(m− ri)E(ri,m)]

subject to :

i) 2 ≤ m ≤ n

ii) 2 ≤ k ≤ m

iii) 0 = r0 < r1 < ... < rk−1 < rk = m

3.1 The Optimal Number of Contestants

In many relevant situations, the number of agents will be exogenously determined by various eco-

nomic considerations within the group, and can therefore be considered fixed for our purposes. But,

it is also of interest to understand whether the designer has incentives to restrict entry that directly

stem from the status considerations.14 We determine here the optimal number of contestants by

analyzing the effect of changing the number of contestants (i.e., by entry or hiring) on total ex-

pected effort. Given the zero-sum nature of status, the answer is not clear-cut, and it depends on

the designer’s reaction to entry (i.e., on how the size and number of status categories change). The

following example illustrates the possibility that a wrong post-entry adjustment policy may cause

total effort to actually go down.

Example 1 Let F (x) = x1/w , w > 1, and consider only partitions with two categories. Total

effort is given by

En = n(n− r)E (r, n) = n(n− r)
n! (w + r − 1)!

(r − 1)! (n + w)!

where r is the division point. If we add an additional contestant to the higher category (that is, we

do not change the value of r), we obtain for ω high enough:

En+1 − En =
(w + r − 1)!n!

(r − 1)! (n + w)!

[
(n + 1)2(n + 1− r)

(n + 1 + w)
− n(n− r)

]
< 0

That is, for sufficiently high w, total effort decreases in the number of players.
14Taylor (1995) and Fullerton and McAfee (1999) provide models of research tournaments where restricting entry

may be beneficial for the designer.
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We show below that a designer who optimally reacts to additional entry can always ensure that

total effort increases. In particular, in the proof, we identify a very simple strategy (without the

need of a complex re-optimization!) ensuring that total effort does not decrease: faced with more

contestants, the designer can just increase the size of the lowest status category. For an intuition,

consider for simplicity a partition with only two status categories. Then the number of “status

prizes” is equal to the number of contestants in the top category, and each prize is worth n, the

difference in payoffs between the high and low categories. If another agent is added, the value of

each status prize becomes n + 1 , independently of which status category is expanded. But, if the

expansion is in the lower category, the number of status prizes remains fixed, while an expansion

of the higher category also leads to an increase in the number of prizes. Such an increase has an

adverse effect on the effort of high ability types, and this may offset the positive effect of having

higher prizes. Thus, only by expanding the lower category, the designer increases the value of status

prizes without simultaneously increasing their number.

Theorem 2 Total effort in an optimal partition increases in the number of contestants.

Proof. See Appendix.

3.2 The Optimal Partition

Given the above result, the designer has no incentives to restrict entry in the contest, and we thus

assume below that all n potential contestants are included.15

Since the distribution of abilities determines the expected values of the various order statistics

appearing in the designer’s maximization problem, the optimal number of status categories and the

optimal size of each category generally depend on this distribution. Our first main result identifies

a robust and general feature that holds for any distribution:

Theorem 3 In any optimal partition, the top status category contains a unique element.

Proof. Suppose, by contradiction, that the k-th (top) category contains more than one element.

Then, divide this category into two sub-categories, and denote by rd the dividing point: rk−1 <

rd < n. Using the formula in Theorem 1, the difference in expected effort between the new and the
15See Section 4 where this result need not hold if the designer is budget constrained and if agents must be monetarily

compensated for low status.
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old partitions is given by:

E
(k+1)
total − E

(k)
total = (n− rk−1)(n− rd)E(rd, n)− (n− rk−1)(n− rd)E(rk−1, n)

= (n− rk−1)(n− rd) [E(rd, n)− E(rk−1, n)] > 0

The inequality follows since Ard,n stochastically dominates Ark−1,n.

Refining a top category that contains several elements does not affect the rewards going to

agents outside that category. The reward and effort of those agents in the (new) second highest

category is lower than before since these agents lose their top status. But, this loss is more than

offset by the effort increase coming from the highest ability types whose status is increased by the

refinement since they perceive more inferior agents after the change.

