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a b s t r a c t

To examine the variance reduction from portfolios with both primary and derivative assets we develop a
mean–variance Markovitz portfolio management problem. By invoking the delta–gamma approximation
we reduce the problem to a well-posed quadratic programming problem. From a practitioner’s
perspective, the primary goal is to understand the benefits of adding derivative securities to portfolios of
primary assets. Our numerical experiments quantify this variance reduction from sample equity portfolios
to mixed portfolios (containing both equities and equity derivatives).
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1. Introduction

The main objective in portfolio management is the tradeoff
between risk and return. Markovitz, [9,10] studied the problem
of maximizing portfolio expected return for a given level of risk,
or equivalently minimizing risk for a given expected return. One
limitation of Markovitz’s model, however, is that it considers only
portfolios of primary assets. Mixed portfolios have been a topic of
recent research from different perspectives with varying success.
We list a few of the known results, and then describe our results in
relation to the current research.

Recently, [11,1] looked at the optimalmanagement of portfolios
containing primary and derivative assets. In [11], the author
introduced a technique for optimizing CVaR (Conditional Value at
Risk) of a portfolio. The paper [1] observes that CVaRminimization
for a portfolio of derivative securities is ill-posed. Furthermore, [1]
has shown that this predicament can be overcome by including
transaction costs.

[2,3,6] considered portfolio optimizationwith non-standard as-
set classes. In particular, [2] looked at the problem of maximizing
expected exponential utility of terminalwealth under a continuous
time model by trading a static position in derivative securities and
a dynamic position in stocks. Separately, in a one periodmodel, [3]
analyzed the optimal investment and equilibrium pricing of pri-
mary and derivative instruments. Additionally, [6] has shown how
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to approximate dynamic positions in options by minimizing the
mean-squared error.

To the best of our knowledge, this paper is the first work to con-
sider the mean–variance Markovitz portfolio management prob-
lem in a one period model with derivative assets. For a portfolio
containing many assets (primary and derivative) the estimation of
the correlationmatrix can be challenging. Practitioners often solve
this difficulty by projecting portfolios onto a reduced set of factors.
Projection methods motivate our approach to the mean–variance
problem. However, if parametric approaches are used (we work
in a multivariate normally distributed returns framework), this
projection method creates another problem. Since projections
are often non-linear, we must overcome non-linearities by the
delta–gamma approximation.

The delta–gamma approximation is well known and often
used in risk management and portfolio hedging. In industry
practice this approximation works well for sufficiently small time
intervals. By performing the delta–gamma approximation, the
portfolio management problem with derivative assets is reduced
to a quadratic program; however, the covariance matrix of the
factors may not be positive definite. Since data are usually built
from inconsistent datasets, this issue appears in some financial
optimization problems. For example, for portfolios of stocks, the
sample correlation matrix is just an approximate correlation, and
hence need not be positive definite. This problem is addressed
by [5,7]. These works focused on the extraction of a positive
semi-definite variance–covariance matrix, obtained through the
solution of a second-order conic mathematical programming
problem. It is a way to convexify an a priori non convex problem.
In [5,7], the smallest distortion of the original matrix which
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satisfies the desired properties (e.g., being a correlation matrix) is
obtained by using Frobenius norm.

Our main motivation is to investigate the variance reduction
portfolios achieved through the addition of derivative assets
compared against straight equity portfolios. Options can be
considered as a type of portfolio insurance. We postulate that
by allowing investment in this asset class, one should be able to
reduce the risk profile of optimal mean–variance portfolios (here
risk is measured as variance). Therefore, it appears only important
to study the risk reduction due to investing in options. We explore
the size of this risk reduction, and how the risk reduction profile
varies across different derivative structures.

To address these questions we implement several numerical
experiments. One finding is that the largest variance reduction is
obtained by adding options on one stock. It is interesting to point
out that the optimal portfolio variance reduction is a unimodal
function of annual returns (it increases for small values of annual
returns, reaches its peak and then decreases for larger values of
annual returns). The maximum variance reduction is ∼85%–90%,
and it occurs with a portfolio return per annum of ∼12%–15%.