3.2.1 Optimal Fine Partitions

Our next main result identifies a condition on the distribution of abilities that allows us to extend

the above logic to all status categories, thus exhibiting an optimal partition that is the finest

possible. We use a statistic result about stochastic monotonicity of normalized differences (also

called spacings) of order statistics. We first need to remind the reader some well-known concepts:

The failure rate (or hazard rate) of a distribution F is defined by:

λ (a) =
f (a)

1− F (a)

A distribution function F has an increasing failure rate (IFR) if λ(a) is increasing or, equivalently,

if log (1− F (a)) is concave. Analogously, F has an decreasing failure rate (DFR) if λ (a) is

decreasing, or, equivalently, if log (1− F (a)) is convex.16

Armed with these concepts, we can now state:

Lemma 1 (Barlow and Proschan, 1966) Assume that a distribution F with F (0) = 0 satisfies

IFR (DFR). Then, (n − i + 1)(Ai,n − Ai−1,n) is stochastically decreasing (increasing) in i for a

fixed n.

In other words, up to a normalizing factor, the difference between the expected abilities of

consecutively ranked contestants is higher at the bottom than at the top if the distribution is IFR,

and the opposite holds for DFR distributions. An application of this result yields now:
16Most well known distributions belong to these important and much studied categories. The relationships between

IFR, DFR, convexity and concavity of F are as follows: Convexity implies IFR , while DFR implies concavity. The

only distribution that is both concave and convex is the uniform, while the only distribution that is both IFR and

DFR is the exponential.
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Theorem 4 Assume that F, the distribution of abilities, has an increasing failure rate. Then, the

optimal partition is the finest possible one: each status category contains a unique element.

Proof. See Appendix.

The intuition behind the above result is analogous to one appearing in models of monopolistic

quality/quantity discrimination: in “regular” settings, where marginal revenue is increasing in type

(note that IFR is a sufficient condition for this to happen !), the optimal tariff allocates different

qualities (here different status classes) to consumers with different types. In particular, lumping

(or pooling) together several types cannot be optimal.

Splitting status class j in two sub-classes has two effects: there is a loss of expected effort

stemming from the fact that several agents are now placed in the lower sub-class, and there is a

gain from agents that are now placed in the higher sub-class (again, classes other than j are not

affected by the split). The IFR condition ensures that the gain more than offsets the loss. For

illustration purposes, assume that a category j has size two, and we refine it into two new categories,

each with one element rj − rd = rd − rj−1 = 1. This change is advantageous if the difference of

expected efforts after and before the change is positive, i.e., if (n− rd + 1) [E (rd, n)− E (rj−1, n)]− (n− (rd + 1) + 1) [E (rd + 1, n)− E (rd, n)]

+ [E (rd + 1, n)− E (rd, n)] ≥ 0


The first line is positive, because the normalized difference between the expected abilities of con-

secutively ranked contestants is higher at the bottom than at the top if the distribution is IFR,

while the second line is positive because of usual stochastic dominance.17

3.2.2 Optimal Coarse Partitions

If the IFR condition (which represents, in fact, a convexity requirement with respect to the expo-

nential distribution) is not satisfied, a coarse partition may be optimal. We now show that a very

coarse partition with only two categories is optimal for sufficiently concave distributions. If there

are only two categories, total effort is given by

E
(2)
total = n(n− r1)E (r1, n)

The intuition for the above expression is simple: this is a contest with (n− r1) equal prizes (for

all those in the higher category), and each prize is worth here n (the difference in payoffs between
17The argument also indicates that the IFR condition is not necessary for class proliferation.
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the high and low categories). By Theorem 3, when looking for optimal partitions, we can restrict

attention to those where the top category consists of a unique element. In this case r1 = n−1, and

total effort is given by

E
(2)
total = nE (n− 1, n)

In order to prove the result, we need to show that any other partition yields less effort if the

distribution of abilities is sufficiently concave. The proof uses the following Lemma:

Lemma 2 (Barlow and Porschan, 1966) Consider two distributions F and G such that F (0) =

G(0) = 0 , and such that G−1F is convex on the support of F.18 Then EF (i, n)/EG(i, n) is decreasing

in i.

Proposition 1 Assume that the optimal partition of status categories under distribution F consists

only of two categories, and consider another distribution G such that G−1F is convex on the support

of F. Then the optimal partition under G also consists of two categories.

Proof. See Appendix.

If we can show that there exists a distribution function for which the optimal partition consists

indeed of two categories, then the above result immediately implies that the same will hold for all

more concave distributions. The existence of such a distribution is established in the Appendix.

The intuition for the optimality of very coarse partitions for sufficiently concave distributions of

ability is simple: most of the mass is then concentrated at the bottom and high ability individuals

are rare. Thus, many ”mediocre” types are motivated by a high reward (a unique high status

prize) since they have a reasonable chance to get it. Moreover, the rare high ability individual lacks

sufficient competition, and is therefore best motivated by a large reward.

3.3 How Good Are Partitions with Two Categories ?

In the above subsection we have identified conditions under which a partition with two categories

are optimal. Here we take a somewhat different perspective that is not based on optimality: we

show that, for the large and important class of IFR distributions (for which the optimal partition

is the finest possible one), the designer can nevertheless achieve a substantial share of the optimal
18This means that G is more concave than F.
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performance with a simple partition in two categories.19 Thus, if very fine partitions are for some

reason costly, a designer may find it optimal to choose the simplest non-trivial coarse partition.

This seems to us a powerful argument in favor of coarse partitions.

Proposition 2 Assume that F , the distribution of abilities, has an increasing failure rate. Then,

the optimal partition in the class of partitions with only two status categories yields at least half the

performance obtained by the overall optimal partition.

Proof. Recall that in the IFR case, the overall optimal partition is the finest possible one, and

hence has n status categories. Thus, total effort in the overall optimal partition is given by :

E
(n)
total = 2

n−1∑
i=1

(n− i)E(i, n)

Total effort in the optimal partition with only two categories is given by

E
(2)
total = n(n− i∗)E(i∗, n)

where i∗ ∈ arg maxi[n(n− i∗)E(i∗, n)]. This immediately yields: E
(2)
total > 1

2E
(n)
total.

The above approximation is rough, and the coarse partition with only two classes yields for

“well-behaved” distributions a much higher percentage of the optimal performance. For example,

E
(2)
total ≥

3
4E

(n)
total for a uniform distribution of abilities.

Our final result in this section gives further information about the optimal partition with two

categories. Its proof is also based on Lemma 2 above.

Proposition 3 Let r∗ be the division point defining the optimal partition in two status categories,

i.e. the optimal number of contestants in the lower class. If the distribution of abilities F is convex

(concave) then r∗ ≤ (≥) n/2.

Proof. Suppose that r∗ is the optimal division point. Then, total effort in the optimal partition

is higher than in any other partition. In particular, it is higher than total effort in the partition
19We were not able to find a direct technical relation between our result and McAfee’s (2002) paper on complete

information matching of two continuum of populations. In McAfee’s model the “optimal partition” is always (i.e.,

irrespective of distribution) the finest possible — assortative matching, whereas we get the optimality of the finest

partition only under IFR. His result requires IFR on both distributions of abilities and on their survival functions,

whereas we require IFR only on the distribution itself. Finally, his result holds for the partition with two categories

where the cutoff is at the mean of each population, whereas our result holds for the optimal partition in the class of

partitions with two categories.
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where r = n− r∗. This yields:

n (n− r∗) E (r∗, n) ≥ n [n− (n− r∗)]E (n− r∗, n) ⇔

(n− r∗) E (r∗, n) ≥ r∗E (n− r∗, n) ⇔
E (r∗, n)

r∗
≥ E (n− r∗, n)

n− r∗

By taking one of the distributions to be uniform in Lemma 2, we obtain that, for a fixed

n, E(i, n)/i is decreasing (increasing) in i if the distribution of abilities is convex (concave). Then,

for a convex F , the last inequality above can hold only if r∗ ≤ (n− r∗), which is equivalent to

r∗ ≤ n/2. Analogously, if F is concave, it must be the case that r∗ ≥ (n− r∗) , which yields

r∗ ≥ n/2.