Our results can be applied to the problem of pricing and
hedging in incomplete markets. For instance, we can consider
instruments written on non-tradable factors (e.g., temperature),
and they can be hedged with tradable instruments which are
highly correlated (this procedure is called cross hedging). Take
weather derivatives (e.g., HDD or CDD) as an example; energy
prices are considered as the traded correlated instrument (in
California a high correlation can be observed between temperature
and energy prices). Perfect hedging is not possible in this paradigm.
Minimizing the variance of the hedging error can be captured
as a special case of mean–variance optimization problem for a
portfolio of primary and derivative instruments. A survey paper on
mean–variance hedging and mean–variance portfolio selection is
explored in [12].

Another possible application of our results is the hedging of
long maturity instruments with short maturity ones. As is well
known, the market for long maturity instruments is illiquid, thus
the issuers use (static) hedging portfolios of the more liquid short
maturity instruments. The interested reader can Ref. [4].

This paper is organized as follows. In Section 2 we present
the model; Section 3 introduces the delta–gamma approximation;
Section 4 presents the reduction to quadratic programs. Numerical
experiments are provided in Section 5; and Section 6 concludes our
work.

2. The model

Portfolio returns are derived from the return of individual
positions; however, in practice, it is not advisable to model the
positions individually due to the latent correlation structure. If we
have m instruments in our portfolio, we would need m separate
volatilities, plus data on m(m−1)

2 correlations, so in total m(m+1)
2

pieces of information. For largem this may be difficult.
The resolution is to map m instruments onto a reduced set of

risk factors, n. The mapping can be non-linear (e.g., BS (Black–
Scholes formula) for options). Let us assume that the factors are
represented by a stochastic vector process S = (S1, S2, . . . , Sn),
which at all times t ∈ (0, ∞) is assumed to be of the form

S(t) = ΣWt (2.1)

where Σ is the variance–covariance matrix, which we take to be
positive definite (themethodology proposed in [5,7] can be applied
when the positive definite assumption fails), and Wt is a standard
Brownian motion on a canonical probability space (Ω, F , P). The
portfolio value at time t , denoted by V (S, t), is of the form

V (S, t) =

m
k=1

xk(t)Vk(S, t), (2.2)
where Vk(S, t), k = 1, . . . ,m, represents the value of the indi-
vidual instruments (mapped onto the risk factors), and xk(t), k =

1, . . . ,m, stands for the number of shares of instrument k held in
the portfolio at time t . We choose the portfolio mix xk(t), k =

1, . . . ,m, such that the portfolio return, 1V , over time interval
[t, t + 1t],

1V = V (S + 1S, t + 1t) − V (S, t), (2.3)

is optimized as described below. It turns out to bemore convenient
to work with the vector of actual proportions of wealth invested in
the different assets, thus, at time t ∈ (0, ∞), we introduce portfo-
lio weights wk(t), k = 1, . . . ,m, by

wk(t) =
xk(t)
V (S, t)

, k = 1, . . . ,m. (2.4)

In the following, we posit the Markowitz mean–variance type
problem: given some exogenous benchmark return, re(t), at time t
an investor wants to choose among all portfolios having the same
return, re(t), the one with minimal variance, Var(1V ):

(P1) min
w

Var(1V )

s.t. E(1V ) = re(t),
m

k=1

wk(t)Vk(S, t) = 1.

Another possible portfolio management problem is to choose the
portfolio with minimal variance:

(P2) min
w

Var(1V )

s.t.
m

k=1

wk(t)Vk(S, t) = 1.

There are some difficulties in solving (P1) and (P2). First, we
may not be able to determine the moments of 1V since 1V non-
linearly depends on changes in the underlying factors. Moreover,
it is not obvious what distribution 1V would follow—even if we
perfectly learnt the pdf of 1S. If we only required the moments
of 1V , the situation would not improve since the integration of
moments might be intractable. One way out of this predicament is
to use the delta–gamma approximation.

3. Delta–gamma approximation

The delta–gamma approximation states that a portfolio change
during a short time period resulting from the change of underly-
ing factors can be approximated by some second order polynomial
function, the coefficients of which are given by the portfolio’s sen-
sitivities, such as the portfolio delta, gamma and theta. This ap-
proximation is an important tool in riskmanagement and hedging;
for instance, to hedge a portfolio of derivatives with respect to the
underlying’s change, the delta–gammaapproximation is employed
to match sensitivities of the portfolio with those of the hedging in-
struments.

Mathematically speaking, this approximation is a second order
Taylor expansion of the portfolio’s change, 1V , over the time
interval [t, t + 1t]:

1V ≈ δV =
∂V
∂t

1t + δT1S +
1
2
1STΓ 1S, (3.1)

where

δi =
∂V
∂Si

, Γij =
∂2V

∂Si∂Sj
, i = 1, . . . , n.



696 S.W. Jewell et al. / Operations Research Letters 41 (2013) 694–700
Since

V (S, t) =

m
k=1

xk(t)Vk(S, t),

then

δi =
∂V
∂Si

=

m
k=1

xk(t)δk
i ,

δk
i :=

∂Vk

∂Si
, i = 1, . . . , n, k = 1, . . . ,m,

(3.2)

Γij =
∂2V

∂Si∂Sj
=

m
k=1

xk(t)Γ k
ij ,

Γ k
ij :=

∂2Vk

∂Si∂Sj
, i = 1, . . . , n, j = 1, . . . , n,

k = 1, . . . ,m.

(3.3)

It is well known that this approximation performs well for
sufficiently small time intervals, 1t . At this point, we formulate
the approximated versions of (P1) and (P2) as

(P3) min
w

Var(δV )

s.t. E(δV ) = re(t),
m

k=1

wk(t)Vk(S, t) = 1,

and

(P4) min
w

Var(δV )

s.t.
m

k=1

wk(t)Vk(S, t) = 1.

Our next step is to reduce (P3) and (P4) to quadratic programs and
this is formulated in the following section.

4. Quadratic programs

In light of (2.1), 1S ∼ N (0, Σ
√

1t). For computational con-
venience, we assume 1t = 1. Next, we replace the vector of cor-
related normals, 1S, with the vector of independent normals
Z ∼ N (0, I). This is done by setting

1S = CZ with CCT
= Σ .

In terms of Z , the quadratic approximation of 1V becomes

1V ≈ δV = a + (CT δ)TZ +
1
2
ZT (CTΓ C)Z,

with

a =
∂V
∂t

1t. (4.1)

At this point, it is convenient to choose the matrix C to diagonal-
ize the quadratic term in the above expression. Let C̃ be a square
matrix such that

C̃ C̃T
= Σ (4.2)

(e.g., the one given by the Cholesky factorization). The matrix
1
2 C̃

TΓ C̃ is symmetric, and thus admits the representation

1
2
C̃TΓ C̃ = UΛUT , (4.3)
where Λ = diag(λ1, . . . , λn), and U is an orthogonal matrix such
that UUT

= I . Next, set C = C̃U and observe that

CCT
= C̃UUT C̃T

= Σ, (4.4)

then we have
1
2
CTΓ C =

1
2
UT (C̃TΓ C̃)U = UT (UΛUT )U = Λ.

Thus, together with the fact that

b = CT δ, (4.5)

we obtain

1V ≈ δV = a + bTZ + ZTΛZ := Y .

4.1. Moment generating function

In this subsection, we explore the moment generating function
of Y and derive the mean and variance of Y . Since

Y =

n
i=1

(λiZ2
i + biZi) + a (4.6)

=

n
i=1

λi


Zi +

bi
2λi

2

+ a −

n
i=1

b2i
4λi

, (4.7)

it follows that the random variable Y has a student distribution,
being – up to a constant – the sum of squared independent
normally distributed random variables. It is well known that:

E(θY ) = exp(η(θ)), (4.8)

where

η(θ) = aθ +

n
j=1

ηj(θ) = aθ

+

n
j=1

1
2


θ2b2j

1 − 2θλj
− log(1 − 2θλj)


, (4.9)

for all θ satisfying maxj θλj < 1
2 . Direct computation leads to

d

eη(θ)


dθ

= exp(η(θ))
dη
dθ

= exp(η(θ))


a +

1
2

n
j=1


2θb2j (1 − 2θλj) − θ2(−2λj)

(1 − 2θλj)2

−
−2λj

1 − 2θλj



and
d2

eη(θ)


dθ2

as given in Box I.
Thus, the first and second moments of Y are:

E(Y ) =
d

eη(θ)


dθ


θ=0

= a +

n
j=1

λj

and

E(Y 2) =
d2

eη(θ)


dθ2


θ=0

=


a +

n
j=1

λj

2

+

n
j=1

(b2j + 2λ2
j ).