A simple corollary is, of course, that exactly half of the agents should be in the low (high)

category if abilities are uniformly distributed.

4 Status Derived from Monetary Prizes

So far, we focus on the pure effect of status in contests: there are no other real prizes to drive

efforts. We now consider contests where status is being indirectly (and solely) induced by the rank

of monetary prizes in the respective hierarchy. Higher effort leads to a (weakly) higher monetary

prize, and, in addition, agents get positive utility proportional to the number of agents that have

lower monetary prizes, and negative utility proportional to the number of agents that have higher

monetary prizes.20 In particular, we depart from the zero-sum world presented above.

A set of k monetary prizes Vk ≥ Vk−1 ≥ ... ≥ V1 and a family of division points {ri}k
i=0 where

r0 = 0 and rk = n determines a partition with k categories: a contestant ranked in the top category

k (i.e., a contestant whose effort is among the top rk − rk−1) receives a monetary prize of Vk, a

contestant in the second highest category receives a prize of Vk−1 ≤ Vk, and so on till the lowest

V1 ≤ V2 ≤ ... ≤ Vk.

Thus, a player who is awarded the i-th highest monetary prize Vi perceives in fact a total prize

(money + status) of :

vi = Vi + ri−1 − (n− ri).

In order to make the problem non-trivial, we add here two realistic assumptions: 1) The contest
20Dubey and Geanakoplos (2005) consider a status model where monetary prizes are awarded on the basis of

absolute performance.
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designer is financially constrained: the total amount of monetary prizes cannot exceed a given

amount P. Otherwise, it is obvious that large enough monetary prizes can always swamp any status

effects. 2) We impose an individual rationality constraint: the expected payoff of each contestant

should be non-negative. Otherwise, contestants will leave without competing (the outside option

being normalized to zero).

By calculations similar to those performed for the case of pure status concerns, total effort in a

symmetric equilibrium is given by

E
(k)
total =

k−1∑
i=1

(n− ri)(ri+1 − ri−1)E(ri, n) +
k−1∑
i=1

(n− ri)E(ri, n)(Vi+1 − Vi)

Therefore, the designer’s problem is as follows:

max
k,{ri}k

i=1,{Vi}k
i=1

E
(k)
total =

k−1∑
i=1

(n− ri)(ri+1 − ri−1)E(ri, n) +
k−1∑
i=1

(n− ri)E(ri, n)(Vi+1 − Vi)

subject to : (1) 1 ≤ k ≤ n

: (2)
k∑

i=1

(ri − ri−1)Vi = P

: (3) V1 ≥ n− r1

: (4) Vk ≥ Vk−1 ≥ ... ≥ V1

Note that constraint (3) guarantees that the expected payoff of the lowest type, who does not make

any effort, is non-negative. By a standard monotonicity argument, all other types will have positive

expected payoffs.

Theorem 5 If P > n, (i.e., if the available budget is as least as large as the number of contestants),

the optimal solution to the designer’s problem has the following structure: The designer induces

a partition with two status categories such that the contestant with the highest effort receives a

monetary prize V2 = P − (n − 1),while all other contestants receive a monetary prize V1 = 1. If

P ≤ n , it is optimal to restrict entry to the contest.

Proof. See Appendix.