Hence,

Var(Y ) = E(Y 2) − E2(Y ) =

n
j=1

(b2j + 2λ2
j ).

In order to ease the notation, we assume that V (S, t) = 1, so the
vector of shares x equals the vector of proportions w (also notice
that for simplicity we dropped the t dependence of w). We would
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d2

eη(θ)


dθ2

= exp(η(θ))


a +

1
2

n
j=1


2θb2j (1 − 2θλj) − θ2(−2λj)

(1 − 2θλj)2
−

−2λj

1 − 2θλj

2

+ exp(η(θ))


1
2

n
j=1


2λj

−2λj

−(1 − 2θλj)2

+
(2b2j − 8θb2j λj + 4θb2j λj)(1 − 2θλj)

2
− (2θb2j (1 − 2θλj) + θ2b2j 2λj)((−2λj)2(1 − 2θλj))

(1 − 2θλj)4


.

Box I.
Σ =


(1.144)10−4 (5.026)10−5 (4.687)10−4 (2.285)10−5 (7.010)10−5

(5.026)10−5 (1.638)10−4 (5.973)10−5 (2.849)10−5 (6.050)10−5

(4.687)10−5 (5.973)10−5 (1.69)10−4 (3.158)10−5 (6.023)10−5

(2.285)10−5 (2.849)10−5 (3.158)10−5 (1.276)10−4 (2.961)10−5

(7.010)10−5 (6.050)10−5 (6.023)10−5 (2.961)10−5 (2.433)10−4

 ,

Box II.
like to express themean and variance of Y in terms of x. Combining
(3.3), (4.2), (4.3) and trace properties, we have

E(Y ) = a +

n
j=1

λj

= a + tr

UΛUT 

= a +
1
2
tr

C̃TΓ C̃


= a +

1
2
tr


m

k=1

xkΓ kΣ


= a + xTp, (4.10)

where the vector p is defined as

p :=
1
2


tr

Γ 1Σ


, tr

Γ 2Σ


, . . . , tr


Γ mΣ

T
.

As for the variance, recall that with b of (4.5), it follows that (see
(3.2) and (4.4))

n
j=1

b2j = bTb = (CT δ)TCT δ = δTCTCδ =
1
2
xT Σ̂x, (4.11)

where

Σ̂ = 2MTΣM and
M = (Mik) = (δk

i ), i = 1, . . . , n, k = 1, . . . ,m.

Obviously, Σ̂ is positive semi-definite. In light of (4.4) and trace
properties it can be shown that
n

j=1

λ2
j =

1
4
tr

(CTΓ C)T (CTΓ C)


=

1
4
tr

Γ CCTΓ CCT 

=
1
4
tr (Γ ΣΓ Σ)

=
1
4
tr

 m
k=1

xkΓ kΣ

2


=
1
4


m

k=1

x2ktr

(Γ kΣ)2


+ 2


i≠k

xixktr

Γ iΣΓ kΣ



=
1
4
xTQx,
where the matrix Q is defined by

Qik = tr

Γ iΣΓ kΣ


, i = 1, . . . ,m, k = 1, . . . ,m. (4.12)

Therefore, we end up with

Var(Y ) =

n
j=1

(b2j + 2λ2
j ) =

1
2
xT (Σ̂ + Q )x. (4.13)

Thus, from (4.10) and (4.13), the portfolio problem (P3) (recall that
x = w) becomes

(P5) min
x

1
2
xT (Σ̂ + Q )x

s.t. a + xTp = re,
m

k=1

Vk(t, S)xk = 1,

and (P4) becomes

(P6) min
x

1
2
xT (Σ̂ + Q )x

s.t.
m

k=1

Vk(t, S)xk = 1.

It turns out that (P5) has a similar form to the classical mean–
variance portfolio problem: a quadratic objective function and lin-
ear constraints. Notice that the matrix Σ̂ + Q is positive definite,
since 1

2x
T (Σ̂ + Q )x = Var(δV ) > 0. We wrap up our findings in

the following theorem.

Theorem 4.1. (P3) is equivalent to (P5), which is a convex quadratic
program, and thus solvable in polynomial time.

5. Numerical study

In this section we examine the variance reduction achieved by
adding derivative assets to equity portfolios through a numerical
implementation of our earlier results. To illustrate these results,
we derive optimal equity portfolios and portfolios containing both
equities and equity derivatives. Following [8], we consider five
major US stocks (INTC, MO, PFZ, XOM, DIS), and their daily returns
between January 7th, 2002 and April 8th, 2005. Furthermore, we
assume the log-returns are multivariate normal, with correlation
matrix (of the five stocks derived by [8]) given in Box II: withmean
vector of excess returns:

µ = [0.010, 0.043, −0.045, 0.009, −0.017].



698 S.W. Jewell et al. / Operations Research Letters 41 (2013) 694–700
(a) European options. (b) Percentage of volatility reduction.

(c) Barrier options. (d) Various barriers.

Fig. 1. A base equity portfolio with the addition of a single option.
To implement our model we must transform between stocks and
factors. The correspondence between stock, Xi, and factor, Si, i =

1, . . . , 5, is:

Xi = exp(Si + µit).

To illustrate the variance reduction achieved by adding deriva-
tive assets to equity portfolios, we take two particular cases for
(P1). In the first case, for some 1 < p < m, we set

V1(S, t) = X1, V2(S, t) = X2, . . . , Vp(S, t) = Xp,

Vp+1(S, t) = Vp+2(S, t) = · · · = Vm(S, t) = 0.

This is the base equity portfolio. After transformations from the
delta–gamma approximation, and our results above, we recover
the counterpart of (P1), (P5)—the quadratic programming problem.
Let us call this optimal value of (P5) σe.

Our second case will be our base portfolio, as defined above,
with the addition of derivative assets. This corresponds to

V1(S, t) = X1, V2(S, t) = X2, . . . , Vp(S, t) = Xp,

Vp+1(S, t), Vp+2(S, t), . . . , Vm(S, t)
are derivative pricing functionals.

In our numerical experiments, we take the derivative pricing
functional to be the BS functional on single assets from the base
portfolio. For instance, given the portfolio of five equities listed
above, write one European call option on one of the single assets.
Here the BS functional is that for a European call written on a single
equity of the underlying portfolio.

Again, after similar transformations we obtain (P5), the coun-
terpart of (P1). Let us call this optimal value of (P5) σp. Our experi-
ments, for this set of stocks, show thatσp < σe uniformly (i.e. under
varying portfolio returns). In particular, we examine the quantity
(σe − σp)/σe, the variance reduction as a percentage of the base
equity portfolio’s optimal variance.

We show our approach and results are robust by examining
two different classes of equity derivatives.We first consider adding
simple one month, at-the-money, European call options to equity
portfolios. The proceeding analysis examines in detail the variance
reduction achieved by this addition. The second class of equity
derivatives we explore are barrier options. We have chosen barrier
options since they are particularly amenable to this process:
barrier prices and Greeks are readily available. Moreover, the
asymptotic behavior of barrier options approaches their European
counterparts, and provides additional insight into the variance
reduction properties.

As a first step to exploring the variance reduction introduced
through derivative instruments,we consider pure equity portfolios
and portfolios with equities and one option. These European call
options have spot/strike prices: X0 = [28.4, 60.01, 26.6, 65.53,
23.29].

We examine these portfolios in Fig. 1(a) where the bolded solid
line indicates the efficient frontier of the base equity portfolio
containing the five stocks mentioned above. Within the same
figure, we also plot the efficient frontiers obtained by adding
one European call option on one stock of the equity portfolio.
As seen, the addition of this option provides significant variance
reduction at any given expected return level. Fig. 1(b) plots the
volatility reduction as a percentage from the base equity portfolio.
More precisely, we plot (σe − σp)/σe, where σp and σe are the
optimal volatilities from the modified portfolio (from derivative
asset inclusion). The maximum variance reduction for the optimal
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(a) European options. (b) Percentage of volatility reduction.