The intuition behind the optimality of the above described partition is as follows: Take a

partition with two categories and a singleton in the top category, and refine it, for example, by

dividing the low category in new “middle” and “low” categories. Then, the agents in the new low

category perceive a decline in status, and this decline must be compensated by a higher monetary

prize (in order to satisfy their individual rationality constraint). Since status is derived from
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monetary prizes, the agents in the new middle category must obtain a monetary prize that is at

least as large as that of the agents in the new low category. Thus, via the budget constraint, the

monetary prize of the agent in the top category must go down — this decline necessarily induces a

decline in the effort of high ability types. Since the strongest effect of prizes is on high ability agents,

the potential increase in effort of middle ability agents is not enough to compensate for the decline

at the top. This insight is related to the optimality of a unique “first” prize in Moldovanu and

Sela’s (2001) contest model with linear cost functions and purely monetary prizes. That optimality

naturally translates here into a partition in two status classes, with a singleton in the top category.

Our previous result suggests that an upward shift in the relative weight of the monetary part in

determining status will lead to a larger gap between CEO compensation and the compensation of

the other agents in a firm.21 Frydman (2005) documents the relatively recent dramatic increase in

this gap in the US, and offers an explanation based on a shift in the importance of general versus

firm-specific skills.

5 Conclusion

We have studied a contest model where heterogeneous agents who care about relative standing

are ranked according to output, and are then partitioned into status categories. Our main results

describe the structure of the optimal partition into status classes from the point of view of a

designer who maximizes total output. The model explains ubiquitous phenomena such as a top

status class that contains a unique individual, and the proliferation of status classes in organizations

where high-skilled individuals are not rare. We also studied the interplay between pure status and

monetary prizes.

As already mentioned in the introduction, in most real-life situations status is only partly de-

termined by measurable differences in monetary compensation. Social, cultural and other economic

considerations that may be connected to a concern for relative position in a future interaction are

also important determinants. Modeling a specific situation requires a simple combination of the

two variants displayed here, and the corresponding results will be driven by the relative strengths

of the monetary versus the less tangible parts.

Finally, note that, in principle, an analysis analogous to ours is possible for other agents’
21For example, the average ratio of highest to fifth highest compensation in US firms jumped from about 2.8 in the

middle of 20th century to 6.1 at the beginning of the 21th century. The increase in the ratio of CEO compensation

to average compensation in the firm is much more dramatic.
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utility functions, or for other designer’s goals. In particular, for given, fixed utility functions, the

equilibrium analysis is not affected by the designer’s goal which can be modified according to the

desired application. Thus, our model offers a convenient framework for the study of the various

implications of concerns for social status on organizational design.
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7 Appendix

A few useful facts about order statistics:

It is well-known that:

Fk,n(s) =
n∑

j=k

(n
j )F (s)j [1− F (s)]n−j

fk,n(s) =
n!

(k − 1)!(n− k)!
F (s)k−1[1− F (s)]n−kf(s)

Let Fn
i (s) , i = 1, 2, ...n denote the probability that a player’s type s ranks exactly i-th highest

among n random variables distributed according to F . Then

Fn
i (s) =

(n− 1)!
(i− 1)!(n− i)!

[F (s)]i−1[1− F (s)]n−i

Defining Fn,n−1 ≡ 0, and F0,n−1 ≡ 1, it is immediate that the relation between Fi,n(s) and Fn
i (s) is

Fn
i (s) = Fi−1,n−1(s)− Fi,n−1(s)

Finally, let Pi(s) be the probability of a player with type s being ranked in category i, i.e., her

type is between the ri-th and ri−1-th highest. Then:

Pi(s) =
ri−ri−1∑

j=1

Fn
ri−1+j(s) = Fri−1,n−1(s)− Fri,n−1(s)

Proof of Theorem 1:

Proof. Let a partition with k categories be given by { (0, r1], (r1, r2], ...(ri−1, ri], ..., (rk−1, n] }.