Fig. 2. Equity portfolio + multiple options.
portfolio is approximately ∼85%–90%, and is achieved for annual
portfolio returns of ∼12%–17%.

Under the same experimental setup, we add knock-out barrier
options to our base equity portfolio. To test the robustness of the
results the barrier,H , is set as 1.2×X0, where X0 are the spot prices
of the underlying stocks. From Fig. 1(c), the efficient frontier shows
that similar variance reduction is achieved for barrier options.

In another experiment,we examine variance reduction achieved
from different knock-out barrier levels, H . In Fig. 1(d), we compare
the efficient frontiers of equity portfolioswith European options on
INTC, and equity portfolios with knock-out barrier options on INTC
for different H . When H = 1.2 × X0, the variance from the barrier
portfolio is quantitatively different from their European counter-
parts. However, as we increase the barrier, H , the efficient frontier
tends to agree with its European counterpart. In particular, when
H = 1.35 × X0, the efficient frontier from the European portfolio
completely overlaps with the knock-out barriers. As H increases,
the barrier becomesmore unlikely to be realized, and gradually be-
comes indistinguishable from the corresponding European portfo-
lios. Due to similar variance reduction properties between barrier
and European options, we focus the remainder of our numerical
analysis on portfolios containing European options.

Next, we examine the variance reduction when options on two
or more stocks are added to an equity portfolio. Fig. 2(a) shows the
efficient frontiers when additional European options are included
on top of the equity portfolios, and Fig. 2(b) represents the volatil-
ity reduction in percentage. The unimodality is consistent with our
results on equity portfolios with one derivative. Intuitively, port-
folios with additional options should lead to greater variance re-
duction (additional degrees of freedom), and our results as shown
in Fig. 2 confirm this intuition. Efficient frontiers corresponding
to more derivatives have a greater variance reduction than those
with fewer derivatives. However, it is interesting to note that the
marginal variance reduction appears to decrease as more options
are added. For example, the extra variance reduction from options
on both INTC+PFZ does not exceed more than 10% of the variance
reduction achieved from options on INTC alone. In the portfolio
where five options are added, the extra variance reduction (here
we mean the variance reduction between considering a portfolio
with one option and all five options added) is significant (around
50%). This occurs when the return is close to 0.

Another interesting observation from the numerical experi-
ment is that the marginal variance reduction effect is more signif-
icant for small expected returns than larger expected returns: the
differences in the percentages of volatility reduction in Fig. 2(b)
are more visible for low returns. Consistent with our observa-
tions in the first step, in all the situations considered, the maxi-
mum variance reduction in the optimal portfolio is approximately
∼85%–90% and occurs for annual portfolio returns of ∼12%–18%.
6. Conclusion and future research

This paper considers a mean–variance analysis for portfolios
of primary and derivative securities in a one period model. The
delta–gamma approximation is employed in order to ensure
tractability. Thus, the mean–variance optimization problem is
reduced to a quadratic program which is well posed. Numerical
experiments exhibit the optimal portfolio variance reduction
obtained by adding options to an equity portfolio.

The approach we established so far can also be applied to
hedging in incompletemarkets. It is well known that in incomplete
markets perfect hedging is not possible. One way to solve this
problem is to consider quadratic hedging; that is, minimize the
variance of the hedging error.

For example, let F be a payoff of the form F = V1(St+1t , t+1t),
for some map V1. We would like to hedge this payoff by some
instruments which are of the form Vk(S, t), k = 2, . . . , l (with l
possible less than n, whence the incompleteness). For simplicity,
assume that in this market borrowing and lending of cash is done
at zero interest rate (this can be easily achieved if one takes the
zero coupon bonds as numeraire). Given the number of shares
(x1, x2, . . . , xl) in the hedging portfolio, the hedging error is

−

l+1
k=1

xk1Vk(S, t),

with x1 = −1, and 1Vl+1(S, t) = 1. Therefore, the problem of
minimizing the variance of hedging error is of the form (P2). The
initial amount needed to finance the hedging portfolio is

xl+1 + V1(St , t).

We leave further elaboration on this subject for future research.
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