Assuming a symmetric equilibrium in strictly increasing strategies,22 the optimization problem of

a player with ability a is

max
s


[1− Fr1,n−1(s)][−(n− r1)]

+
∑k−1

i=2

[
Fri−1,n−1(s)− Fri,n−1(s)

]
[ri−1 − (n− ri)]

+Frk−1,n−1(s)rk−1 − β(s)
a


22It can be shown that there is a unique symmetric equilibrium.
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where the first term is the utility of being in the lowest category, the second term is the utility of

being in categories 2 till (k − 1), the third term is the utility of being in the highest category, and

the last term is the disutility of exerting effort β (s) .

The solution of the resulting differential equation with boundary condition β(0) = 0 is

β(a) =
∫ a

0
x

{
fr1,n−1(x)(n− r1) +

k−1∑
i=2

[
fri−1,n−1(x)− fri,n−1(x)

]
(ri−1 + ri − n) + frk−1,n−1(x)rk−1

}
dx

(1)

Thus, total effort is given by:

Etotal = n

∫ 1

0
β(a)f(a)da (2)

The above integral can be calculated by inserting formula 1 in 2 and by integrating by parts the

constituent terms, who all have the form b
∫ 1
0

[∫ a
0 xfr,n−1(x)dx

]
f(a)da where b is a constant. Note

that : ∫ 1

0

[∫ a

0
xfr,n−1(x)dx

]
f(a)da

=
[
F (a)

∫ a

0
xfr,n−1(x)dx

]1

0

−
∫ 1

0
F (a)afr,n−1(a)da

=
∫ 1

0
a [1− F (a)] fr,n−1(a)da

= E(r, n− 1)− r

n
E(r + 1, n)

=
n− r

n
E(r, n)

The last equality follows by a well known identity among order statistics (see David and Nagaraja,

2003, page 44). Assembling all terms in equation 2, and recalling that r0 = 0, and rk = n finally

yields:

E
(k)
total =


(n− r1)2E (r1, n)

+
∑k−1

i=2 (ri−1 + ri − n) [(n− ri−1)E (ri−1, n)− (n− ri)E(ri, n)]

+rk−1(n− rk−1)E(rk−1, n)


=

k−1∑
i=1

(ri+1 − ri−1)(n− ri)E(ri, n)

Proof of Theorem 2:
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Proof. Consider a partition {ri}k
i=0 for a given number of contestants m. Total effort is given

by

Etotal =
k−1∑
i=1

(ri+1 − ri−1)(m− ri)E(ri,m)

= r2(m− r1)E(r1,m) +
k−1∑
i=2

(ri+1 − ri−1)(m− ri)E(ri,m)

Assume now that a designer faced with m + 1 contestants expands by one the size of the

lowest status category: thus, consider the new partition {r′i}k
i=0 where r′0 = 0, r′1 = r1 + 1, r′2 =

r2 + 1, ..., r′k−1 = rk−1 + 1, r′k = m + 1.

Total effort for this new partition is given by

E
′
total =

k−1∑
i=1

(r′i+1 − r′i−1)(m + 1− r′i)E(r′i,m + 1)

= (r2 + 1)(m− r1)E(r1 + 1,m + 1) +
k−1∑
i=2

(ri+1 − ri−1)(m− ri)E(ri + 1,m + 1)

We obtain:

E
′
total − Etotal

= (m− r1)E(r1 + 1,m + 1) +
k−1∑
i=1

(ri+1 − ri−1)(m− ri)[E(ri + 1,m + 1)− E(ri,m)] ≥ 0

The last inequality holds since, for all i,m, Ai+1,m+1 stochastically dominates Ai,m.23 The claim

follows now by starting from an optimal partition for m contestants, and expanding the size of the

lowest category as above. Further eventual optimization of the partition for m+1 contestants must

weakly increase the total effort even further, thus yielding the wished result.

Proof of Theorem 4:

Proof. Suppose that, in an optimal partition with k categories, the j-th (1 ≤ j ≤ k) category

contains more than one element. Divide the j-th category into two sub-categories and denote by

rd the dividing point, rj−1 < rd < rj . Letting E(0, n) ≡ 0, the difference in total effort between the

23See Shaked and Shanthikumar (1994) for more details.
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new and the initial partition is given by:

E
(k+1)
total − E

(k)
total =


(rj − rj−1)(n− rd)E(rd, n)

−(rj − rd)(n− rj−1)E (rj−1, n)

−(rd − rj−1)(n− rj)E(rj , n)


=

 (rj − rd) [(n− rd) E (rd, n)− (n− rj−1) E (rj−1, n)]

− (rd − rj−1) [(n− rj) E (rj , n)− (n− rd) E (rd, n)]


Let t = rj − rj−1, rd = rj−1 + 1. Then,

E
(k+1)
total − E

(k)
total

=

 (t− 1) [(n− rd) E (rd, n)− (n− (rd − 1))E (rj−1, n)]

− [(n− (rd + t− 1))E (rd + t− 1, n)− (n− rd) E (rd, n)]



=



(t− 1) [(n− rd) E (rd, n)− (n− (rd − 1))E (rd − 1, n)]

− [(n− (rd + t− 1))E (rd + t− 1, n)− (n− (rd + t− 2))E (rd + t− 2, n)]

− [(n− (rd + t− 2))E (rd + t− 2, n)− (n− (rd + t− 3))E (rd + t− 3, n)]

−....

− [(n− (rd + 1))E (rd + 1, n)− (n− rd) E (rd, n)]


Note that

(n− r) E (r, n)− (n− (r − 1))E (r − 1, n)

= (n− r + 1) [E (r, n)− E (r − 1, n)]− E (r, n)

By Barlow and Proschan’s Lemma about IFR distributions, and by the fact that −E (r, n) is

decreasing in r, it immediately follows that [(n− r) E (r, n)−(n− (r − 1))E (r − 1, n)] is decreasing

in r. Therefore E
(k+1)
total − E

(k)
total > 0. This contradicts the assumption that the initial partition was

optimal. Therefore, each category in the optimal partition must contain a unique element.

Proof of Proposition 1:

Proof. By Theorem 3 we can restrict the argument to partitions for which the top status class

contains a unique element. By Theorem 1, the total effort in a partition with k status categories is

given by

E
(k)
total =

k−1∑
i=1

(ri+1 − ri−1)(n− ri)E(ri, n)

=
k−2∑
i=1

(ri+1 − ri−1)(n− ri)E(ri, n) + (n− rk−2)E(n− 1, n)
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The optimal partition contains only two status classes iff E
(2)
total ≥ E

(k)
total for all 2 ≤ k ≤ n. That is,

the following claim must hold for all 2 ≤ k ≤ n and all admissible partition sequences {ri}k
i=1 :

nE(n− 1, n) ≥
k−2∑
i=1

(ri+1 − ri−1)(n− ri)E(ri, n) + (n− rk−2)E(n− 1, n)

⇒ rk−2E(n− 1, n) ≥
k−2∑
i=1

(ri+1 − ri−1)(n− ri)E(ri, n)

⇒ rk−2 ≥
k−2∑
i=1

(ri+1 − ri−1)(n− ri)
E(ri, n)

E(n− 1, n)
(3)

By Lemma 2 above, we know that EF (i, n)/EG(i, n) is decreasing in i. This yields

EF (ri, n)
EG(ri, n)

≥ EF (n− 1, n)
EG(n− 1, n)

which in turn implies
EF (ri, n)

EF (n− 1, n)
≥ EG(ri, n)

EG(n− 1, n)
(4)

Thus, if inequality (3) holds under F , it must also hold under G, and the desired result follows.

Existence of a distribution for which a partition with two categories is optimal:

Proof. By the proof of Proposition 1, it is sufficient to show that there exists a distribution

function for which condition (3) is satisfied. Consider F (x) = x
1
w , w > 1. Then

E(r, n) =
n!(w + r − 1)!

(r − 1)!(n + w)!

and
E(r, n)

E(n− 1, n)
=

(n− 2)!
(r − 1)!

(w + r − 1)!
(w + n− 2)!

It can be easily verified that limw→∞
(w+r−1)!
(w+n−2)! = 0. Therefore, for a sufficiently large w, condition

(3) is satisfied, and the result follows.

Proof of Theorem 5

Proof. The designer’s problem is:

max
k,{ri}k

i=1,{Vi}k
i=1

E
(k)
total =

k−1∑
i=1

(n− ri)(ri+1 − ri−1)E(ri, n) +
k−1∑
i=1

(n− ri)E(ri, n)(Vi+1 − Vi)

subject to : 1) 1 ≤ k ≤ n

: 2)
k∑

i=1

(ri − ri−1)Vi = P

: 3) V1 ≥ n− r1

: 4) Vk ≥ Vk−1 ≥ .... ≥ V1
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Assume first that a given partition with k status categories is fixed. We derive the optimal allocation

of money prizes consistent with such a partition. Subsequently, we find the optimal partition.

Note that dE
(k)
total

dV1
< 0 , and therefore V1 = n− r1. The maximization problem reduces to:

max
{Vi}k

i=1

k−1∑
i=1

(n− ri)(ri+1 − ri−1)E(ri, n) +
k−1∑
i=1

(n− ri)E(ri, n)(Vi+1 − Vi)

subject to:
k∑

i=1

(ri − ri−1)Vi = P

: Vk ≥ Vk−1 ≥ ....V1 = n− r1

Assuming that all the constraints Vk ≥ .... ≥ V1 = n− r1 are binding, the Lagrangian is

L =
k−1∑
i=1

(n− ri)(ri+1 − ri−1)E(ri, n) +
k−1∑
i=1

(n− ri)E(ri, n)(Vi+1 − Vi)−

α0(
k∑

i=1

(ri − ri−1)Vi − P ) +
k∑

i=1

αi(Vi − (n− r1))

The first order conditions are

dL

dVi
= [(n− ri−1)E (ri−1, n)− (n− ri)E (ri, n)]− α0(ri − ri−1)− αi = 0, i = 1, ...., k

The solution of this problem is:

Vk−1 = ... = V1 = (n− r1);

Vk =
P − rk−1(n− r1)

n− rk−1

α0 = E(rk−1, n);

αi = [(n− ri−1)E (ri−1, n)− (n− ri)E (ri, n)]− α0(ri − ri−1), i = 1, .., k

Note that :

αi = [(n− ri−1)E (ri−1, n)− (n− ri)E (ri, n)]− α0(ri − ri−1)

< (ri − ri−1)(E(ri, n)− E(rk−1, n)) ≤ 0

That is, our assumption that all the constraints Vk−1 ≥ ... ≥ V1 = n− r1 are binding (Vk ≥ n− r1

is not binding) was correct. Now, at the optimal solution, total effort is given by

E
(k)
total =

k−1∑
i=1

(n− ri)(ri+1 − ri−1)E(ri, n) + E(rk−1, n)(P − n(n− r1))
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For a partition with k = 2 with division point r′1, the above formula yields:

E
(2)
total = PE(r′1, n)

which is maximized for r′1 = n− 1. Noting that
k−1∑
i=1

(n− ri)(ri+1 − ri−1) = n(n− r1), and that for

any k, rk−1 ≤ n− 1 , we obtain that

E
(2)
total − E

(k)
total

= PE(n− 1, n)−

(
k−1∑
i=1

(n− ri)(ri+1 − ri−1)E(ri, n) + E(rk−1, n)(P − n(n− r1))

)

= P [E(n− 1, n)− E(rk−1, n)]−
k−1∑
i=1

(n− ri)(ri+1 − ri−1)[E(ri, n)− E(rk−1, n)] ≥ 0

Thus, a partition with two status categories where the top category contains a unique element is

optimal.
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